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Abstract.   This study is aimed to calculate the radiative lifetime of Wannier-Mott excitons in nanoclusters 
of a narrow-bandgap semiconductor embedded in a wide-bandgap one. The nanocluster linear dimensions 
are assumed to be much larger than the radius of the exciton so that the latter is not destructed by the 
confinement potential as it takes place in small quantum dots. The calculations were carried out for an 
example of InAs nanoclusters put into the GaAs matrix. It is shown that the radiative lifetime of Wannier-
Mott excitons in such clusters increases with the decrease of the cluster dimensions, this tendency being 
more pronounced at low  temperatures. So, the creation of excitons in nanoclusters of a narrow-bandgap 
material embedded in a wide-bandgap one can be used to significantly prolong their radiative lifetime in 
comparison with that of excitons in a bulk semiconductor. 
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1. Introduction 

 

Excitons play an important role in the study of optical properties of solids. There exist two 

main types of excitons: Frenkel excitons and Wannier-Mott excitons (Knox 1963). A Frenkel 

exciton (Frenkel 1931) is also called the exciton of a small radius because it stands for a bound 

electron-hole pair, localized at one and the same crystal lattice site and migrating in a crystal from 

one site to another. In contrast to it, a Wannier-Mott exciton (Wannier 1937) is the exciton of a 

large radius in which the bound electron and hole may occupy different crystal lattice sites or the 

space between them. In semiconductors and based on them nanoheterostructures it is Wannier-

Mott excitons that are more frequently observed. So, for the theoretical description of nanodevices, 

this exciton type is more important and therefore is considered here. 

One of the main characteristics of an exciton is its lifetime. This is because all the processes in 

which it is involved obviously have to proceed on timescales shorter than this value. So, the 

increase of the exciton lifetime allows to broaden the scope of exciton-involved phenomena which 

can be observed and which can be employed in practice.  
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The exciton lifetime is obviously determined by the time of its radiative recombination with the 

emission of a photon and its non-radiative recombination consisting in the exciton capture by traps 

and its subsequent recombination with the emission of a photon whose energy, however, is 

significantly smaller than the energy of the photon, emitted under process of radiative 

recombination. The rate of the exciton capture by traps depends on the density and type of the 

latter and therefore is determined by the crystal type, its quality and purity and therefore is 

strongly related to a concrete technology of the crystal fabrication. In contrast to that, the rate of 

the exciton radiative recombination is independent on technology features and determined only by 

the fundamental crystal parameters. So, it remains the same for crystals of a certain type grown by 

means of different technology processes and thereby puts the lower limit to the exciton 

recombination rate in this crystal type. 

The aim of the present article is to calculate the Wannier-Mott excition lifetime due to its 

radiative recombination and propose a way to increase this value. For this purpose in the next 

section the structure of the Wannier-Mott exciton is outlined and its interaction with quantized 

electromagnetic field is depicted. In section 3 for the example of the Wannier-Mott exciton in InAs 

its lifetime due to its radiative recombination is calculated. Then it is shown that this time can be 

significantly prolonged if InAs forms nanoclusters in a wide-bandgap material, e.g., GaAs. In the 

Conclusion the main results of the article are recapitulated.  

 

 

2. Wannier-Mott exciton in quantized electromagnetic field 
 

Let us represent the electron state in a crystal by the Bloch wavefunction 

    Vu jj /iexp krrk  , where index j stands for the zone number, j = v, c for the valence and 

conduction bands respectively, r is the electron radius-vector, k – its quasiwavevector, V – the 

crystal volume, and the function uj(r) – a periodic spinor function, uj(r) = uj(r+a), where a – any 

translational vector of the crystal Bravais lattice. 

The crystal ground state is depicted by a wavefunction  
k

kv0 !/1 NΨ , where the sum 

sign stands for the antisymmetrization over electrons radius-vectrors and spins, k  runs through all 

the first Brillouin zone, its discrete values being determined by the periodic boundary conditions, 

and N  is the number of allowed states in the valence band. Let us call an exciton (Elliott 1957) 

the crystal excited state described by a wavefunction   



k kkk

kkkk  !/1

e

e vc  nn cNΨ , where 

ke is the exsiton center-of-mass quasiwavenumber, n stands for the exciton quantum state number, 

and ckn – some coefficients determined in the following way. Let us consider a formal  

Fourier transform 
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with some formal radius-vectors re1 and rh. Here    helhhelele / mmmm  rrr , elm  and hm  are 
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the effective electron and hole masses respectively. Then, let us chose ckn in such a way that ψn 

(re1−rh) be the wavefunction of the hydrogen atom in a quantum state n, in which, though, the 

electron mass is replaced with the reduced effective mass of the electron and hole, me1mh/(me1+mh), 

and the Coulomb potential is diminished by εst times, where εst stands for the crystal static 

dielectric constant.  

