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Abstract.  In this paper, the classical and non-classical boundary conditions effect on free vibration 
characteristics of functionally graded (FG) size-dependent nanobeams are investigated by presenting a semi 
analytical differential transform method (DTM) for the first time. Three kinds of mathematical models, 
namely; power law (P-FGM), sigmoid (S-FGM) and Mori-Tanaka (MT-FGM) distribution are considered to 
describe the material properties in the thickness direction. The nonlocal Eringen theory takes into account 
the effect of small size, which enables the present model to become effective in the analysis and design of 
nanosensors and nanoactuators. Governing equations are derived through Hamilton’s principle and they are 
solved applying semi analytical differential transform method. The good agreement between the results of 
this article and those available in literature validated the presented approach. The detailed mathematical 
derivations are presented and numerical investigations are performed while the emphasis is placed on 
investigating the effect of the several parameters such as small scale effects, spring constant factors, various 
material compositions and mode number on the normalized natural frequencies of the FG nanobeams in 
detail. It is explicitly shown that the vibration of FG nanobeams is significantly influenced by these effects. 
Numerical results are presented to serve as benchmarks for future analyses of FG nanobeams. 
 

Keywords:  DT method; functionally graded material; non-classical boundary condition; nanobeams; 
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1. Introduction 
 

Functionally graded materials (FGMs) are composite materials with inhomogeneous 

micromechanical structure. They are generally composed of two different parts such as ceramic 

with excellent characteristics in heat and corrosive resistances and metal with toughness. The 

material properties of FGMs change smoothly between two surfaces and the advantages of this 

combination lead to novel structures which can withstand in large mechanical loadings under high 

temperature environments.  Presenting novel properties, FGMs have attracted intensive research 

interests, which were mainly focused on their static, dynamic and vibration characteristics of FG 

structures. 

Moreover, structural elements such as beams, plates, and membranes in micro or nanolength 

scale are commonly used as components in micro/nano electromechanical systems 
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(MEMS/NEMS). Therefore understanding the mechanical and physical properties of 

nanostructures is necessary for its practical applications. Nanoscale engineering materials have 

attracted great interest in modern science and technology after the invention of carbon nanotubes 

(CNTs).They have significant mechanical, thermal and electrical performances that are superior to 

the conventional structural materials. In recent years, nanobeams and CNTs hold a wide variety of 

potential applications (Zhang et al. 2004, Wang 2005, Wang and Varadan (2006) such as sensors, 

actuators, transistors, probes, and resonators in NEMSs. For instance, in MEMS/NEMS; 

nanostructures have been used in many areas including communications, machinery, information 

technology and biotechnology technologies. 

Since conducting experiments at the nanoscale is a daunting task, and atomistic modeling is 

restricted to small-scale systems owing to computer resource limitations, continuum mechanics 

offers an easy and useful tool for the analysis of CNTs. However the classical continuum models 

need to be extended to consider the nanoscale effects and this can be achieved through the 

nonlocal elasticity theory proposed by Eringen (1972) which consider the size-dependent effect. 

According to this theory, the stress state at are ference point is considered as a function of strain 

states of all points in the body. This nonlocal theory is proved to be in accordance with atomic 

model of lattice dynamics and with experimental observations on phonon dispersion Eringen 

(1983). 

Moreover, in recent years the application of nonlocal elasticity theory, in micro and 

nanomaterials hasreceived a considerable attention within the nanotechnology community. Tounsi 

et al. (2013) proposed a version of nonlocal elasticity theory which is employed to develop the 

thermal buckling properties of double-walled carbon nanotubes (DWCNTs) using nonlocal 

Timoshenko beam model. Besseghier et al. (2015) carried out the nonlinear vibration analysis of 

an embedded zigzag single-walled carbon nanotube based on nonlocal continuum theory. 

Aydogdu (2009) proposed a generalized nonlocal beam theory to study bending, buckling, and 

free vibration of nanobeams based on Eringen model using different beam theories. Pradhan and 

Murmu (2010) investigated the flap wise bending-vibration characteristics of a rotating 

nanocantilever by using Differential quadrature method (DQM). They noticed that small-scale 

effects play a significant role in the vibration response of a rotating nanocantilever. Civalek et al. 

(2010) presented a formulation of the equations of motion and bending of Euler-Bernoulli beam 

using the nonlocal elasticity theory for cantilever microtubules. The method of differential 

quadrature has been used for numerical modeling. Chemi et al. (2015) developed a chiral carbon 

nanotube model for the buckling analysis of DWCNTs. The size effect is taken into consideration 

using the Eringen’s nonlocal elasticity theory. 

In terms of vibration analysis of FGM beams with classical and non-classical boundary 

conditions there are a number of previous investigations on this topic. By using the Chebyshev 

collocation method, Sari and Butcher (2012) presented vibration analysis of non-rotating and 

rotating Timoshenko beams with damaged boundaries. Simsek (2010) developed different 

higher-order beam theories for vibration analysis of FG beams with various classical boundary 

conditions. Wattanasakulpong and Ungbhakorn (2014) predicted linear and nonlinear vibration 

analysis of elastically restrained ends FGM beams with porosities. They used the translational and 

rotational springs to simulate the non-classical boundary conditions for FGM beams with porosity. 

Shahba et al. (2011) presented free vibration and stability analysis of axially FG Timoshenko 

beams with both classical and non-classical boundary conditions. The governing equations of 

motion were then solved using a finite element approach. 

Also, it is well-known that the effects of rotary inertia and shear deformation are neglected in the 
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Euler-Bernoulli beam theory (EBT). Due to this cause, the EBT always overestimates buckling load 

and natural frequency of free vibration and underestimates deflection. Moreover, in Timoshenko 

beam theory a shear correction factor is required to compensate for the difference between the actual 

stress state and the constant stress state. To avoid the use of shear correction factor and obtain better 

prediction of response of deep beam, many higher-order shear deformation theories have been 

developed such as the third-order shear deformation theory proposed (Hebali et al. 2014, Hamidi  et 

al. 2015, Bennoun et al. 2016). In the FGM structures analysis area, Tounsi et al. (2015) utilized a 

simple and refined trigonometric higher-order beam theory to model the bending and vibration of 

functionally graded beams. Also, Belabed et al. (2014) used an efficient and simple higher order 

shear and normal deformation theory to investigate bending and free vibration analysis of 

functionally graded plates. 

Nowadays, with the development of the material technology, FGMs have also been employed 

in MEMS/NEMS (Witvrouw and Mehta 2005, Bounouara et al. 2016). Actually, FGMs find 

increasing applications in micro- and nano-scale structures such as thin films in the form of shape 

memory alloys, atomic force microscopes (AFMs), micro sensors, micro piezo actuator and 

nano-motors. In all of these applications, the size effect plays major role which should be 

considered to study the mechanical behaviors of such small scale structures. Beams are the core 

structures widely used in MEMS, NEMS and AFMS with the order of microns or sub-microns, 

and their properties are closely related to their micro-structures. Thus, establishing an accurate 

model of FG nanobeams is a key issue for successful NEMS design. Asghari et al. (2010, 2011) 

studied the free vibration of the FGM Euler–Bernoulli microbeams, which has been extended to 

consider a size-dependent Timoshenko beam based on the modified couple stress theory. The 

dynamic characteristics of FG beam with power law material graduation in the axial or the 

transversal directions were examined by Alshorbagy et al. (2011). Sharabiani and Haeri Yazdi 

(2013) studied surface effects on nonlinear free vibration of functionally graded nanobeam within 

the framework of Euler-Bernoulli beam model on the basis of von Karman geometric nonlinearity. 

