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Abstract.  Indium-nitrogen co-doped zinc oxide thin films (INZO) were prepared on glass substrates in 
the atmosphere by ultrasonic spray pyrolysis. The aqueous solution of zinc acetate, ammonium acetate and 
different indium sources: indium (III) chloride and indium (III) nitrate were used as the precursors. After 
film deposition, different anneal temperature treatment as 350, 450, 550

o
C were applied. Electrical 

properties as concentration and mobility were characterized by Hall measurement. The surface morphology 
and crystalline quality were characterized by SEM and XRD. With the activation energy analysis for both 
films, the concentration variation of the films at different heat treatment temperature was realized. Donors 
correspond to zinc related states dominate the conduction mechanism for these INZO films after 550

 o
C high 

temperature heat treatment process. 
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1. Introduction 
 

Zinc oxide (ZnO) thin film has been used widely for recent decades. In the device applications, 

ZnO has been the limelight since it is generally used in solar cells (Yuan et al. 2006), piezoelectric 

devices (Wang et al. 2006), transparent electrodes (Yamamoto et al. 2012), gas sensor (Mitra et al. 

1998) etc.. To obtain the ZnO film, lots of techniques can be used, such as ion beam deposition 

(Yuan et al. 2006), sputtering (Wang et al. 2006, Yamamoto et al. 2012), chemical vapour 

deposition CVD (Mitra et al. 1998), spray pyrolysis SP (Studenikin et al. 1998), sol-gel (Tsay and 

Wang 2013), pulsed laser deposition (PLD) (Mendelsberg et al. 2008) et cetera. Compared with 

other deposition method, the spray pyrolysis method is one of the attractive technique with the 

advantage of easy scale up (Paraguay et al. 1999, DocumentIslam and Podder 2009), high 

deposition rate and without high-vacuum equipment (Singh et al. 2007, Du et al. 2006).  

Different precursor species (DocumentKang et al. 2000, Skrabalak and Suslick 2006, Dunkle et 

al. 2009) can be applied in the spray pyrolysis technology. Less discussion about comparison the 

ZnO films with different precursor by spray pyrolysis. As co-doped skill for the semiconductor 
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(Fan et al. 2013, Yamamoto and Yoshi 2001) shows the ability of stable and low resistive results. 

Thus, indium and nitrogen co-doped ZnO were prepared by spray pyrolysis technology with 

different indium precursors: indium (III) chloride (ZIC) and indium (III) nitrate (ZIN) in this 

paper. The film morphology, crystalline quality and conducting properties were studied. 

 

 

2. Experimental details 
 

The indium and nitrogen co-doped ZnO (n-ZnO) thin film with undoped ZnO interlayer was 

deposited on glass substrate at 475
o
C. The undoped ZnO interlayer was formed from the pyrolysis 

of the precursor of zinc chloride aqueous solution 0.2 M. And the n-ZnO film was formed from the 

pyrolysis of the precursor of zinc acetate, ammonium acetate and different indium sources: indium 

(III) chloride and indium (III) nitrate with ratio 1:3:0.05. (Fan et al. 20113) The prepared solution 

was hen sprayed on the heated glass substrates by ultrasonic spray pyrolysis. After deposition, 

samples were then cut to separate pieces and one was named as as-grown sample, the others was 

then proceeded with different high temperature treatment in atmosphere as 350, 450, 550
o
C for 

20minutes. The In contact was formed by soldering followed by 350
o
C annealing process for 5 

minutes.  

A scanning electron microscopy (SEM, Hitachi S-300H) was used to characterize the surface 

morphology. The crystalline structure was obtained by x-ray diffractometry (XRD, Bruker D8). 

The conductivity was obtained by van der Pauw four-point method (KEITHLEY 2400) and carrier 

concentration and mobility were obtained by Hall measurement with magnetic field strength 0.42 

T.  