So, the wavefunction in Eq. (1) formally represents the motion of a hydrogen-like atom 

consisting of two particles with charges ±e, where e is the absolute value of the elementary charge, 

radius-vectors re1 and rh, and masses me1 and mh. The function   2/1
ee /iexp Vrk  in Eq. (1) depicts 

the free motion of such an atom center-of-mass with the radius-vector re, and ψn (re1−rh) describes 

the relative motion of two particles comprising this atom. The energy of such a state is therefore 

     2
hel

2
st

2
hel

4
hel

2
e

2 22 nmmmmemmk    and the characteristic radius of the ground 

quantum state (corresponding to n = 1) of such a hydrogen-like atom is 

)/()( hel
2

helst
2

ex mmemmr   . Let us call this energy plus the crystal bandgap energy Eg the 

exciton energy nE
ek  and this radius the exciton radius.  

Let us note here that, for such a treatment to be valid, the linear dimensions of a cluster (in 

which an exciton is confined), that are of order V
1/3

, have to significantly exceed rex. Only in this 

case the above described structure of a Wannier-Mott exciton is not destructed by the cluster 

confining potential. In this connection it is important to stress here that, as a rule, under the 

consideration of the exciton radiative lifetime (please see, e.g., Bauer et al. (2013), Boggess et al. 

(2001), Harbord et al. (2009), Musa et al. (2011), Schmidt et al. (2012), Wu and Lin (2012)) its 

dependence on the cluster dimensions is investigated in the opposite case, in which the exciton 

radius is larger than a characteristic cluster radius. Obviously, in such a case the Wannier-Mott 

exciton is disrupted by the cluster confining potential so that the obtained radiative exciton 

lifeteime dependence on the cluster dimensions refers to an exciton of another (not of a Wannier-

Mott) type. 

The interaction of such an exciton with quantized electromagnetic field is described by the 

matrix element   nΨtmceΨ  0 e
) ,(ˆi k

r

rrA   of the resonant part of the electron-

electromagnetic field non-relativistic interaction Hamiltonian (Landau and Lifshitz 1991), where 

m  is the free electron mass, c – the light velocity in vacuum,   – the reduced Plank constant, the 

sum is performed over radius-vectors r of all the electrons, r  – the nabla-operator, acting on the 

coordinates of the radius-vector r, 
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k

kkkk rkArkArA tatat  – the operator of 

the electromagnetic field vector-potential (Berestetskii et al. 1982), ωph and kph – the photon 

frequency and vacuum wave-vector, connected by the dispersion relation kph = ωph/c, ε – the 

crystal dielectric function at ωph, index α stands for two orthogonal to kph photon polarizations, 

ph
ˆ

ka , ph
ˆ k
a  – the operators of the annihilation and creation of a photon with the wavevector kph 

and polarization α,    
phph ph/2 kk eA Vc   , where V’ – normalization volume, much larger 

than V, phke  –  the unit photon polarization vectors, 0ph phkek ,   
 

phph kk ee ,    – the 

Kronecker symbol. 
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Then, it can be shown that, retaining only the resonant term 
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where  
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
 – the interband matrix element 

having the dimension of a dipole moment, where the summation over spinor indices is assumed, 

the integration is carried out over a crystal primitive cell with the volume Vc, and rc – the radius-

vectors of the crystal Bravais lattice sites each of which is associated with a crystal primitive cell. 

In what follows I shall consider a case when phe kk   is much smaller than the primitive cell 

inverse dimensions so that in the formula for dcv it can be put that    1iexp phe  rkk  . Due to 

the orthogonality of uv(r) and uc(r), it means that dcv does not depend on k and therefore can be 

placed outside the sum over k in Eq. (2). Then, according to the above definition of ckn and 

considering the case when the exciton is in its ground state, one has 

 
k

k )/()0( 3
ex11 rVVc  .  