Hosseini-Hashemi and Nazemnezhad (2013) investigated nonlinear free vibration of simply 

supported Euler-Bernoulli FG nanobeams with considering surface effects and balance condition 

between the FG nanobeam bulk and its surfaces. The multiple scales method was used as an 

analytical solution for the nonlinear governing equation. Ke and Wang (2011) exploited the size 

effect on dynamic stability of functionally graded Timoshenko microbeams. The free vibration 

analysis of FG microbeams was presented by Ansari et al. (2011) based on the strain gradient 

Timoshenko beam theory. They also concluded that the value of gradient index plays an important 

role in the vibrational response of the FG microbeams of lower slenderness ratios. Employing 

modified couple stress theory the nonlinear free vibration of FG microbeams based on 

von-Karman geometric nonlinearity was presented by Ke et al. (2012). It was revealed that both 

the linear and nonlinear frequencies increase significantly when the thickness of the FGM 

microbeam was comparable to the material length scale parameter. Eltaher et al. (2012, 2013) 

presented a finite element formulation for free vibration analysis of FG nanobeams based on 

nonlocal Euler beam theory. They also exploited the size-dependent static-buckling behavior of 

functionally graded nanobeams on the basis of the nonlocal continuum model (2013). Recently, 

using nonlocal continuum theory, Mahmoud et al. (2015) investigated bending and buckling 

behaviors of size-dependent nanobeams made of functionally graded materials including the 

thickness stretching effect by Navier analytical method. More recently, Zemri et al. (2015) 

developed a nonlocal shear deformation beam theory for bending, buckling, and vibration of FG 

nanobeams using the nonlocal differential constitutive relations of Eringen. 
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It is found that most of the previous studies on vibration analysis of FG nanobeams have been 

conducted based on the ignorance of the non-classical boundary condition and different material 

composition effects. As a result, these studies cannot be utilized in order to thoroughly study the 

FG nanobeams under investigation. Therefore, there is strong scientific need to understand the 

vibration behavior of FG nanobeams in considering the effect of non-classical or non-ideal 

boundary conditions.  

Motivated by this fact, in this study, vibration characteristics of FG nanobeams considering the 

effects of classical and non-classical boundary conditions is analyzed. Therefore, the translational 

and rotational springs are used to simulate the non-classical boundary conditions for FG 

nanobeams. A semi-analytical method called differential transformation method (DTM) is 

employed for vibration analysis of size-dependent FG nanobeams with three combinations of 

non-ideal boundary conditions for the first time. The superiority of the DTM is its simplicity and 

good precision and series expansion while it takes less time to solve polynomial series. It is 

different from the traditional high order Taylor’s series method, which requires symbolic 

competition of the necessary derivatives of the data functions. The Taylor series method is 

computationally taken long time for large orders. With this method, it is possible to obtain highly 

accurate results or exact solutions for differential equations. 

The material properties of FG nano beams are evaluated using the power law, sigmoid and 

Mori-Tanaka homogenization technique. Nonlocal Euler–Bernoulli beam model and Eringen’s 

nonlocal elasticity theory are employed. Governing equations and different boundary conditions 

for the free vibration of a nonlocal FG beam have been derived via Hamilton’s principle. These 

equations are solved using DTM and numerical solutions are obtained. The detailed mathematical 

derivations are presented while the emphasis is placed on investigating the effect of several 

parameters such as spring constant factors, different material compositions, mode number, various 

boundary conditions and small scale on vibration characteristics of FG nanobeams. Comparisons 

with the results from the existing literature are provided and the good agreement between the 

results of this article and those available in literature validated the presented approach. Numerical 

results are presented to serve as benchmarks for the application and the design of nanoelectronic 

and nano-drive devices, nano-oscillators, and nanosensors, in which nanobeams act as basic 

elements. They can also be useful as valuable sources for validating other approaches and 

approximate methods. 

 

 

2. Material gradient of FG nano beams 
 

Consider a FG nanobeam of length L and uniform thickness h in the unstressed reference 

configuration. The coordinate system for FG nanobeam with non-classical boundary conditions is 

shown in Fig. 1. The nanobeam is made of elastic and isotropic functionally graded material with  

 

 

 

Fig. 1 Geometry and coordinates of E-E functionally graded nanobeam 
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properties varying smoothly in the z thickness direction only. It is assumed that bottom surface 

(z=-h/2) of FG nanobeam is pure metal (Al), whereas the top surface (z=h/2) is pure ceramics 

(Al2O3). Most researchers use the power-law, sigmoid and Mori-Tanaka scheme to describe the 

volume fractions of the FGM beams. Therefore, FG nano beams with power-law (P-FGM), 

Mori-Tanaka (MT-FGM) and sigmoid (S-FGM) function will be considered in this paper. 

 

2.1 The material properties of P-FG nanobeams 
 

One of the most favorable models for FGMs is the power-law model, in which material 

properties of FGMs are assumed to vary according to a power law about spatial coordinates. The 

effective material properties of the FG beam such as Young’s modulus Ef, shear modulus Gf and 

mass density ρf
 
are assumed to vary continuously in the thickness direction (z-axis direction) 

according to a power function of the volume fractions of the constituents. According to the rule of 

mixture, the effective material properties, Pf, can be expressed as Şimşek (2010) 

     f c c m mV VP P P   (1) 

Where Pm, Pc, Vm 
and Vc 

are the material properties and the volume fractions of the metal and the 

ceramic constituents related by 

     
1c mV V   (2a) 

The volume fraction of the ceramic constituent of the beam is assumed to be given by 

     

1
( )

2

P

c

z
V

h
   (2b) 

Here p is the non-negative variable parameter (power-law exponent) which determines the 

material distribution through the thickness of the beam and z is the distance from the mid-plane of 

the FG beam. The FG beam becomes a fully ceramic beam when p is set to be zero. Therefore, 

from Eqs. (1)-(2), the effective material properties of the FG nanobeam can be expressed as 

follows 

           
 

1
( )

2

p

c m m
E E E

z

h
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 
 
 
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 
 

 

 

2.2 The material properties of MT-FG nanobeams 
 

Additionally, in this study, Mori-Tanaka homogenization technique is also employed to model 
 

 
Table 1 Material properties of FGM constituents Asghari et al. (2010) 

Material  Young modulus [GPa] Density [kg/m
3
] Poisson’s ratio 

Ceramic Alumina 380 3960 0.3 

Metal Aluminum 70 2702 0.3 
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the effective material properties of the FG nanobeams. According to Mori-Tanaka homogenization 

technique the local effective material properties of the FG nanobeam such as effective local bulk 

modulus Ke 
and shear modulus μecan be calculated by 

        
1 ( ) ( 4 3)

e m c

c m m c m m m

K K V

K K V K K K 




   
 (4a) 

      
1 ( ) (9 8 ) (6( 2 ))

e m c

c m m c m m m m m m m

V

V K K

 

       




       

 
(4b) 

However Poisson’s ratio of the FG nanobeam is assumed to be constant. Therefore from Eq. (4), 

the effective Young’s modulus (E) and mass density (ρ) based on Mori-Tanaka scheme can be 

expressed by 

      

