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Abstract.  In this article, various higher-order shear deformation theories (HSDTs) are developed for 

bending and buckling behaviors of nanowires including surface stress effects. The most important 

assumption used in different proposed beam theories is that the deflection consists of bending and shear 

components and thus the theories have the potential to be utilized for modeling of the surface stress 

influences on nanowires problems. Numerical results are illustrated to prove the difference between the 

response of the nanowires predicted by the classical and non-classical solutions which depends on the 

magnitudes of the surface elastic constants. 
 

Keywords:  surface effects; nanowires; bending; buckling 

 
 
1. Introduction 
 

The nanowires (NW)-based devices have found considerable range of applications in physics, 

engineering, and several other fields (Craighead 2000, Ekinci and Roukes 2005, He and Lilley 

2008a, Jiang and Yan 2010, Liu et al. 2012, Wang and Feng 2009, Li et al. 2011, Chiu and Chen 

2011a, Wang and Yang 2011, Eltaher et al. 2014). In physical applications, nanowires are often 

employed in advanced technological devices such as sensors, actuators, transistors, and resonators 

in nanoelectromechanical systems (NEMSs) (Craighead 2000, Ekinci and Roukes 2005). As is 

well known, conventional beam models failed to explain the size dependent mechanical response 

of nanostructrures. In the past few years, beam theories have been developed based on non- 

conventional continuum theories, such as the surface elasticity theory, strain gradient theory, and 

coupled stress theory to account for the size effect of 1D nanoscale structures (Al-Basyouni et al. 

2015). Among these efforts, beam models based on the surface elasticity theory are attracting more 

and more attention due to their solid physical background (Wang and Feng 2009, Song and Huang 

2009, Chiu and Chen 2011b, Ansari and Sahmani 2011, Mahmoud et al. 2012, Hosseini-Hashemi 

et al. 2013). 

                                                 
Corresponding author, Professor, E-mail: tou_abdel@yahoo.com 



 

 

 

 

 

 

Djamel Ould Youcef et al. 

 

 

Fig. 1 Simply supported-simply supported straight uniform beam with rectangular cross section 

and its coordinate system 

 

 

Atoms near the surface and interface of a solid experience different local environment 

comparatively to those away from the surface because of the reduced coordination. Thus, the 

surface and interface of solids present different mechanical characteristics compared with the bulk 

material (Gurtin and Murdoch 1975, 1978, Dingreville et al. 2005). Gurtin and Murdoch (1975, 

1978) and Gurtin et al. (1998) proposed a theoretical formulation to consider this surface/interface 

stress impact. This approach has been largely employed to investigate the mechanical response of 

nano defects, nano composites, and nanostructures (Sharma et al. 2003, Duan et al. 2005, He and 

Lim 2001). Recently, by employing the surface Cauchy-Born model, Park and Klein (2008) and 

Park (2008, 2009) examined the influences of the surface stress on the resonant frequencies of 

metallic/silicon NWs. He and Lilley (2008a, b) have considered the surface stress on all surfaces 

of the NWs and the effective Young’s modulus of the NW was redefined. Yan and Jiang (2011) 

employed the Euler beam theory to investigate the buckling response of piezoelectric nanobeams 

with surface stress effect. Ansari and Sahmani (2011) adopted different beam theories for the 

buckling analysis of nanobeams with surface effect. Wang and Yang (2011) studied the buckling 

of nanobeams by considering the geometric nonlinearity. 

In this work, various non-classical higher-order shear deformation beam theories are proposed 

to investigate the bending and axial buckling of a simply supported NWs including surface stress 

effect. Numerical results are presented to prove the significant effect of surface stress effects on 

the bending and buckling responses of NWs. 

 

 

2. Formulation of the problem 
 

Consider a beam of length L and rectangular cross-section of thickness h and width b. A 

coordinate system x, y, z is employed on the central axis of the beam, whereas the x axis is  
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Table 1 Shape functions 

Model f (z) g(z)=1−f′ (z)  
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considered along the length of the beam, the y axis in the width direction and the z axis is 

considered along the depth (height) direction. Also, the origin of the coordinate system is adopted 

at the left end of the beam (Fig. 1). The NW is subjected to transverse load q (point load or 

uniform load) and axial forces N0 at both ends.  

