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Abstract.  Carbon nanotubes have exceptional mechanical, thermal and electrical properties, and are 
considered for high performance structural and multifunctional composites. In the present study, the natural 
frequencies of aligned single walled carbon nanotube (CNT) reinforced composite beams are obtained using 
shear deformable composite beam theories. The Ritz method with algebraic polynomial displacement 
functions is used to solve the free vibration problem of composite beams. The Mori-Tanaka method is 
applied to find the composite beam mechanical properties. The continuity conditions are satisfied among the 
layers by modifying the displacement field. Results are found for different CNT diameters, length to 
thickness ratio of the composite beam and different boundary conditions. It is found that the use of smaller 
CNT diameter in the reinforcement element gives higher fundamental frequency for the composite beam. 
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1. Introduction 
 

Due to their exceptional mechanical properties, carbon nanotubes (CNTs) can be used as 

reinforcement in nanocomposites (Treacy et al. 1996, Goze et al. 1999, Thostenson et al. 2001, 

Shi et al. 2004, Wuite and Adali 2005). Using CNT as reinforcement in polymer composites may 

provide an increase in stiffness and strength relative to the carbon fiber-polymer composites. One 

of the key steps in composite analysis is the determination of the constitutive relations that gives 

the bulk mechanical properties of composites. Several attempts have been made to derive the 

constitutive modeling of nanotube-reinforced polymer composites. Odegard et al. 2002 used an 

equivalent-continuum modeling method in order to determine the bulk material properties of 

Single Walled Carbon Nanotube (SWCNT) polymer composites with various nanotube lengths, 

concentrations and orientations. Shi et al. (2004) used the Mori-Tanaka effective-field method to 

calculate the effective elastic moduli of composites with aligned or randomly nanotubes. 

The static and dynamic behavior of carbon fiber reinforced composites has been extensively 

studied in past researches (Aydogdu 2005, 2006a, 2006b, Leissa and Narita 1989, Baharlou and 

Leissa 1987). However, very few studies can be found on the static analysis of carbon nanotube 

reinforced composites. Wuite and Adali (2005) studied the deflection and the stress behavior of 

nanocomposite reinforced beams using a multiscale analysis. Maghamikia and Jam (2011) studied 
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buckling analysis of circular and annular composite plate reinforced with carbon nanotubes using 

Finite Element Method. They used the Mori-Tanaka method in order to obtain stiffness 

coefficients. Nonlinear free vibration of functionally graded carbon nanotube-reinforced composite 

beams investigated by Ke et al. (2010). Stimulated by the concept of FGMs, CNT-based 

composite plates were proposed by Shen (2009); nonlinear bending analysis of functionally graded 

carbon nanotube-reinforced composite (FG-CNTRC) plates in thermal environments was studied. 

By using the finite element method (FEM), bending and free vibration analyses were carried out 

for various types of FG-CNTRC plates by Zhou et al. (2012). Free vibration of functionally graded 

carbon nanotube-reinforced composite plates using the element-free kp-Ritz method in thermal 

environment is studied by Lei et al. (2013). In real applications, it is difficult to alligne CNTs in a 

matrix. Agglomeration is another problem when using CNT as a reinforcement element. Due to 

this reasons experimental works are required in order to understand mechanical behavior of CNT 

reinforced composites. As a starting point theoretical works are also required.   

The main objective of this paper is to investigate the vibration behavior of aligned carbon 

nanotube reinforced composite beams. The constitutive relations are obtained using the Mori 

Tanaka effective field method for the aligned CNT reinforced composites. Different shear 

deformation models are used in the analysis. The Ritz method is used to get the natural frequencies 

for the CNT reinforced composite beam with different boundary conditions.  

 

 

2. Analysis 
 

2.1 Micromechanics model 
 

Consider a polymer composite reinforced with aligned SWCNTs that are straight and infinitely 

long. The matrix is assumed to be elastic and isotropic, with Young modulus Em and Poisson‟s 

ratio m. Each straight CNT has transversely isotropic elastic properties. 