9
( )

3

e e

e e

K
E z

K







( ) c c m mz V V     (5) 

 

2.3 The material properties of S-FG nano beams 
 

According to sigmoid distribution (S-FGM), the volume fractions of the metal and the ceramic 

constituents using two power-law functions which ensure smooth distribution of stresses are 

definedby 

     

1 / 2
( ) 1 for 0 z / 2

2 / 2

p

c

f

h z
V z h

h

 
    

   

     

1 / 2
( ) for / 2 z 0

2 / 2

p

m

f

h z
V z h

h

 
    

 
 

(6) 

By using the rule of mixture, the material properties (P) of the S-FG nano beam can be 

calculated by 

        
 ( ) ( ) 1 ( ) for 0 z / 2c c

f c f mP z V z P V z P h    
 

       
 ( ) ( ) 1 ( ) for / 2 z 0m m

f c f mP z V z P V z P h       
(7) 

Where P, 
c

fV , 
m

fV
 

are the material properties and the volume fractions of the ceramic and the 

metal constituents, respectively. 

 

 

3. Theory and formulation 
 

3.1 Kinematic relations 
 

The equations of motion are derived based on the Euler-Bernoulli beam theory according to 

which the displacement field at any point of the beam can be written as 
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   

( , )
, , ,x

w x t
u x z t u x t z

x


 


( , , ) ( , )zu x z t w x t  (8) 

Where t is the time, u and ware displacement components of the mid-plane along x and z directions, 

respectively. Therefore, according to Euler–Bernoulli beam theory, every elements of strain tensor 

vanish except normal strain in the x-direction. Thus, the only nonzero strain is 

     

2
0 0 0 0

xx 2

( , ) ( , )
, ,xx xx

u x
zk

t w t

x
k

x

x
  

 
 

 
   (9) 

Where 0

xx
 

is the extensional strain and k
0
 is the bending strain. Based on the Hamilton’s 

principle, which states that, the motion of an elastic structure during the time interval 0<t<t2 
is 

such that the time integral of the total dynamics potential is extremum 

0
( ) 0

t

extU T W dt     
(10) 

Here U is strain energy of the system and ij ij
v

U dV     , T is kinetic energy and Wect is work 

done by external forces. The total strain energy for FG nanobeam can be expressed by taking into 

consideration effect of spring constants (induced by the non-classical boundary conditions) in 

addition to strain energy 

     

(0, ) (0, )
( ) (0, ) (0, ) ( )
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v

TR RR
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 

 
  

 

 
 

 


 (11) 

Where KRL 
and KTL 

are the corresponding rotational and translational spring constants at the left 

end, respectively. Similarly, KRR 
and KTR 

are the rotational and translational spring constants at the 

right end of FG nanobeam, respectively. Substituting Eq. (9) into Eq. (11) yields 

  

0 0

0
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 
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 
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
 

(12) 

In which N and M are the axial force and bending moment respectively. These stress resultants 

used in Eq. (12) are defined as 

     
,xx xx

A A
N dA M zdA     (13) 

The kinetic energy for Euler-Bernoulli beam is presented as well by 

     

2 2

0

1
( )( ( ) ( ) )
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L
x z
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u u
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t t


 
 

    (14) 
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Also the virtual kinetic energy can be expressed as 

     

2 2 2 2

0 1 2
0

( ) ( )
L u u w w u w u w w w

T I I I dx
t t t t t t x t t x t x t x
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

          
     

              
  (15) 

Where (I0, I1, I2) are the mass moments of inertias, defined as below 

     

2

0 1 2( , , ) ( ) (1, , )
A

I I I z z z dA   (16) 

The first variation of external forces work of the beam can be written in the form 

     
 

0
( ) ( )

L

extW f x u q x w dx     (17) 

Where f(x) and q(x) are external axial and transverse loads distribution along length of beam, 

respectively. By Substituting Eqs. (12), (15) and (17) into Eq. (10) and setting the coefficients of 

δu, δw
 
and δ∂w/∂x to zero, the following Euler-Lagrange equation can be obtained 

     

2 3

0 12 2

N u w
f I I

x t x t

  
  

   
 (18a) 
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   
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(18b) 

For simplification, the mass moment of inertia terms are assumed to be negligible and 

appliedexternal axial load is set to zero for free vibration which results in a simplified version of 

Euler-Lagrange equation as 
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x


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 ,

2 2 3 4
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q I I I
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(19) 

Under the following boundary conditions, the relationship between bending moment and 

springconstants can be written as 

        
0, 0RL TL

w M
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x x
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(20b) 

 

3.2 The nonlocal elasticity model for FG nanobeam 
 

Based on Eringen nonlocal elasticity model, the stress at a reference point x in a body is 

considered as a function of strains of all points in the near region. This assumption is agreement 

with experimental observations of atomic theory and lattice dynamics in phonon scattering in 

which for a homogeneous and isotropic elastic solid the nonlocal stress-tensor components ζij at 

any point x in the body can be expressed as 

92



 

 

 

 

 

 

Nonlocal vibration analysis of FG nano beams with different boundary conditions 

        

( ) ( , ) ( ) ( )ij ijx x x t x d x  


      (21) 

where tij(x′) are the components of the classical local stress tensor at point x which are related to 

the components of the linear strain tensor εkl by the conventional constitutive relations for a 

Hookean material, i.e. 

     ij ijkl klt C 
 

(22) 

The meaning of Eq. (21) is that the nonlocal stress at point x is the weighted average of the 

local stress of all points in the neighborhood of x, the size of which is related to the nonlocal kernel

  ,xx  . Here xx 
 

is the Euclidean distance and is a constant given by 

     

0e a

l
 

 
(23) 

Which represents the ratio between a characteristic internal length, a (such as lattice parameter, 

C-C bond length and granular distance) and a characteristic external one, l (e.g., crack length, 

wavelength) through an adjusting constant, e0, dependent on each material. The magnitude of e0 is 

determined experimentally or approximated by matching the dispersion curves of plane waves 

with those of atomic lattice dynamics. According to Eringen (1983) for a class of physically 

admissible kernel ),(  xx 
 

it is possible to represent the integral constitutive relations given by 

Eq. (21) in an equivalent differential form as 

     
2 2

0(1 ( ) ) kl kle a t  
 

(24) 

As 
2

 is the Laplacian operator. The parameter e0a is the scale coefficient revealing the small 

scale effect on the responses of structures of nano size. The value of the small-scale parameter 

depends on boundary condition, chirality, mode shapes, number of walls, and the nature of 

motions (Tounsi et al. 2013, Besseghier et al. 2015). The parameter e0=(π
2
−4)

1/2
/2π 0.39 was 

given by Eringen (1983). The nonlocal parameter, μ=(e0a)
2
, is experimentally obtained for various 

materials; for instance, a conservative estimate of μ<4 (nm)
2

 
for a single-walled carbon nanotube is 

proposed (Chemi et al. 2015). It is worthy to mention that this value is also chirality and size 

dependent, because the material properties of CNTs are widely acknowledged to be chirality 

dependent. For an elastic material in the one dimensional case, the nonlocal constitutive relations 

may be simplified as 

     

2
2

0 2

( )
( ) ( ) ( )

x
x e a E x

x


 


 