 

2.1 Kinematics 
 

Based on the same formulation proposed by Berrabah et al (2013) and Bourada et al (2015) 

where the transverse displacement is partitioned with two components (the bending part wb and the 

shear part ws), the axial displacement, u, and the transverse displacement of any point of the beam, 

w, are given as 
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The shape functions f (z) are chosen to satisfy the stress-free boundary conditions on the top and 

bottom surfaces of the beam, thus a shear correction factor is not needed. The displacement fields 

of the third-order beam theory (TBT) based on Reddy (1984), sinusoidal beam theory (SBT) based 

on Touratier (1991) and hyperbolic beam theory (HBT) based on Soldatos (1992) can be 

determined from Eq. (1) by employing different shape functions f (z) given in Table 1. 

The non-zero strains associated with the displacements in Eq. (1) are 
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2.2 Surface elasticity model for nanowires and constitutive relations  
 

Surface impacts on the mechanical response of nanostructures can be investigated by 

179



 

 

 

 

 

 

Djamel Ould Youcef et al. 

 

considering surface energy and/or surface stresses. The resulting in-plane forces lead to surface 

stresses which can be derived by employing surface constitutive equations as 

s

x

sss

x   )2(  and 
x
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xz



                                         (4) 

The superscript s is employed to represent the quantities corresponding to the surface. 

The stress component σz is small comparatively to the τxz for the classical beam theories and 

consequently it is supposed that σz=0. However this assumption does not respect the surface 

conditions considered in the Gurtin-Murdoch model. To solve this problem, it is supposed that the 

stress component σz changes linearly within the beam thickness and satisfies the balance 

conditions on the top and bottom surfaces (Lu et al. 2006). According to this assumption, σz can be 

determined as 
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Based on equations (2) together with equations (4), the components of surface stress for the 

present beam theories can be obtained in the following form 
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The non-zero components of stress for the bulk ( b

x  and b

xz ) of the beam can be determined as 
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The superscript b is employed to represent the quantities corresponding to the bulk. 

In this work, we consider a superposition between the quantities corresponding to the surface 

and the bulk and this summation is considered to facilitate only the mathematical formulation 
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2.3 Governing equations  
 

The minimum total potential energy principle, is employed here to obtain the governing 

equations (Reddy 2002, Draiche et al. 2014).  
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  0int  extWU                                                       (9) 

where ∏ is the total potential energy. δUint is the virtual variation of the strain energy; and δWext  is 

the variation of work done by external forces. The first variation of the strain energy is given as: 
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where Mb, Ms and Q are the stress resultants defined as 
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The first variation of the work done by the axial compressive force is given by 
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where q and N0 are the transverse and axial loads, respectively. 

Substituting Eqs. (10) and (12) into Eq. (9) and carrying out the integration by parts, the 

equations of motion of the proposed beam theory are determined as follows         
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By substituting Eqs. (6) and (7) into Eq. (8), and the subsequent results into Eq. (11), the 

constitutive equations for the stress resultants are obtained as 
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By substituting Eq. (14) into Eq. (13), the governing equations can be expressed in terms of 

displacements (wb, ws) as 
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where H is the constant parameter which is determined by the residual surface tension τ
x
 (generally 

assumed as a positive number) and the shape of cross section. For rectangular beam cross sections, 

the surface elasticity tension is expressed by 

sbH 2                                                                  (17) 

 

 

3. Closed-form solution for simply supported nanowires 
 

A simply supported beam with length L subjected to transverse load q and axial load N0 is 

considered here. The following expansions of displacements (wb, wb) are chosen to satisfy the 

simply supported boundary conditions of beam 
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where Wbn, and Wsn are arbitrary parameters to be determined, and α=nπ/L. The transverse load q is 

also expanded in the Fourier sine series as 
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Substituting the expansions of wb, ws, and q from Eqs. (19) and (20) into Eq. (18), the closed-

form solutions can be obtained from the following equations 
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3.1 Bending 
 