The composite material is also transversely isotropic with following stress-strain relations (Hill 

1965) 
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where k, l, m, n and p are the Hill‟s elastic moduli (Hill 1965), n is the uniaxial tension modulus in 

the fiber direction (direction 1), k is the plane strain bulk modulus normal to the fiber direction, l is 

the associated cross-modulus, m and p are the shear moduli in planes normal and parallel to the 

fiber direction, respectively (Shi et al. 2004). Using the Mori-Tanaka method, the Hill‟s elastic 

moduli are found as (Shi et al. 2004, Wuite and Adali 2005) 
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where kr, lr, mr, nr and pr are the Hill‟s elastic moduli for reinforcing phase and cr and cm are the 

volume fraction of reinforcing phase and matrix respectively. Material properties for a 

unidirectional CNT reinforced composite can be given as follows (Shi et al. 2004, Wuite and Adali 

2005) 
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Where subscripts L and T denote longitudinal and transverse directions of composite beam 

respectively.  

 

2.2 Carbon nanotube reinforced composite beams 
 

In this section, derivation of the governing equations for the laminated composite beams is 

explained. Consider a straight uniform composite beam of length a, height h and width b. The 

beam is assumed to be constructed of arbitrary number, N, of linearly elastic transversely isotropic 

layers. Therefore, the stress state in each layer is given by Aydogdu (2005) 
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where )(
ijQ  the well-known reduced stiffnesses (Herakovich 1998) and χ is the number of  

layers. Assuming that the deformations of the beam take place in the x-z plane and upon denoting 

the displacement components along the x, y and z directions by U, V and W respectively, the 

following displacement field can be written 
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Where u1 is the shear deformation at mid-plane. The displacement model (5) yields the following 
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kinematic relations 
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where a prime denotes the derivative with respect to z and “,x” represent partial derivative with 

respect to x. 

Although different shape functions are applicable, only the ones which convert the present 

theory to the corresponding parabolic shear deformation beam theory (PSDBT) of Reddy (1984), 

the first order shear deformation beam theory (FSDBT) of Mindlin (1951) and the general 

exponential shear deformation beam theory (GESDBT) of Aydogdu (2009) are employed in the 

present study. This is achieved by choosing the shape functions as follows 
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In Aydogdu (2009), it is shown that α=3 is best choice in the static and dynamic analysis of 

laminated composite plates and beams. By substituting the stress-strain relations into the 

expressions of the force and moment resultants of the present theory the following constitutive 

equations are obtained (Aydogdu 2005, 2006a, 2006b) 
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The extensional, coupling, bending and transverse shear rigidities are defined as follows 
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The force and moment resultants are defined in the following form 
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In these definitions, the resultants denoted with a superscript „c‟ are the conventional ones of 

the classical beam theories; whereas the remaining ones with a superscript „s‟ are additional 

quantities incorporating the transverse shear deformation effects. Upon employing the Hamilton‟s 

principle, the three variationally consistent equilibrium equations of the beam are obtained as 
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where ,tt denotes time derivatives and the ‟s are defined as 
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Moreover, the following sets of boundary conditions at the edges of the beam are obtained by 

application of Hamilton‟s principle 

at x=0, a 

either u or c
xN  prescribed, 

either w or c
xxM ,  prescribed, 

either w,x or c
xM prescribed 

either u1 or 
s

xM  prescribed                         (12) 

 

2.3 The continuity conditions for the symmetric cross-ply beams 
 

By suitable changing the previous shape functions given in Eq. (7), the continuity of transverse 

shear strain can be satisfied. Details of this manipulation are given in the previous works 

(Aydogdu 2005, 2006a, 2006b). Only the final form of the new shape function that satisfies the 

transverse continuity conditions is described here. 
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By substituting Eq. (13) into Eq. (3), the following displacement field, which satisfies the 

transverse continuity conditions, is obtained. 
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2.4 The Ritz solution for the vibration problem of cross-ply beams with various 
boundary conditions 

 