  
(25) 

Where ζ and ε are the nonlocal stress and strain, respectively. E is the Young’s modulus. For 

Euler-Bernoulli nonlocal FG beam, Eq. (25) can be written as 

     

2

2
( )xx

xx xx
E z

x


  


 

  
(26) 

Where (μ=(e0a)
2
). Integrating Eq. (26) over the beam’s cross-section area, we obtain the 

force-strain and the moment-strain of the nonlocal Euler-Bernoulli FG beam theory can be 
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obtained as follows 

         

2 2

2 2xx xx

N u w
N A B

x x x

  

  
  

 (27) 

          

2 2

2 2xx xx

M u w
M B C

x x x

  

  
    

(28) 

In which the cross-sectional rigidities are defined as follows 

     

2

2

( )
( , , ) (1, , )

(1 )
xx xx xx

A

E z
A B C z z dA




  (29) 

Where v is the poisson’s ratio. By using Eq. (19) it is concluded that N is a constant value 

throughout the beam; therefore, it can be expressed as 

     

2

2xx xx

u w
N A B

x x

 
 

   
(30) 

Also the explicit relation of the nonlocal bending moment can be derived by substituting for the 

second derivative of M from Eq. (19) into Eq. (28) as follows 

     

2 2 3 4

0 1 22 2 2 2 2
( )xx xx

u w w u w
M B C I I I q

x x t x t x t


    
     

        
(31) 

The nonlocal governing equations of Euler-Bernoulli FG nanobeam in terms of the displacement 

can be derived by combining for N and M from Eqs. (30) and (31), respectively, and substituting 

M into Eq. (19) as follows 

     

2 4 4 64 6

4 4

4

2

1
xx 0 24 2 2 2 2 4 2

2 4

1
0 22 2 2 2 2

( )

0

xx xx

xx xx

xx
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B B Iw w w w q
C I I

A x x t x A t x t x x

B Iw w
I I q

t A t x t x

w

w


     

    
        

  
    

    

 (32) 

 

 

4. Implementation of differential transform method 
 

The differential transforms method provides an analytical solution procedure in the form of 

polynomials to solve ordinary and partial differential equations with small calculation errors and 

ability to solve nonlinear equations with boundary conditions value problems. Using DTM 

technique, the ordinary and partial differential equations can be transformed into algebraic equations, 

from which a closed-form series solution can be obtained easily. In this method, certain 

transformation rules are applied to both the governing differential equations of motion and the 

boundary conditions of the system in order to transform them into a set of algebraic equations. The 

solution of these algebraic equations gives the desired results of the problem. In this method, 

differential transformation of kth derivative function y(x) and differential inverse transformation of Y 

(k) are respectively defined as follows 
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In which y(x) is the original function and Y(k) is the transformed function. Consequently from Eqs. 

(33) and (34) we obtain 
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(35) 

Eq. (35) reveals that the concept of the differential transformation is derived from Taylor’s series 

expansion. In real applications the function y(x) in Eq. (35) can be written in a finite form as 

     
 

N
k

k 0

y x x Y(k)



 

(36) 

In this calculations  ( )  ∑     ( ) 
    is small enough to be neglected, and N is determined 

by the convergence of the eigenvalues. From the definitions of DTM in Eqs. (33)-(35), the 

fundamental theorems of differential transforms method can be performed that are listed in Table 2 

while Table 3 presents the differential transformation of conventional boundary conditions. 

For harmonic vibration analysis, a sinusoidal variation of w(x,t) with a circular natural 

frequency ω is assumed and the harmonic solution is approximated as 

       ( , ) ( ) i tw x t w x e 
 

(37) 

Substituting Eq. (37) into Eq. (32), governing equation of motion can be rewritten as follows 
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 (38) 

 

 
Table 2 Some of the transformation rules of the one-dimensional DTM 

Original function Transformed function 

f(x)=g(x)±h(x) F(K)=G(K)±H(K) 

f(x)=λg(x) F(K)=λG(K) 

f(x)=g(x)h(x) 



K

I

lHlKGKF
0

)()()(  

n

n

dx

xgd
xf
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)( nKG
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nk
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nk
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0
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Table 3 Transformed boundary conditions (B.C.) based on DTM 

=0x 
Transformed B.C. 

=Lx 
Transformed B.C. 

Original B.C. Original B.C. 

f(0)=0 F[0]=0 f(L)=0 





0

0][
k

kF  

0
)0(


dx

df  F[1]=0  





0

0][ 
k

kFk  

0
)0(

2

2


dx

fd
 F[2]=0  






0

0][ )1(
k

kFkk  

0
)0(

3

3


dx

fd
 F[3]=0  






0

0][ )2)(1(
k

kFkkk  

 

 

According to the basic transformation operations introduced in Table 2, the transformed form 

of the governing Eq. (38) around x0=0 may be obtained as 

])2[)2)(1(][(]4[)4)(3)(2)(1( 2
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2  kWkkkWkkkkI   

(39) 

where W[k] is the transformed function of w. Additionally, the differential transform method is 

applied to different pairs of classical boundary conditions at the ends of the FG nanobeam by using 

the theorems introduced in Table 3 and the following transformed classical boundary conditions are 

obtained. 

Simply supported-Simply supported: 

     W [0]=0, W [2]=0, W [1]=C1, W [3]=C2 

(40a) 
     










00

 0][ )1( ,0][
kk

kWkkkW  

Clamped-Clamped: 

     W [0]=0, W [1]=0, W [2]=C1, W [3]=C2 

(40b) 
     










00

 0][  ,0][
kk

kWkkW  

Clamped-Simply supported: 

W [0]=0, W [1]=0, W [2]=C1, W [3]=C2 
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      
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Clamped-Free: 

        W [0]=0, W [1]=0, W [2]=C1, W [3]=C2 

(40d) 

         









00

 0][ )2)(1( ,0][)1(
kk
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It is essential to investigate vibration analysis of FG nanobeams with non-classical boundary 

conditions consisting of translational and rotational springs. Damaged or non-ideal supports of FG 

beams can be modeled by using these springs (Wattanasakulpong and Ungbhakorn 2014). 

Therefore, the translational and rotational springs can be used to simulate the nonlocal FG beams 

with non-ideal conditions. By using Eq. (20), the transformed non-classical boundary conditions in 

terms of displacement and spring constants with various elastic supports can be written as: 

Clamped-Elastic supported (C-E): 

      W [0]=0, W [1]=0, W [2]=C1, W [3]=C2 

(41a) 
         

2

0 0
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Simply-Elastic supported (S-E): 

        W [0]=0, W [2]=0, W [1]=C1, W [3]=C2 

(41b) 
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Elastic-Elastic supported (E-E): 

      W [0]=C1, W [1]=C2, 

)(6
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In this investigation, the spring constants which can be calculated in terms of moment of inertia (I) 

and Young’s modulus from the following equations, 
3

TL m
TL

E I
K

L


 , RL m

RL

E I
K

L




3

TR m
TR

E I
K

L


  

and RR m
RR

E I
K

L


 , in which the corresponding values of β are the given parameters of spring 

constant factors. By using Eq. (39) with the transformed boundary conditions one arrives at the 

following eigenvalue problem 

       

11 12 1

21 22 2

( ) ( )
0

( ) ( )

A A C

A A C

 

 

   
   