The static deflection is obtained from Eq. (21) by setting N0 to zero 
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3.2 Buckling 
 

The buckling load is obtained from Eq. (21) by setting q to zero 
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Table 2 Comparison between maximum center deflections under uniform load of nanowires obtained with 

classical and non-classical solutions  

L/h 

EBT FBT Present TBT Present SBT Present HBT 

classical 
non-

classical 
classical 

non-

classical 
classical 

non-

classical 
classical 

non-

classical 
classical 

non-

classical 

10 8.8127 2.7423 9.0276 2.7538 9.0276 2.7544 9.0273 2.7544 8.9890 2.7518 

15 44.6145 7.2189 45.0980 7.2238 45.0980 7.2240 45.0973 7.2240 45.0110 7.2229 

20 141.0039 13.6198 141.8635 13.6216 141.8635 13.6217 141.8622 13.6217 141.7089 13.6213 

25 344.2479 21.8829 345.5910 21.8835 345.5909 21.8835 345.5890 21.8835 345.3494 21.8834 

30 713.8325 31.9907 715.7665 31.9909 715.7664 31.9909 715.7636 31.9909 715.4186 31.9909 

35 1322.4628 43.9385 1325.0952 43.9386 1325.0952 43.9386 1325.0913 43.9386 1324.6216 43.9386 

40 2256.0632 57.7251 2259.5014 57.7251 2259.5013 57.7251 2259.4964 57.7251 2258.8829 57.7251 

45 3613.7770 73.3501 3618.1285 73.3501 3618.1284 73.3501 3618.1221 73.3501 3617.3456 73.3501 

50 5507.9667 90.8133 5513.3390 90.8133 5513.3389 90.8133 5513.3311 90.8133 5512.3725 90.8133 

 
Table 3 Comparison between maximum center deflections under point load of nanowires obtained with 

classical and non-classical solutions 

L/h 

EBT FBT Present TBT Present SBT Present HBT 

classical 
non-

classical 
classical 

non-

classical 
classical 

non-

classical 
classical 

non-

classical 
classical 

non-

classical 

10 1.3743 0.4220 1.4062 0.4229 1.4062 0.4230 1.4061 0.4230 1.4004 0.4228 

15 4.6382 0.7335 4.6861 0.7334 4.6861 0.7334 4.6860 0.7334 4.6774 0.7334 

20 10.9942 1.0303 11.0580 1.0300 11.0580 1.0300 11.0580 1.0300 11.0466 1.0300 

25 21.4731 1.3173 21.5529 1.3171 21.5529 1.3171 21.5528 1.3171 21.5385 1.3172 

30 37.1055 1.5992 37.2013 1.5991 37.2013 1.5991 37.2011 1.5991 37.1840 1.5991 

35 58.9222 1.8782 59.0339 1.8781 59.0339 1.8781 59.0337 1.8781 59.0138 1.8781 

40 87.9539 2.1555 88.0815 2.1554 88.0815 2.1554 88.0813 2.1554 88.0585 2.1554 

45 125.2312 2.4317 125.3748 2.4317 125.3748 2.4317 125.3746 2.4317 125.3489 2.4317 

50 171.7849 2.7073 171.9444 2.7073 171.9444 2.7073 171.9442 2.7073 171.9157 2.7073 

 

 

4. Numerical results and discussion 
 

In this section, numerical results are provided for analytical solutions shown in the previous 

sections. The following material characteristics are used in computations as follows (Gurtin and 

Murdoch 1978): 

 
2

N/m 10  73.17 10E ,  27.0 ,  N/m 8s ,  N/m 5.2s ,  N/m 7.1s  

It is supposed that h=b=1 nm and L varies from L/h=10 to 50. 