The Ritz method (Kantrovich and Krylov 1964) is a variational approach that requires the 

expansion of the unknown functions of the displacement components in infinite series form. By 

taking a sufficient number of terms in the series, it is possible to approach the exact solution of the 

problem considered. This method was used in past studies and related references can be found in 

the previous papers (Aydogdu 2005, 2006a, 2006b). A short review of this method is given below: 

Upon defining the natural coordinate =x/a, the following simple algebraic polynomials can be 

written 
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where the polynomial is defined as 

mpifX Bf

f ,,,)1(                         (16) 

and Ai, Dp and Cm are unknown undetermined coefficients. The exponent B values are chosen 

according to the type of the boundary conditions imposed at the edges of the beam. The values of 

B=0, 1 and 2 correspond to free, simply supported and clamped edge conditions respectively 

(Narita 2000). Three different boundary conditions are considered in this study, namely: Hinged-

Hinged (H-H), Clamped-Clamped (C-C) and Clamped-Free (CF). Here, the first and second 

capital letter denote the boundary conditions at =0 and =1, respectively. Related kinematic 

boundary conditions and selection of the starting indices of the series in Eq. (15) are given in the 

previous papers by the author (Aydogdu 2005, 2006a, 2006b). The free boundary conditions are 

approximately satisfied by means of the Ritz method. 

Application of the Ritz method requires the kinetic energy and the strain potential energy 

functions of the cross-ply composite beam. The strain energy of the cross-ply composite beam can 

be written in terms of the middle surface displacement as follows 
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and the kinetic energy of the cross-ply beam can be written in the following form 
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Upon inserting the displacements and their derivatives from Eq. (15) into the strain and kinetic 

energy expressions given in Eqs. (17) and (18) and minimizing the functional (Usmax-Tmax) with 

204



 

 

 

 

 

 

On the vibration of aligned carbon nanotube reinforced composite beams 

respect to the coefficients of the displacement functions, a set of simultaneous algebraic equations, 

in terms of the unknown coefficients given by Eq. (15) can be obtained. The upper limits of series 

in Eq. (15) are chosen to be equal, i.e., I=P=M so that 3P2 equations are obtained. These equations 

can be written as a generalized eigenvalue problem 

      02  MK                             (19) 

where K and M are the stiffness and the inertia matrices, respectively, and  is the column vector 

of unknown coefficients of Eq. (15). The eigenvalues () for which the determinant of coefficient 

matrix of Eq. (19) is zero, leads to the nondimensional free vibration frequency parameter. 

Dimensionless frequency parameter is defined as λ=(ωa2/h)(ρ/E2)
1/2. 

 

 

3. Numerical results 
 

The elastic constants of SWCNTs are taken from the analytical results of Popov et al. (2000). 

The Young‟s modulus and the Poisson‟s ratio of the matrix (polystyrene) are Em=1.9 GPa and 

m=0.3 respectively. In the first part of the present study engineering constants of the SWCNT 

reinforced composite material are calculated using Eqs. (2)-(3) and the material constants of the 

matrix and results are depicted in Fig. 1. Three different CNT radii (R) are used: R=0.2 nm, 0.6 nm 

and 2.45 nm. It can be observed from Fig. 1 that, for small CNT diameter, the longitudinal and 

shear moduli of the composite material increase with increasing volume fraction, whereas the 

Poisson‟s ratio decreases. 

In the formulation presented in Section 2.2, the direct use of the shape functions given in Eq. 

(7) for the PSDBT, FSDBT, and GESDBT violates the continuity of the interlaminar stress 

through the thickness of the beam. However, by suitable modifications of the shape functions, as 

described in Section 2.3, the continuity conditions through the thickness of the beam are satisfied 

for symmetric cross-ply lay-ups.  

Convergence studies carried out for the fundamental frequency parameter  of the symmetric 

and antisymmetric cross-ply beams were given in the previous studies (Aydogdu 2005, 2006a); 

details are not given here due to space limitations. Results from such studies are in good 

agreement with fundamental frequency values recommended by several codes (Chandrashekhara 

et al. 1990, Khdeir and Reddy 1994, Chen et al. 2003). All of the results presented in this work 

calculated using eight terms (P=8) in Eq. (15).  