   
 (42a) 

where [C] correspond to the missing boundary conditions at x=0. For the non-trivial solutions of 

Eq. (42a), it is necessary that the determinant of the coefficient matrix is equal to zero 

       

11 12

21 22

( ) ( )
0

( ) ( )

A A

A A

 

 
  (42b) 

Solution of Eq. (42b) is simply a polynomial root finding problem. In the present study, the 

Newton-Raphson method is used to solve the governing equation of the non-dimensional natural 

frequencies. Solving Eq. (42b), the i
th
 estimated eigenvalue for n

th
 iteration (ω=ωi

(n)
) may be 

obtained and the total number of iterations is related to the accuracy of calculations which can be 

determined by the following equation 

       
( ) ( 1)n n

i i     (43) 

In this study ε=0.0001 considered in procedure of finding eigenvalues which results in 4 digit 

precision in estimated eigenvalues. Further a Matlab program has been developed according to DTM 

rule stated above, in order to find eigenvalues. As mentioned before, DT method implies an iterative 

procedure to obtain the high-order Taylor series solution of differential equations. The Taylor series 

method requires a long computational time for large orders, whereas one advantage of employing 

DTM in solving differential equations is a fast convergence rate and a small calculation error. 

 

 

5. Numerical results and discussions 
 

Through this section, a numerical testing of the procedure as well as parametric studies are 

performed in order to establish the validity and usefulness of the DTM approach. The effect of 

spring constant factors, different material distribution, nonlocality effect and various boundary 

conditions on the natural frequencies of the FG nanobeam will be figured out. The nonlocal FG 

beams with classical boundary conditions supported by four different combinations of clamped 
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(C), simply-supported (S) and free (F) conditions at x=0; L are considered in the following: 

simply-supported/simply-supported, clamped/simply-supported, clamped/clamped, and clamped/ 

free. 

Additionally, different combinations of non-ideal boundary conditions for FG nanobeams with 

elastic (E) supports consisting of rotational and translational springs are presented in this section. 

Each combination will be shortly indicated by a two-letter notation corresponding to edge 

conditions at x=0 and x=L. For example, C-E stands for a nonlocal FG beam with clamped edge at 

x=0 and elastic supported edge at x=L. The functionally graded nanobeam is composed of steel 

and ceramic where its properties are given in Table 1. The bottom surface of the FG nanobeam is 

Aluminum (A1), whereas the top surface of the beam is Alumina (Al2O3). The beam geometry has 

the following dimensions: L (length)=10,000 nm, b (width)=1000 nm and h (thickness)=100 nm. 

Relation described in Eq. (44) is performed in order to calculate the non-dimensional natural 

frequencies 

      
2

m mL h E    (44) 

While I=bh
3
/12 is the moment of inertia of the cross section of the beam. 

Table 4 shows the convergence study of DTM for first three natural frequencies of nanobeam 

with various gradient indexes and classical boundary conditions. It is found that in DTM after a 

certain number of iterations eigenvalues converged to a value with good precision. From results of 

Table 4, high convergence rate of the method may be easily observed and it may be deduced that 

the third natural frequency of FG nanobeam with p=0.5 converged after 39 iterations with 4 digit 

precision while the first and second natural frequencies converged after 21 and 29 iterations 

respectively. To evaluate accuracy of the natural frequencies predicted by the present method, the 

non-dimensional natural frequencies of C-C functionally graded nanobeam with various nonlocal 

parameters and gradient indexes previously analyzed by finite element method are reexamined. 

Tables 5 compares the results of the present study and the results presented by Eltaher et al. 

(2012) which has been obtained by finite element method for FG nanobeam with different 

nonlocal parameters (varying from 0 to 3). The reliability of the presented method and procedure 

for FG nanobeam may be concluded from Table 5; where the results are in an excellent agreement  

 

 
Table 4 Convergence study of the P-FG nanobeam for the first three natural frequencies (L/h=5, p=0.5, μ=1 

nm) 

k  
C-C

 
C-S S-S C-F 

1  
2  

3  1  
2  

3  1  
2  

3  1  2  
3  

11 9.3578 - - 6.6686 - - 4.3944 - - 1.6724 - - 

15 9.7320 - - 6.7697 - - 4.3852 - - 1.6725 9.6255 - 

19 9.7461 - - 6.7715 - - 4.3852 14.8725 - 1.6725 9.5344 - 

23 9.7462 22.1958 - 6.7715 18.4231 - 4.3852 14.8955 - 1.6725 9.5333 21.9000 

27 9.7462 22.1466 - 6.7715 18.4149 - 4.3852 14.8957 27.0098 1.6725 9.5333 22.1847 

31 9.7462 22.1460 34.2074 6.7715 18.4149 30.6187 4.3852 14.8957 26.9683 1.6725 9.5333 22.1906 

35 9.7462 22.1460 34.3196 6.7715 18.4149 30.6377 4.3852 14.8957 26.9678 1.6725 9.5333 22.1906 

39 9.7462 22.1460 34.3215 6.7715 18.4149 30.6379 4.3852 14.8957 26.9678 1.6725 9.5333 22.1906 

43 9.7462 22.1460 34.3215 6.7715 18.4149 30.6379 4.3852 14.8957 26.9678 1.6725 9.5333 22.1906 
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Table 5 Comparison ofthe non-dimensional fundamental fequency for a P-FG nanobeam with various 

gradient indexes and nonlocal parameters with C-C boundary conditions (L/h=100, KTL=KTR→∞, 

KRL=KRR→∞)  

μ 

p=0 p=0.5 p=1 p=5 p=10 

FEM 

Eltaher et 

al. (2012) 

Present 

DTM 

FEM 

Eltaher et 

al. (2012) 

Present 

DTM 

FEM 

Eltaher et 

al. (2012) 

Present 

DTM 

FEM 

Eltaher et 

al. (2012) 

Present 

DTM 

FEM 

Eltaher et 

al. (2012) 

Present 

DTM 

0 22.3744 22.3733 17.5613 17.5602 15.8612 15.8600 13.4733 13.4724 12.8698 12.8691 

1 21.1096 21.1086 16.5686 16.5676 14.9645 14.9635 12.7116 12.7109 12.1423 12.1417 

2 20.0330 20.0321 15.7235 15.7227 14.2013 14.2004 12.0633 12.0626 11.5230 11.5225 

3 19.1028 19.1020 14.9934 14.9926 13.5419 13.5410 11.5032 11.5026 10.9880 10.9875 

 
Table 6 Classical boundary conditions and material graduation effect on first dimensionless frequency of a 

FG nanobeam with different non-locality parameters (L/h=5) 

Beam μ 
C-C

 
C-S

 
S-S C-F

 

p=0.5 p=1 p=5
 

p=0.5 p=1 p=5
 

p=0.5 p=1 p=5
 

p=0.5 p=1 p=5
 

P-FGM 

0 

10.3804 9.3859 8.1474 7.1622 6.4761 5.6218 4.5965 4.1560 3.6083 1.6656 1.5057 1.3084 

S-FGM 9.8211 9.3859 8.4257 6.7765 6.4761 5.8132 4.3491 4.1560 3.7302 1.5763 1.5057 1.3504 

MT-FGM 9.0957 8.3955 7.6932 6.2758 5.7926 5.3085 4.0275 3.7174 3.4073 1.4591 1.3466 1.2357 

P-FGM 

2 

9.2139 8.3319 7.2294 6.4377 5.8210 5.0526 4.2006 3.7981 3.2975 1.6796 1.5184 1.3194 

