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Abstract.  We study a device structure which can be used to generate pure valley current and valley 
polarized current using quantum adiabatic pumping. The design of the structure allows the flexibility of 
changing the structure from one for pure valley current generation to one for valley polarized current 
generation by changing the applied electric potentials through changing the symmetry of the structure. The 
device is useful for the development of valleytronic devices. 
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1. Introduction 
 

Graphene is a two dimensional material composed of carbon atoms, which have a hexagonal 

lattice structure and, since its discovery, has attracted a lot of research interest owing to its special 

properties. Geim (2007) For example, the energy dispersion is linear around the K and K' points of 

the Brillouin zone, resembling the dispersion of a Dirac Fermion. Castro Neto et al. (2009) Apart 

from the interest in the fundamental physics of graphene, researchers also have interest in using 

graphene in electronic and spintronic applications owing to its special characteristics. Liu and 

Chan (2011), Zhang et al. (2011, 2012) In electronic applications, the charge transport 

characteristics are exploited, while in spintronic applications, the special characteristics of the 

electron spin in graphene is exploited. This strong interest in studying and exploiting the physical 

characteristics of electron spin is stimulated by the possibility of using the electronic spin to make 

devices with lower power consumption, faster processing speed as well as devices for quantum 

computing. Zutic et al. (2004) Stimulated by the developments in spintronics, there is also a  

considerable interest in using the valley degree of freedom in graphene as it can be regarded as a 

kind of pseudo spin degree of freedom. The key issues in the exploitation of the valley degree of 

freedom is the generation and detection of valley polarized current. Pereira Jr. et al. (2008), Xiao 

et al. (2007). There are already studies of valley filters and generation of pure valley current. 

Rycerz et al. (2006), Gunlycke and White (2011), Zhai et al. (2011), Jiang et al. (2013) However,  
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Fig. 1 Schematic illustration of the proposed structure. Two ferromagnetic stripes with opposite 

magnetizations are deposited on a sheet of monolayer graphene, which is strained in the middle 

section. The ferromagnetic and the strained regions are separated by four metal gates 

 

 

there is still a need of a source of valley polarized current which can have tunable valley 

polarization. In this paper, we study a graphene structure which can be used to generate valley 

polarized current with tunable polarizability using quantum adiabatic pumping. It can be tuned to 

get pure valley current or highly valley polarized current by changing the some electric potentials. 

Quantum adiabatic pumping is a technique which can be used to generate a d.c. current without 

an applied bias. Thouless (1983), Switkes et al. (1999), Tiwari and Blaauboer (2010) Zhu and 

Chen (2009) The technique uses two a.c. signals to modify the electronic structure of a 

nanostructure and thus modify the scattering characteristics of the structure. When the two a.c. 

signals are not in phase, a d.c. current is generated. There are already many examples of using two 

a.c. voltages as the pumping signals because it is easy to modify the electronic properties of a 

nanostructure using applied voltages. The quantum adiabatic technique is shown to be a versatile 

technique for generation of charge and spin currents, which prompts us to study in details how it 

can be used to generate tunable valley polarized current.  Zhang et al. (2011, 2012) 

The structure we propose here, which is shown schematically in Fig. 1, consists of a single 

layer graphene on which four electrodes are deposited, which can be used to induce 4 electrical 

potential barriers (d.c. plus a.c.) in the graphene layer. Between the electrical potential barriers, are 

strained and ferromagnetic graphene regions. The strained graphene is generated by inducing 

strain in the substrate on which the graphene is grown and the ferromagnetic region is induced by 

the proximity effect when a layer of ferromagnetic material is deposited on the graphene layer. 

The in-plane strain in the graphene layer causes a change in the hopping coupling between 

neighbouring atoms , which appears as a gauge potential term in the Hamiltonian. Since the 

system has time reversal symmetry, the strain induced gauge potentials have opposite signs in the 

two valleys. When the time reversal symmetry is broken by a magnetic field, the valley 

degeneracy is broken too and valley polarization can be readily generated in the structure. 