Tables 2 and 3 show, respectively, the maximum deflections of a simply supported nanowire 

subjected to uniform load and point load by using the classical and non-classical theories. The 

obtained results are compared with those computed independently for the first time based on the 

Euler-Bernoulli beam theory (EBT), and First beam theory (FBT) for a wide range of thickness 

ratio. It can be seen that the results of present theories are in excellent agreement with those  
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Fig. 2 Variation of maximum center deflections with the aspect ratio corresponding to different 

values τ
s
 of with the assumption of 2μ

s
+λ

s
=0 
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Fig. 3 Variation of maximum center deflections with the aspect ratio corresponding to different 

magnitudes of 2μ
s
+λ

s 
with the assumption of τ

s
=0 

 

 

predicted by FBT for all values of thickness ratio L/h. The TBT, SBT, and HBT provide solutions 

which are almost the same for all values of thickness ratio L/h, whereas the EBT underestimates 

deflections. The difference between EBT and shear deformation theories (i.e., TBT, SBT, HBT 

and FBT) is negligible for slender nanowires and considerable for deep nanowires. It can be 

proved from the results that by introducing the surface stress impacts, the deflections 

corresponding to all values of aspect ratio decrease which shows the fact that with consideration of 

the surface stress effects, the stiffness of nanowire will be increased.  

Fig. 2 shows the influence of value of τ
s
 on the transverse deflection of nanowires. The value of 
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(2μ
s
+λ

s
) is taken zero, and the variation of the transverse deflection with the span-to-depth ratio 

(L/h) of nanowire is shown corresponding to various magnitude of τ
s
 by using various higher beam 

theories (i.e., TBT, SBT and HBT). It is seen that the overall bending stiffness of nanowire tends 

to increase as the value of τ
s
 increases. 

Fig. 3 presents the variation of the transverse deflection of nanowires versus the span-to-depth 

ratio (L/h) of nanowire for three different conditions. It is seen that by taking τ
s
 zero, the positive 

value of 2μ
s
+λ

s
 makes nanowire stiffer. However, the non-positive value of 2μ

s
+λ

s
 diminishes the 

stiffness of the nanowire. 
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Fig. 4 Variation of critical buckling load with the aspect ratio corresponding to different values 

of magnitudes of τ
s 
with the assumption of 2μ

s
+λ

s
=0 

 
Table 4 Critical buckling loads corresponding to the first mode obtained with classical and non-classical 

solutions (nN) 

L/h 
Ref

(a)
 Present TBT Present SBT Present HBT 

classical non-classical classical non-classical classical non-classical classical non-classical 

10 1.4226 4.6272 1.4226 4.6272 1.4226 4.6272 1.4226 4.6272 

15 0.6410 3.9518 0.6410 3.9518 0.6410 3.9518 0.6410 3.9518 

20 0.3623 3.7117 0.3623 3.7117 0.3623 3.7117 0.3623 3.7117 

25 0.2324 3.5998 0.2324 3.5998 0.2324 3.5998 0.2324 3.5998 

30 0.1616 3.5389 0.1616 3.5389 0.1616 3.5389 0.1616 3.5389 

35 0.1188 3.5021 0.1188 3.5021 0.1188 3.5021 0.1188 3.5021 

40 0.0910 3.4782 0.0910 3.4782 0.0910 3.4782 0.0910 3.4782 

45 0.0719 3.4618 0.0719 3.4618 0.0719 3.4618 0.0719 3.4618 

50 0.0583 3.4501 0.0583 3.4501 0.0583 3.4501 0.0583 3.4501 
(a) 

Taken from Ref (Ansari and Sahmani 2011) 
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In order to demonstrate the validity of the present formulation in the case of buckling analysis 

of nanowires, comparative studies are presented in Tables 4-6. The obtained results based on TBT, 

SBT and HBT are compared with those of Ansari and Sahmani (2011). Excellent agreement can 

be observed for different values of span-to-depth ratio (L/h). It can be seen that the results from the 

classical theories due to ignoring the surface stress effect are highly underestimate when 

comparing with those from the non-classical theories. This effect is more pronounced for the lower 

mode numbers. The obtained results confirm again that this effect is important and makes 

nanowire stiffer. 

The effect of the values of τ
s
 on the variation of the critical buckling load of nanowires is 

shown in Fig. 4. It can be observed that the increase of the value of τ
s
 induces an increase in the 

overall bending stiffness of nanowire. 