 

 

3. Results and discussion 
 

Fig. 1 and Fig. 2 shows the surface morphology characterized by SEM for the ZIN and ZIC 

films, respectively. To ZIC film, after the anneal process, the nanosized particals on the surface  

 

 
 

Fig. 1 the surface morphology characterized by SEM for the ZIN (a) as grown and after heat 

treatment at temperatures, (b) 350
 o
C, (c) 450

 o
C (d) 550

 o
C 
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Fig. 2 the surface morphology characterized by SEM for the ZIC films (a) as grown and after 

heat treatment at temperatures, (b) 350
 o
C, (c) 450

 o
C and (d) 550

 o
C 

 

 

Fig. 3 shows the XRD spectrum of the ZIN film after heat treatment at different temperatures 

 

 

clearly changes, from petal-like turn into cube-like. For ZIN film, the anneal process influences the 

film morphology also. With higher temperature, leaf-like morphology can be observed. As the 

temperature reach 550
o
C, mixed leaf-like and cube-like morphology can be observed. With the 

annealing temperature rising up, both samples show that the surface morphology varies and larger 

grain can be characterized.  

Fig. 3 shows the XRD spectrum of the ZIN film annealed at different temperatures. The as 

grown ZIN films shows obvious (002) and (101) peaks. Some weak signal such as (100), (102), 

(103) and (112) can be observed also. The two main peaks (002) and (101) both remains as the 

heat treatment temperature reaches to 550
 o
C. 

Fig. 4 shows the XRD spectrum of the ZIC films annealed at different temperatures. It was 

found that main peaks correspond to ZnO (002) and (101) structure can be observed for the as 

grown film. Furthermore, some weak peak corresponded to (102) and (112) can be observed also.  
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Fig. 4 shows the XRD spectrum of the ZIC film after heat treatment at different temperatures 

 

 

The (002) peak decreases and (101) peak increases as the temperature increases. The (101) peak 

becomes the dominate peak for these annealed samples. 

The carrier concentration and mobility for ZIN and ZIC samples with different heat treatment 

temperature were shown in Table I and Table II, respectively. All the films exhibited n-type 

conductivity. For ZIN film, the concentration decreases from 1.2×10
20 

cm
-3

 to 3.1×10
17 

cm
-3
 as the 

heat treatment temperature increases to 450
 o
C. The concentration increases to 2.9×10

19 
cm

-3
 as the 

temperature reaches 550
o
C. Such concentration increasing may be corresponded to donor species 

occurring in the film. The mobility shows an increasing behavior as the heat treatment temperature 

increases to 450
o
C. As the heat treatment is beneficial for better crystal quality and larger grain can 

be observed in Fig. 1, less electron scattering and the increasing of mobility can be expected in this 

region. As the temperature increase to 550
o
C, the decrease of mobility may be corresponded to 

extra introduce of carriers as characterized in the concentration measurement.  

For ZIC film, as shown in Table II, the concentration decreases from 3.1×10
19 

cm
-3

 to 2.0×10
18 

cm
-3

 as the heat treatment temperature increases to 450
o
C. The concentration increases to 5.8×10

19 

cm
-3

 as the temperature reaches 550
o
C. Similar concentration increasing as ZIN film can be 

observed. The carrier mobility decreases the temperature increases to 550
o
C. 

To better understand the origin of electrical conduction, temperature dependent film 

conductivity measurement was carried out. Fig. 5 shows the conductivity of the ZIN films plotted 

as functions of inverse measurement temperature. The relationship between conductivity  and the 

measurement temperature T is given by Yamamoto and Yoshid (2001) 

    
)/exp(0 kTEA

 
(1) 

where 0 is the pre-exponential factor, k is the Boltzmann constant, EA is the activation energy. 

The calculated EA values were listed in Table I and II.  