S-FGM 8.7165 8.3319 7.4824 6.0907 5.8210 5.2258 3.9745 3.7981 3.4089 1.5896 1.5184 1.3618 

MT-FGM 8.0743 7.4532 6.8258 5.6410 5.2069 4.7708 3.6806 3.3972 3.1138 1.4714 1.3580 1.2461 

P-FGM 

4 

8.3646 7.5642 6.5616 5.8941 5.3296 4.6256 3.8920 3.5191 3.0552 1.6944 1.5318 1.3310 

S-FGM 7.9125 7.5642 6.7947 5.5763 5.3296 4.7850 3.6825 3.5191 3.1585 1.6036 1.5318 1.3738 

MT-FGM 7.3305 6.7668 6.1948 5.1648 4.7673 4.3676 3.4102 3.1476 2.8851 1.4844 1.3700 1.2571 

 
Table 7 Comparison of the non-dimensional fundamental frequency for a P-FGM beam with various 

gradient indexes and spring constant factors with E-E boundary conditions (L/h=30, βTL=βTR=βRL=βRR=β)  

β 

p=0.5 p=1 p=2 p=5 

Wattanasakulpong 

and Ungbhakorn 

(2014) 

Present 

DTM 

Wattanasakulpong 

and Ungbhakorn 

(2014) 

Present 

DTM 

Wattanasakulpong 

and Ungbhakorn 

(2014) 

Present 

DTM 

Wattanasakulpong 

and Ungbhakorn 

(2014) 

Present 

DTM 

1 0.373 0.373064 0.384 0.384412 0.397 
0.3968

61 
0.411 0.410697 

10 1.168 1.168100 1.202 1.201867 1.239 
1.2388

84 
1.281 1.280603 

10
2
 3.551 3.550701 3.618 3.618353 3.686 

3.6860

41 
3.773 3.772986 

10
3
 8.382 8.381776 8.020 8.020096 7.653 

7.6528

00 
7.476 7.475708 

10
4
 10.750 10.749748 9.789 9.789215 8.981 

8.9808

04 
8.576 8.576036 

10
5
 11.060 11.059846 10.006 10.006022 9.136 

9.1358

25 
8.701 8.701138 
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as values of non-dimensional fundamental frequency are consistent with presented analytical 

solution up to 4 digits. 

In order to investigate the effects of different boundary conditions on FG nanobeam vibration 

characteristics, the non-dimensional frequencies of non-local FG beams with different edge 

conditions (C-C, C-S, S-S and C-F) are tabulated in Table 6, which figures out the effect of 

nonlocal parameter (varying from 0 to 4), gradient index (varying from 0.5 to 5) and different 

material compositions (P-FGM, S-FGM and MT-FGM) for L/h=5 on the natural frequency 

characteristics of FG nanobeam. As seen in table, by fixing the nonlocal parameter and varying the 

material distribution parameter results decreasing in the fundamental frequencies, due to 

increasing in ceramics phase constituent, and hence, stiffness of the beam. On the other hand, it is 

revealed that the dimensionless natural frequencies decrease with an increase in material gradient 

index due to increasing in stiffness of the beam because of increasing in ceramic’s phase 

constituent. However, the increasing of nonlocal parameter causes the decreasing in fundamental 

frequency, at a constant material graduation index. For clamped free beams, by fixing the material 

distribution parameter and increasing the nonlocal parameter results in increasing the fundamental 

frequencies. Also, as it is expected, a beam with stiffer edges; i.e., C-C and C-S, respectively 

shows higher natural frequencies than those of others boundary condition. 

The fundamental frequency parameter as a function of power law indexes is presented in Fig. 2 

for the P-FG nanobeams supported by different classical boundary conditions and nonlocal 

parameters. Similarly, the variation of the first dimensionless frequency of the S-FG nanobeam 

with material graduation and nonlocality parameters for different classical boundary conditions are 

depicted in Fig. 3.Observing these two figures, it is easily deduced for a FG nanobeam that, an 

increase in nonlocal scale parameter and gradient indexes gives rise to a decrease in the first 

dimensionless natural frequency for all boundary conditions. Also It can be observed that, the first 

frequency reduce with high rate where the power exponent in range from 0 to 2 than that where 

power exponent in range between 2 and 10. Fig. 4 displays the variations of the first dimensionless 

natural frequency of the P-FG nanobeam with respect to gradient indexes for different values of 

nonlocal parameters and classical boundary conditions (L/h=5).Similar to the case of classical  

 

 

 
(a) μ=0                          (b) μ=2 

Fig. 2 Variations of the first dimensionless natural frequency of the P-FG nanobeam with respect to 

material graduation for different classical boundary conditions and nonlocal parameters (L/h=5) 
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(a) μ=0                          (b) μ=2 

Fig. 3 Variations of the first dimensionless natural frequency of the S-FG nanobeam with respect to 

material graduation for different classical boundary conditions and nonlocal parameters (L/h=5) 

 

 

Fig. 4 The variation of the first dimensionless frequency of P-FG nanobeam with material graduation 

and non-locality parameters for various classical boundary conditions (L/h=5) 

 

 

boundary condition, to demonstrate the correctness of present study the results for FGM beam with 

non-classical boundaries are compared with the results available in the literature. 
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Nonlocal vibration analysis of FG nano beams with different boundary conditions 

Table 8 Effect of material in homogeneity on first three dimensionless frequencies of a FG nanobeam with 

different nonlocal parameters and non-classical boundary conditions (βTL=βTR=βRL=βRR=10
3
, L/h=20, p=2) 

μ i  

P-FGM S-FGM MT-FGM 

Boundary conditions 

E-E
 

S-E
 

C-E E-E
 

S-E
 

C-E E-E
 

S-E
 

C-E 

0 

i=1 7.6528 5.8749 8.2728 7.7464 6.0247 8.4448 7.2930 5.5308 7.8205 

i=2 15.8556 15.9679 18.7204 15.6915 16.0445 18.7955 15.4697 15.3393 18.0197 

i=3 25.0750 29.0858 33.6715 25.0049 29.5913 34.4256 24.3569 27.6988 31.9006 

2 

i=1 7.2076 5.3908 7.6395 7.3326 5.5419 7.8294 6.8350 5.0637 7.1951 

i=2 13.8896 13.1971 15.4290 13.8559 13.3792 15.5702 13.4243 12.5509 14.7474 

i=3 19.5272 20.2668 22.6398 19.4524 20.5073 23.0232 18.9670 19.3910 21.5808 

4 

i=1 6.7992 4.9999 7.1063 6.9446 5.1484 7.3032 6.4235 4.6896 6.6761 

i=2 12.3908 11.4364 13.3794 12.4454 11.6693 13.5762 11.8851 10.8078 12.7080 

i=3 16.9425 16.8567 18.6297 16.8783 17.0265 18.8574 16.4303 16.1198 17.8250 

 
Table 9 Material graduation and spring constant factor effect on first dimensionless frequency of an E-E FG 

nanobeam with different non-locality parameters (L/h=20)  