 

 

2. Model 
 

The Dirac Hamiltonian for an electron with wave vectors close to  the K (or K’) point is given 

by         (            ⁄ )     , where      denotes the K and K’ valleys,    is 
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the Fermi velocity,           are the Pauli matrices,    is a unit matrix,            are the 

momentum operators,     and    are the Landau gauge potentials of the magnetic field and the 

strain respectively, which are non-zero in the magnetic and strained regions.         is the one 

dimensional electrical potential, which is zero between the electrodes and has the following 

potentials in the 4 electrode regions 

 ( ) sin( ), 1,2,3,4i i i iV tV it v w f+ == +                                          (1) 

where Vi denotes the static potentials and vi and ϕi denote respectively the amplitudes and phases 

of the a.c. voltages. By controlling the 4 amplitudes and phases, various configurations of the 

applied a.c. voltages can be obtained. Usually only two a.c. signals are applied in quantum 

pumping and thus we need to restrict to those combinations which have two a.c. signals. For 

example, we put V1=V4 and V2=V3 to obtain two applied a.c. voltages. 

The current generated by quantum adiabatic pumping can be obtained from the emissitivities of 

the structure caused by the changes in the two applied voltages 

  

dn(m)

dV
1

 and 

  

dn(m)

dV
2

 using the 

expression  , where m denotes the left or the right lead. The 

emissitivity can be obtained from the scattering matrix S by using  

                                                 (2) 

Since the applied voltages are periodic with an angular frequency ω, we can obtain an 

expression for the pumped current by averaging the charge emitted in a cycle, which is done by 

integrating δQ with respect to time over a complete period. The expression for the current is 

  (Brouwer 1998). The integration with respect to ky is 

necessary for including the contribution of all the transverse modes, which are denoted by the 

wave vector ky because the structure has translation symmetry along the y direction.  

The scattering matrix elements for the structure can be found from the amplitudes of the 

reflected wave and transmitted wave of the scattering wave function of the structure in the 

required lead. As the structure consists of sections of constant electrical and the gauge potentials 

with analytical eigen-solutions, it is convenient to use the transfer matrix method to find the 

necessary wave amplitudes. Wang and Zhu (2010) The transfer matrix relates the wave amplitudes 

of two neighbouring sections and is obtained by matching the wavefunctions of the two sections at 

the boundary according to the following equations, where A and B denote respectively the right 

going (the +x direction) and the left going wave amplitudes in section 1 and C and D denote 

respectively the right and the left going wave amplitudes of section 2. 

                       (3) 
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                          (4) 

 

          

 

(5) 

For an eigenfunction with the form  

                                                                (6) 

The eigenvalue is        (  
  (     )

 
)
   

 where A is used to denote the gauge 

potentials in the present structure given by /FM s FA eA A vx x= +h  which are considered to vary 

along the x direction and the eigenfunction is 

 

where N is the normalization constant 

Combining the transfer matrix of the five sections in the structure, we can find a relation 

between the wave amplitudes of the right and left leads using the following expression 

                             (8) 

By putting AL=1, AR=t, BR=0 and BL=r, we can easily find the transmission coefficient t and 

reflection coefficient r from the equation. Putting AR=r', BR=1, AL=0, BL=t', we can obtain another 

set of transmission and reflection coefficient t' and r'. When the transmission and reflection 

coefficients on one lead are found, the pumped current can be obtained from the expression given 

above. 

 

 

3. Results 
 

In our calculation we use the following parameters in the symmetrical structure. The widths of  
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Fig. 2 The pumped currents vs Fermi energy. The width of the strained regions are (a)40nm, (b) 80 nm 

and (c) 160 nm. The other parameters are L1=L2=L3=L4=30 nm, W1=W3=80 nm. The vector potential due 

to strain is 5 meV. The vector potentials of the FMs are 5 meV and -5 meV. V1=V2=210 meV 

 

 

the barriers are set to be L1=L2=L3=L4=30 nm and the distances between the barriers are 

W1=W2=W3=80 nm. The strength of FM is       =5 meV and the strength of strain is   =5 

meV. To obtain a pure valley current, the electrical potential in the structure has to be symmetrical 

and the magnetic fields in the two FM regions are parallel and identical in magnitude (the 

magnetic vector potential is antisymmetrical). The heights of the electrical potential barriers are 

210 meV and the amplitude of the a.c. oscillation is 1 meV. For the asymmetrical structures, we 

consider the following cases: W3=40 nm, AFM(right)= −2AFM(left) and V1=V2 and V3=V4 (the two 

groups of a.c. potentials have different a.c. phases). We consider a structure with a transverse 

dimension of 10    and the frequency   of 5GHz.  The pumped current obtained are expressed in 

units of nA in the figures. We first consider the pumped currents in the two valleys when the 

structure is symmetrical with respect to the center line of the middle section (a mirror symmetry). 