After verifying the accuracy and convergence of the Ritz analysis, the fundamental frequency 

of the symmetric cross-ply (0/90/0) beams are computed using different shear deformation 

theories for H-H boundary conditions and for different material properties and aspect ratios (Table 

1). Good agreement between different theories is observed for the fundamental frequency. The 

differences between the frequencies predicted with the different theories increase with decreasing 

a/h ratio. 

After comparison of the theories the fundamental frequency parameters are calculated for 

different boundary conditions, CNT diameter, volume fraction and ascpect ratio (Fig. 2-Fig. 4). All 

of the remaining results will be given using Aydogdu (2009) model (GESDBT). From these 

figures the following conclusions can be drawn: The frequency parameter increases with 

increasing volume fraction. This increase is more pronounced for the high aspect ratio (a/h). The 

frequency parameter is insensitive to the volume fraction for a/h=5 for H-H and C-C boundary  
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Fig. 1 Variation of the mechanical properties of the SWCNT reinforced composites with the fiber 

volume fraction 
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Table 1 Comparison of the fundamental frequency parameter for the different shear deformation theories for 

(0o/90o/0o), R=0.2 nm and hinged-hinged boundary conditions 

L/h 
cr=0.05 cr=0.25 

Reddy Aydogdu FOSDT Reddy Aydogdu FOSDT 

5 8.608 8.589 8.561 11.023 11.021 10.874 

10 10.888 10.874 10.873 16.874 16.822 16.841 

20 11.831 11.826 11.827 20.899 20.868 20.896 

50 12.145 12.144 12.145 22.685 22.679 22.686 

100 12.192 12.192 12.192 22.981 22.979 22.981 
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Fig. 2 Variation of the frequency parameter of the CNT reinforced composite beams with the volume 

fraction for H-H boundary conditions 
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Fig. 3 Variation of the frequency parameter of the CNT reinforced composite beams with the volume 

fraction for C-C boundary conditions 
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Fig. 4 Variation of the frequency parameter of the CNT reinforced composite beams with the volume 

fraction for C-F boundary conditions 
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Fig. 5 Variation of the frequency ratio (Cont/Discont) with the CNT volume fraction for H-H 

boundary condition 

 

 

conditions. The highest frequency parameter is obtained for the smallest CNT diameter (R=0.2 

nm). Higher frequencies are obtained for fixed-fixed and lower frequencies for clamped-free 

boundary conditions. Higher frequencies are obtained for present CNT reinforced composite 

beams when compared with conventional composites Aydogdu (2005). 

In order to see the effect of the transverse shear stress continuity, the frequency ratios are given 

in Fig. 5 for the continuous and the discontinuous stress case. The difference between the two 

cases increases with increasing volume fraction. Since the continuity effects are important for the 

high anisotropy and small aspect ratios, a/h=5 and R=0.2 nm are chosen in the example problem. 

Smaller differences are observed for the examples using other aspect ratios and CNT radii.  
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On the vibration of aligned carbon nanotube reinforced composite beams 

4. Conclusions 
 

In the present study, vibration of the aligned Carbon nanotube (CNT) reinforced composite 

beams is analyzed using the shear deformable composite beam theories. The Ritz method with the 

algebraic polynomials is used to solve the free vibration problems of composite beams. The Mori-

Tanaka method is used to find the composite beam properties. It is found that, the frequency 

parameter increases with increasing volume fraction. This increase is more pronounced for high 

aspect ratios (a/h). The frequency parameter is insensitive to the volume fraction for a/h=5 for H-

H and C-C boundary conditions. The highest frequency parameter is obtained for the smallest 

CNT diameter (R=0.2 nm). Higher frequencies are obtained for fixed-fixed and lower frequencies 

for clamped-free boundary conditions. Effect of stacking sequence can be investigated in the 

future studies. 
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