Beam μ 

βTL=βTR=βRL=βRR 

10 10
2
 10

3
 10

24
 

p=0.5 p=1 p=5
 

p=0.5 p=1 p=5
 

p=0.5 p=1 p=5
 

p=0.5 p=1 p=5
 

P-FGM 

0 

1.1681 1.2018 1.2806 3.5507 3.6183 3.7729 8.3817 8.0201 7.4757 10.7497 9.7892 8.5760 

S-FGM 1.2027 1.2018 1.1996 3.6342 3.6183 3.5749 8.2406 8.0201 7.4838 10.2238 9.7892 8.8216 

MT-FGM 1.1657 1.1995 1.2790 3.5092 3.5736 3.7395 7.7746 7.4696 7.1712 9.4866 8.7975 8.1139 

P-FGM 

2 

1.1658 1.1992 1.2774 3.5358 3.6007 3.7472 8.0455 7.6233 6.9992 9.7215 8.8315 7.7152 

S-FGM 1.2002 1.1992 1.1968 3.6175 3.6007 3.5544 7.8598 7.6233 7.0565 9.2306 8.8315 7.9462 

MT-FGM 1.1631 1.1967 1.2757 3.4921 3.5530 3.7110 7.3895 7.0415 6.6885 8.5585 7.9240 7.2951 

P-FGM 

4 

1.1635 1.1966 1.2742 3.5207 3.5825 3.7202 7.7114 7.2447 6.5729 8.9247 8.0964 7.0616 

S-FGM 1.1977 1.1966 1.1940 3.6003 3.5825 3.5331 7.4912 7.2447 6.6625 8.4659 8.0964 7.2783 

MT-FGM 1.1606 1.1939 1.2724 3.4744 3.5316 3.6809 7.0222 6.6472 6.2637 7.8460 7.2577 6.6748 

 

 

Table 7 compares the semi-analytical results of the present study and the results obtained for the 

FGM beam with various constituent volume fraction exponents and spring constant factors presented 

by Wattanasakulpong and Ungbhakorn (2014) which have been obtained by using Lagrange’s 

equations. One may clearly notice here that the fundamental frequency parameters obtained in the 

present investigation are in approximately close enough to the results provided in this literature and 

thus validates the proposed method of solution. 

After extensive validation of the present formulation for FGM beams, the effects of different 

parameters such as spring constant factors, nonlocality parameter, different material models and 

gradient index on the vibration of FG nanobeams which are supported by different non-ideal 

boundary conditions including translational and rotational springs are investigated.  

Table 8 shows the variation of first three dimensionless frequencies of P-FGM, S-FGM and 
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MT-FGM beams having p=2
 

with different non-classical boundary conditions and non-local 

parameter. It can be concluded from the results of the table that increasing the nonlocality 

parameter yields the reduction in dimensionless frequencies for every material graduation. 

Additionally, as it is expected in this Table, the nonlocal FG beams with clamped support at left 

end and elastic support at another end (C-E) have larger natural frequencies than those of E-E and 

S-E functionally graded nanobeams. 

In Table 9, a comparison between dimensionless natural frequencies of the FG nanobeams with 

elastic supported at both ends, defined as E–E beams subjected to different material compositions 

(P-FGM, S-FGM and MT-FGM) and various spring constant factors are presented for various 

values of the gradient index (p=0.5,1,5) and nonlocal parameters (μ=0,2,4) for L/h=20 based on 

DT method. It can be observed that the dimensionless natural frequencies increase by increasing 

spring constant factors and it can be stated that spring constant has a notable effect on the natural 

frequencies. It can also be seen that the present results for P-FGM and S-FGM models are 

identical for a FG nanobeam with p=1. 

 
 

 
(a) p=0                                    (b) p=0 

Fig. 5 The variation of the first dimensionless frequency of P-FG nanobeam with spring constant factor 

and nonlocality parameters for different gradient indexes with C-E boundary conditions (L/h=20) 

 

 
(a) p=0                                    (b) p=0 

Fig. 6 The variation of the first dimensionless frequency of S-FG nanobeam with spring constant factor 

and non-locality parameters for different gradient indexes with C-E boundary conditions (L/h=20) 
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Table 10 Material graduation and spring constant factor effect on first dimensionless frequency of a C-E FG 

nanobeam with different non-locality parameters (L/h=20) 

Beam μ 

βTR=βRR 

10  10
2
 10

3
 10

4
 

p=0.5 p=1 p=5
 

p=0.5 p=1 p=5
 

p=0.5 p=1 p=5
 

p=0.5 p=1 p=5
 

P-FGM 

0 

2.7782 2.6483 2.5115 4.8933 4.8079 4.7826 9.3695 8.8065 8.0037 10.9174 9.9072 8.6446 

S-FGM 2.7212 2.6483 2.4850 4.8877 4.8079 4.6277 9.1040 8.8065 8.1050 10.3586 9.9072 8.9074 

MT-FGM 2.5673 2.4809 2.4323 4.6619 4.6231 4.6882 8.5360 8.0869 7.6311 9.6007 8.8826 8.1718 

P-FGM 

2 

2.7400 2.6050 2.4612 4.7566 4.6705 4.6391 8.7924 8.1929 7.3583 9.8221 8.9018 7.7557 

S-FGM 2.6791 2.6050 2.4394 4.7491 4.6705 4.4925 8.4945 8.1929 7.4913 9.3111 8.9018 7.9971 

MT-FGM 2.5253 2.4353 2.3814 4.5286 4.4879 4.5446 7.9407 7.4731 6.9965 8.6264 7.9744 7.3292 

P-FGM 

4 

2.7036 2.5641 2.4139 4.6302 4.5436 4.5064 8.2767 7.6612 6.8242 8.9904 8.1421 7.0879 

S-FGM 2.6392 2.5641 2.3964 4.6210 4.5436 4.3676 7.9607 7.6612 6.9727 8.5183 8.1421 7.3113 

MT-FGM 2.4855 2.3922 2.3336 4.4055 4.3631 4.4118 7.4251 6.9549 6.4771 7.8902 7.2904 6.6969 

 
Table 11 Material graduation and spring constant factor effect on first dimensionless frequency of a S-E FG 

nanobeam with different non-locality parameters (L/h =20) 

Beam μ 

βTR=βRR 

10  10
2
 10

3
 10

4
 

p=0.5 p=1 p=5
 

p=0.5 p=1 p=5
 

p=0.5 p=1 p=5
 

p=0.5 p=1 p=5
 

P-FGM 

0 

1.5814 1.5697 1.5806 3.6788 3.6655 3.6845 6.7898 6.3092 5.6561 7.5575 6.8508 5.9706 

S-FGM 1.5908 1.5697 1.5207 3.7105 3.6655 3.5539 6.5468 6.3092 5.7613 7.1654 6.8508 6.1552 

MT-FGM 1.5221 1.5194 1.5551 3.5544 3.5508 3.6129 6.1149 5.7474 5.3772 6.6389 6.1380 5.6427 

P-FGM 

2 

1.5556 1.5415 1.5483 3.5757 3.5559 3.5575 6.2967 5.8164 5.1761 6.8305 6.1873 5.3878 

S-FGM 1.5630 1.5415 1.4913 3.6022 3.5559 3.4402 6.0472 5.8164 5.2895 6.4729 6.1873 5.5565 

MT-FGM 1.4947 1.4900 1.5224 3.4481 3.4370 3.4821 5.6371 5.2761 4.9129 5.9959 5.5408 5.0909 

P-FGM 

4 

1.5310 1.5146 1.5178 3.4798 3.4539 3.4393 5.8825 5.4115 4.7923 6.2752 5.6819 4.9451 