The sum over rc in Eq. (2), due to the considered situation in which phe kk   is much 

smaller than the primitive cell inverse dimensions, can be calculated by its replacement with an 

integral. This, under the assumption that the cluster with volume V  has a spherical form with a 

radius R (so that V = 4π R
3
/3), gives that      3
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2
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2
e kkkkR  , θ being the angle between ke and kph. 

Then, let us represent the wavefunction of the system crystal+photons as 
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  where 0  stands for a state without 

photons and phk  – for a state with one photon with a wavevector kph and polarization αphke , 

and it is assumed that the exciton resides only in its ground state. The system of equations for 

coefficients 
ekc , phkc , following from the Schrodinger equation, is 
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where )/( 3
excv rV dd  .  

Finding phkc  from Eq. (4) with the initial conditions 0)0(
ph

tc k  and substituting them 

into Eq. (3), one obtains an integro-differential equation for 
ekc  
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Replacing summation over kph with integration according to a formula 
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equation for the Laplace transform of 
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where /01ph0 E  is the resonant recombination photon frequency (the small exciton 

quasikinetic energy   hel
2
e

2 2 mmk  is neglected here in comparison with 

  hel
2
st

2
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g 2 mmmmeE   ),  2ph0e kkR   ,  2ph0e kkR   , ck /ph0ph0  .  

Then, it is necessary to average  ek over the Maxwell distribution of exciton 

quasiwavevector values, so that the final formula for the exciton radiative recombination rate is  

        
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e
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BeBe
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where me = mel+mh is the exciton mass, T – temperature, kB– the Boltzmann constant.  

 

 

3. Wannier-Mott exciton lifetime in InAs nanoclusters embeded in GaAs 
 

Now, let us apply the general Eq. (7) to the calculation of the exciton radiative lifetime in InAs 

nanoclusters embeded in GaAs. As the InAs bandgap energy is signuificantly lower than that of 

GaAs, such clusters form three-dimentional potential wells for excitons which are practically fully 

confined in them. For example, let us consider a Wannier-Mott exciton formed by an electron and 

a heavy hole. The InAs parameters taken from Madelung (2004) and Vurgaftman et al. (2001) are 

the following: bandgap energy is Eg = 0.417eV, 100cv d  D (1D≈3.34∙10
−30

C∙m), the dielectric 

function at the exciton resonant recombination frequency is ε = 12.4, the static dielectric constant 

εst≈15.15, the effective electron mass is mel≈0.0265m, the averaged heavy hole mass is mh≈0.57m, 

and, according to the above indicated formulas, rex≈30 nm, and the exciton ground state binding  
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(a) T = 1.7 K (b) T = 10 K 

Fig. 1 The exciton radiative recombination rate  , calculated according to Eq. (7) for an InAs 

nanocluster, as a function of its radius R at different temperatures  

 

 

energy    6.12 hel
2
st

2
hel

4 mmmme   meV.  

Let us calculate the exciton radiative recombination rate according Eq. (7) for temperatures, 

corresponding to the thermal energy kBT smaller than the exciton ground state binding energy lest 

it be destructed by thermal fluctuations. Let us chose the nanocluster radius R grater than rex to 

avoid the exciton disruption by the confinement potential. The results are shown in Fig. 1.  

From it one can see that at T = 1.7K the exciton radiative lifetime (i.e., 1 ) increases by 

almost 6 times as the InAs nanocluster radius decreases from infinity to the exciton radius. At 

larger temperature T = 10 K (Fig. 1(b)) this effect still exists, but becomes less pronounced. So, 

these results allow to conclude that using nanoclusters of a narrow bandgap material with 

dimensions of order the Wannier-Mott exciton radius makes it possible to significantly increase the 

exciton radiative lifetime.  

 

 

4. Conclusions 
 

Upon the whole, in the present work by means of analytical and numerical investigation it is 

shown that the radiative recombination lifetime of Wannier-Mott excitons can be increased by 

several times by exciting them in nanoclusters of a narrow-badgap material inside a wide-bandgap 

one if the linear dimensions of such nanoclusters are of order the exciton radius.   
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