The structure is made symmetrical by setting V1=V4, V2=V3. In all considered situation the phase 

difference of the two kinds of a.c. potentials is   ⁄ . In Fig. 2, we present the total charge current 

IK′+K=IK′+IK and the pure valley current IK′−K=IK′−IK as a function of the Fermi energy for three 
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different widths of the strained region W2. The charge current remains zero for all the Fermi 

energies, which means IK=−IK′ and the two currents in the two valleys are equal and opposite and 

have an oscillatory dependence on the Fermi energy with the most prominent current found at 

Fermi energies between 100 meV and 120 meV. When the width of the central strained section is 

increased, the number of oscillations increases without significant changes in the current 

amplitude. 

When the structure is asymmetrical, the charge current is not zero. In Fig. 3, we plot the 

pumped current for two asymmetrical configurations: W3 is different (30 nm) and different right 

and left magnetizations. The charge currents generated in the two valleys in these structures 

exhibit different oscillations, which can be used to generate valley currents with tunable valley 

polarization controlled by the Fermi energy. We can change the magnitudes of the two charge 

currents by changing the Fermi energy in the structure. As a result, the ratio of the K (or K') valley 

current to the charge current, IK′(K)/IK+K′=(IK+K′+(−)IK′−K)/2IK+K′=1/2+(−)IK′−K/2IK+K′, which is a 

measure of the degree of polarization, is changed. 

 

 

 

Fig. 3 The pumped current vs Fermi energy. The structure is not symmetrical about the central line. 

(a) The width of the right ferromagnetic stripe is 40 nm. (b) The magnitude of the right FM vector 

potential is two times of the magnitude of the left FM vector potential. The other parameters are the 

same as for Fig. 2 
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Fig. 4 The pumped current vs Fermi energy. The four applied voltages varies according to 

V1=V2=210 meV+sin(wt) and V3=V4=200+sin(wt+  ⁄ ) 

 
 

The advantage of the present structure is its high tunability which allows us to convert the 

structure into an asymmetrical one easily by changing the electrical potentials through the applied 

voltages. Fig. 4 shows the charge and valley currents obtained by using the following 

configuration of potentials  V1=V2 and  V3= V4.  In the inset, we show an enlargement of a part of 

the figure to demonstrate how we can obtain current in either the K or K' valley only. For example, 

when we have identical valley and charge currents, IK′−K=IK+K′, we have non-zero current in the K' 

valley only, i.e., IK′≠0, IK=0. When IK′−K=−IK+K′ we have pure K valley current, IK′≠0, IK′=0. 

The pumped current arises from the change of the S matrix, which is more significant at large 

incident angles when there is a rapid change in the S matrix. Fig. 5 shows the pumped current vs 

the incident angle at two Fermi energies. The pump current is significant for large incident angle 

and small for small incident angles. This can be explained by considering the plot of the 

transmission vs the Fermi energy and incident angle in Fig. 6. Significant changes of the 

transmission is found for large incident angles where there is a transition from high transmission to 

low transmission. When the potentials change, the transmission for large incident angles changes 

significantly.  For a fixed incident angle the transmission oscillates with the Fermi energy and the 

range of incident angles in which significant transmission is found to also oscillate with the Fermi 

energy. These oscillations come from the Fabry-Perot resonances in the structures and are related 

to the oscillation of the pumped current. According to the above results, it is easy to get that the 

symmetry property of the structure plays an important role in obtaining a pure valley in the whole 

energy region. When the vector potentials and a.c. voltages are symmetric about the central line of 

the structure, the Hamiltonians of the two valleys satisfy the following relationship 

      (  )  
    

           , thus   (  )     (   ) . If the symmetry property is 

broken, the K valley Hamiltonian cannot be related to the K’ valley Hamiltonian through the 

operator      and   (  )     (   ). 
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Fig. 5 The pumped current vs incident angle at fixed Fermi energies: (a) 99.75 meV, (b) 

105 meV. The other parameters are the same as for Fig. 2(b) 

 

 

Fig. 6 Contour plot of the transmission probability as a function of Fermi energy and incident angle. 

(a) K’ valley and (b) K valley. The other parameters are the same to Fig. 2(b) 
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4. Conclusions 
 

In conclusion, we study the pumped valley and charge currents in a structure with potential 

barriers, localized strain and magnetic field. Pure valley current and valley polarized current with 

tunable polarizability can be generated in the structure by modifying the structure parameters such 

as the electric potential, and the magnetic field strength. The device structure is useful for the 

development of valleytronic devices. 
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