S-FGM 1.5366 1.5146 1.4635 3.5015 3.4539 3.3344 5.6337 5.4115 4.9076 5.9449 5.6819 5.1012 

MT-FGM 1.4687 1.4622 1.4916 3.3491 3.3311 3.3606 5.2445 4.8949 4.5439 5.5061 5.0867 4.6722 

 

 
(a) p=0                                    (b) p=0 

Fig. 7 The variation of the first dimensionless frequency of MT-FG nanobeam with spring constant factor 

and non-locality parameters for different gradient indexes with C-E boundary conditions (L/h=20) 
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In addition, it can be concluded from the results of this table that an increase in nonlocal scale 

parameter gives rise to a decrement in the first dimensionless natural frequencies. Variations of the 
first dimensionless natural frequencies of the C-E nonlocal FG beams with respect to spring constant factors 

for different values of nonlocal parameters and gradient indexes with P-FG, S-FG and MT-FG distributions 

are depicted in Figs. 5, 6 and 7, respectively. 

It is seen from the figures that the fundamental frequency of FG nanobeam decreases with the increase of 

nonlocality parameters and power exponent. This is due to the reduction in total stiffness of the beam. One 

important observation within the range of spring constant factors in the range of the spring stiffness from 10
0
 

to 10
3
, it can be concludedthere are slight differences in value of the frequency results of FG beam for every 

value of μ. 

Also, it is seen that the FG nanobeams with lower value of spring constant usually provide 

lower values of the frequency results. Moreover, the variation of the first dimensionless frequency 

of C-E FG nanobeam with spring constant factors for different material compositions and small 

scale parameters are illustrated in Figs. 8-10. 

 

 

 
(a) μ=0                                    (b) μ=2 

Fig. 8 The variation of the first dimensionless frequency of P-FG nanobeam with spring constant factors 

for different non-locality parameters with C-E boundary conditions (L/h=20, p=0.5) 

 

 
(a) μ=0                                    (b) μ=2 

Fig. 9 The variation of the first dimensionless frequency of S-FG nanobeam with spring constant factors 

for different non-locality parameters with C-E boundary conditions (L/h=20, p=0.5) 
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(a) μ=0                                    (b) μ=2 

Fig. 10 The variation of the first dimensionless frequency of MT-FG nanobeam with spring constant 

factors for different non-locality parameters with C-E boundary conditions (L/h=20, p=0.5) 

 

 
(a) μ=0                                    (b) μ=2 

Fig. 11 The variation of the first dimensionless frequency of P-FG nanobeam with spring constant factor 

and material graduation for different non-locality parameters with C-E boundary conditions (L/h=20) 

 

 
(a) μ=0                                    (b) μ=2 

Fig. 12 The variation of the first dimensionless frequency of S-FG nanobeam with spring constant factor 

and material graduation for different non-locality parameters with C-E boundary conditions (L/h=20) 
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It is revealed that for fixed values of βRR the considerable increase of the frequencies is found in 

the range of moderate spring stiffness from 10 to 10
3
. Also, it is deduced that the fundamental 

frequency increases by increasing βRR and it can be stated that spring constant factors has a 

significant effect on the fundamental frequency of the graded nanobeam. 

The other important parameter in vibration behavior of nonlocal FG beam is its gradient index 

parameter. Figs. 11 and 12 are dedicated to study the variation of dimensionless fundamental 

frequencies of FG beams with spring constant factors and nonlocal parameters by using both the 

material compositions (P-FGM and S-FGM), which are clamped at left end and supported by 

elastic springs at another end. 

Inspection of these figures reveals that an increase in the value of the power exponent leads to a 

decrease in the fundamental frequencies. Comparing the frequency values for FG nanobeams with 

various non-classical boundary conditions presented in Tables 10 and 11 reveals that for a 

prescribed nonlocal parameter and gradient index the greatest frequency, is obtained for the FG 

beam with C-E boundary conditions followed with S-E nanobeams. Furthermore, the effects of  

 

 

 
(a) p=0                                    (b) p=5 

Fig. 13 The variation of the first dimensionless frequency of P-FG nanobeam with spring constant factor 

and nonlocality parameters for different gradient indexes with S-E boundary conditions (L/h=20) 

 

 
(a) μ=0                                    (b) μ=2 

Fig. 14 The variation of the first dimensionless frequency of P-FG nanobeam with spring constant factors 

for different non-locality parameters with S-E boundary conditions (L/h=20, p=0.5) 
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(a) μ=0                                    (b) μ=2 

Fig. 15 The variation of the first dimensionless frequency of P-FG nanobeam with spring constant factor 

and material graduation for different non-locality parameters with S-E boundary conditions (L/h=20) 

 

 

spring constant factors, nonlocal parameter and gradient indexes on the dimensionless frequencies 

are presented in these tables.  

The last analysis deals with the material graduation and nonlocal parameter effect on vibration 

behavior of S-E FG nanobeam with different spring constant factors. 

The variation of the first dimensionless frequency of P-FG nanobeam with spring constant 

factors and non-locality parameters for different material graduation are plotted in Figs. 13-15. 

Similar to two previously discussed edge conditions, it is revealed that for a S-E FG nanobeam 

increasing power index, and nonlocal parameter, leads to decrease in natural frequency. Besides, 

for higher values of spring constant factors, graded nanobeam becomes stiffer and thus, the 

dimensionless fundamental frequency increases while the spring constant increases. 

 

 

6. Conclusions 
 

In this paper, vibrational behavior of the FG nanobeams supported by various classical and 

non-classical boundary conditions is investigated on the basis of nonlocal elasticity theory in 

conjunction with differential transform method. Eringen’s theory of nonlocal elasticity together 

with Euler–Bernoulli beam theory is used to model the nanobeam. The material’s properties of the 

FG nanobeams are assumed to vary continuously through the thickness according to P-FGM, 

S-FGM and MT-FGM models. The governing differential equations and related boundary 

conditions are derived by implementing Hamilton’s principle. Implementing the differential 

transformation technique, the governing partial differential equation is reduced to algebraic 

equations. Accuracy of the results is examined using available date in the literature, for some cases 

of the FG beams with classical and non-classical boundary conditions. Finally, through some 

parametric study and numerical examples, the effect of different parameters is investigated. The 

effects of small scale parameter, material property gradient index and spring constant factors on 

fundamental frequencies of FG nanobeams with elastic supports including translational and 

rotational springs are investigated. It is concluded that various factors such as nonlocal parameter, 

gradient index and spring constant factors play important roles in dynamic behavior of FG 
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nanobeams with both classical and non-classical boundary conditions. It is illustrated that presence 

of non-locality leads to reduction in natural frequency. It is observed that the fundamental 

frequency increases with the increase in rotational and translational springs. However, in the range 

of soft springs, it can be concluded there are slight difference in value of the frequency results of 

nonlocal FGM beam, for every material compositions. Also, it is concluded, with the increase in 

the gradient index value leads to the decrease in frequency. Moreover it is revealed that, in terms 

of classical boundary condition, the greatest frequency is obtained for the FG nanobeam with C–C 

boundary conditions followed with C-S, S-S and C-F, respectively. 
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