Fig. 5 shows the temperature dependence of electrical conductance for the ZIN film after 

different heat treatment temperature. For the as grown ZIN film, as shown in Table I, the obtained 

activation energy is 24 meV. This activation value, which is near 26 meV, is corresponded to the 

origin donor level for the indium doped ZnO (Ye et al. 2007). While the heat treatment 

temperature increases to 450
o
C, the conductivity decrease and two linear regions corresponding to  
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Fig. 5 Temperature dependence of electrical conductance for the ZIN film after different heat 

treatment temperatures 
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Fig. 6 Temperature dependence of electrical conductance for the ZIC film after different 

heat treatment temperatures 

 

 

different measurement temperature range can be observed in the figure. The extracted activation 

energy 80 meV, which is the octahedral zinc interstitial (Zni
2+

) (Benhaliliba et al. 2010), and 162 

meV, as zinc vacancy (VZn) (Ilican et al. 2006) can be observed in many ZnO films. While the heat 

treatment temperature increase to 550
o
C, two temperature regions remains and two activation 

energy values can be obtained. The activation energy is 35 meV may correspond to zinc atoms in 

tetrahedral positions (Benhaliliba et al. 2010, Kumar et al. 2005) or the charged zinc interstitials 

(Pagni et al. 2006). And the higher activation energy 157 meV may correspond to higher charged 

zinc vacancy transition (VZn) (Ilican et al. 2006, Pagni et al. 2006).  

Fig. 6 shows the temperature dependence of electrical conductance for the ZIC film after 

different heat treatment temperature. The samples without annealing treatment and with the heat 
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treatment at 350
o
C both have the shallow donor level.The activation energies may be both denoted 

by interstitial zinc (Zni
+
) (Fang and Farlow 2007, Sun and Wang 2003, Lee et al. 2010). The 

activation energy shows two values as the heat treatment temperature increases to 450
o
C. The one 

is 84 meV, named octahedral zinc interstitials (Zni
2+

) (Benhaliliba et al. 2010), and the other is 455 

meV, caused by grain boundary sacttering (Ye et al. 2007). As the heat treatment temperature 

increase to 550
o
C, two activation energy values can be obtained. The activation energy 22 meV is 

corresponded to the shallow donor state (Ye et al. 2007, Fang and Farlow 2007). The other 

activation energy 82 meV may correspond to vacancy-related state octahedral zinc interstitials. 

(Benhaliliba et al. 2010, Ilican et al. 2006). 

For ZIN film, as the heat treatment temperature increases to 450
o
C, the concentration decreases 

as the reduction of origin shallow donor. And some zinc vacancy may arose while the temperature 

at 450
o
C. As the temperature reaches 550

o
C, this Zn vacancy remains and some certain donor state 

associated with Zn in tetrahedral position causes the increasing in concentration at room 

temperature. For ZIC film, shallow donors with smaller activation energy value can be observed 

for the as grown film. The concentration decreases coming from the reduction of the shallow 

donors can be observed also as the heat treatment temperature increases to 450
o
C. Carrier 

concentration increasing again as the heat treatment temperature increases from 450 to 550
o
C by 

the creation of some certain zinc-related vacancy and charged states. 

 

 

4. Conclusions 
 

Indium-nitrogen co-doped ZnO (INZO) films were prepared on glass substrate by ultrasonic 

spray pyrolysis (USP). It is found that ZIN film, using indium (III) nitrate as precursor, shows 

obvious two main peaks (002) and (101). Both two peaks remain as the heat treatment temperature 

reaches to 550
o
C. For ZIC film, using indium (III) chloride as precursor, the preferred peak (101) 

increases clearly as the heat temperature increase. Two films are both Polycrystalline patterns. 

Characterized from scanning electron microscopy (SEM), the film with different precursor would 

cause different surface morphology. The conducting properties of INZO films influence by defect 

states significantly. Different defects and types are caused by different precursors and heat 

treatment temperatures. After 550
o
C high temperature treatment, shallow donors correspond to 

different zinc related states dominate the conduction mechanism at room temperature for both 

films. 
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