 

 
Table 5 Critical buckling loads corresponding to the second mode obtained with classical and non-classical 

solutions (nN) 

L/h 
Ref

(a)
 Present TBT Present SBT Present HBT 

classical non-classical classical non-classical classical non-classical classical non-classical 

10 5.3019 8.0214 5.3019 8.0204 5.3027 8.0201 5.3019 8.0204 

15 2.4819 5.5471 2.4819 5.5469 2.4820 5.5468 2.4819 5.5469 

20 1.4226 4.6272 1.4226 4.6272 1.4226 4.6272 1.4226 4.6272 

25 0.9185 4.1914 0.9185 4.1913 0.9185 4.1913 0.9185 4.1913 

30 0.6410 3.9518 0.6410 3.9518 0.6410 3.9518 0.6410 3.9518 

35 0.4723 3.8064 0.4723 3.8064 0.4723 3.8064 0.4723 3.8064 

40 0.3623 3.7117 0.3623 3.7117 0.3623 3.7117 0.3623 3.7117 

45 0.2866 3.6465 0.2866 3.6465 0.2866 3.6465 0.2866 3.6465 

50 0.2324 3.5998 0.2324 3.5998 0.2324 3.5998 0.2324 3.5998 
(a) 

Taken from Ref (Ansari and Sahmani, 2011) 

 
Table 6 Critical buckling loads corresponding to the third mode obtained with classical and non-classical 

solutions (nN)  

L/h 

R. Ansari et Al. Present RBT Present SBT Present HBT 

classical non-classical classical non-classical classical non-classical classical 
non-

classical 

10 10.7134 12.8760 10.7134 12.8700 10.7175 12.8690 10.7134 12.8703 

15 5.3019 8.0214 5.3019 8.0204 5.3027 8.0200 5.3019 8.0204 

20 3.1060 6.0915 3.1060 6.0912 3.1062 6.0910 3.1060 6.0912 

25 2.0267 5.1512 2.0267 5.1511 2.0268 5.1511 2.0267 5.1511 

30 1.4226 4.6272 1.4226 4.6272 1.4226 4.6272 1.4226 4.6272 

35 1.0520 4.3066 1.0520 4.3066 1.0520 4.3066 1.0520 4.3066 

40 0.8089 4.0967 0.8089 4.0966 0.8089 4.0966 0.8089 4.0966 

45 0.6410 3.9518 0.6410 3.9518 0.6410 3.9518 0.6410 3.9518 

50 0.5203 3.8478 0.5203 3.8478 0.5203 3.8477 0.5203 3.8478 
(a)

Taken from Ref (Ansari and Sahmani 2011) 
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Fig. 5 Variation of critical buckling load with the aspect ratio to different magnitudes of 2μ
s
+λ

s 

with the assumption of τ
s
 =0 

 

 

The variation of the critical buckling load of nanowires as function of the span-to-depth ratio 

(L/h) of nanowire for three different conditions, is illustrated in Fig. 5. It is seen that by taking τ
s
 

zero, the non-positive value of 2μ
s
+λ

s
 makes the nanowire softer, while, for the positive value of 

2μ
s
+λ

s
 the nanowire becomes stiffer.  

 

 

5. Conclusions 
 

In this work, we have presented a framework of high-order surface stresses, based on various 

higher-order shear deformation beam theories, to investigate the bending and buckling response of 

NWs. Our results showed that the bending and buckling behaviors of nanowires are significantly 

affected by the surface stress impacts. Indeed, it is demonstrated that the inclusion of surface stress 

effect makes a nanowire stiffer, and hence, leads to a reduction of deflection and an increase of 

buckling load. The formulation lends itself particularly well to functionally graded structures 

(Bouderba et al. 2013, Ait Amar Meziane et al. 2014, Belabed et al. 2014, Hebali et al. 2014, 

Bousahla et al. 2014, Ait Yahia et al. 2015, Belkorissat et al. 2015, Hamidi et al. 2015, Larbi 

Chaht et al. 2015) and nanotubes (Besseghier et al. 2015, Tounsi et al. 2013), which will be 

considered in the near future.  
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