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Abstract.  The thermal buckling properties of double-walled carbon nanotubes (DWCNTs) are studied 
using nonlocal Timoshenko beam model, including the effects of transverse shear deformation and rotary 
inertia. The DWCNTs are considered as two nanotube shells coupled through the van der Waals interaction 
between them. The geometric nonlinearity is taken into account, which arises from the mid-plane stretching. 
Considering the small-scale effects, the governing equilibrium equations are derived and the critical 
buckling temperatures under uniform temperature rise are obtained. The results show that the critical 
buckling temperature can be overestimated by the local beam model if the nonlocal effect is overlooked for 
long nanotubes. In addition, the effect of shear deformation and rotary inertia on the buckling temperature is 
more obvious for the higher-order modes. The investigation of the thermal buckling properties of DWCNTs 
may be used as a useful reference for the application and the design of nanostructures in which DWCNTs act 
as basic elements. 
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1. Introduction 
 

Carbon nanotubes (CNTs) are among the most important nano- materials that have attracted 
attention of the scientific community due to their outstanding mechanical properties and wide 
potential applications in nanoengineering. To fully realize the potential application of carbon 
nanotubes, it is important to characterize the mechanical properties of these nanostructures as well 
as their material response. However as performing controlled experiments in nanoscale is difficult 
and expensive, most of researches have been mainly conducted by modelling and computational 
simulations. Indeed, with the difficulty for the controlled experiments at the nanometer scale, the 
numerical simulation has been performed widely. Two basically different approaches are available 
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for theoretical modelling of nanostructured materials: the atomistic approaches and the continuum 
mechanics. The former includes the classical molecular dynamics (TBMD) and density functional 
theory (DFT) (Iijima et al. 1996, Yakobson et al. 1997, Hernandez et al. 1998, Sanchez-Portal et 
al. 1999, Qian et al. 2002). These approaches are often computationally expensive, especially for 
large-scale CNTs with high number of walls. Hence, the continuum mechanics is increasingly 
being viewed as an alternative way of modelling materials at the nanometer scale. However, 
classical continuum mechanics theories are unable to take into account the small-size effects. The 
size effects are pronounced in nano-sized materials primarily due to the high surface to volume 
ratio. In this regard, the nonlocal elasticity theory proposed by Eringen et al. (1972, 1983, and 
2002) has been widely applied to achieve size-dependent governing equations by incorporating an 
internal characteristic length in the model. This nonlocal elasticity theory has been extensively 
applied to analyze the bending, buckling, vibration and wave propagation of beam-like elements in 
micro- or nanoelectromechanical devices (Peddieson et al. 2003, Lu et al. 2006, Wang and 
Varadan 2006, Reddy and Pang 2008, Murmu and Pradhan 2009a, 2009b, 2009c, Şimşek 2010, 
2011, Heireche et al. 2008a, 2008b, 2008c, Tounsi et al. 2008, Tounsi et al. 2009a, 2009b).  

Due to high aspect ratio of CNTs, they are more susceptible to buckling instability when 
subjected to compressive loads. Hence, besides the general mechanical properties of CNTs, 
buckling behavior of CNTs is important to forthcoming applications like probe microscopy. Sudak 
(2003) studied infinitesimal column buckling of carbon nanotubes (CNTs), incorporating the van 
der Waals (vdW) forces and small scale effect, and showed that the critical axial strain decreases 
compared with the results of classical beams. Reddy (2007) reformulated different nonlocal beam 
theories to evaluate the static bending, vibration, and buckling responses of nanobeams. Murmu 
and Pradhan (2008) carried out stability analysis of beam surrounded by elastic medium using 
nonlocal Euler–Bernoulli beam. Further, Murmu and Pradhan (2009a) used nonlocal elasticity and 
Timoshenko beam theory to investigate the stability response of single-walled carbon nanotubes 
(SWCNTs) embedded in an elastic medium. Senthilkumar et al. (2010) investigated the small-
scale effect on critical buckling load for SWCNTs based on Timoshenko beam theory using 
differential transformation method. Recently, Amara et al. (2010) studied the thermal effect on 
column buckling of MWNTs using the nonlocal beam model. To the best of the authors’ 
knowledge, the thermal buckling of DWCNTs using nonlocal Timoshenko beam model with the 
geometric nonlinearity has not been studied. 

The objective of the present paper is to develop, for the first time, a closed solution for the 
thermal buckling behavior of DWCNTs based on the nonlocal Timoshenko beam theory. The 
geometric nonlinearity is considered using von Karman’s strain– displacement relations. The 
Timoshenko beam results are obtained and compared with those obtained by Euler–Bernoulli 
beam. In addition, the shear effect clearly indicates the importance of applying shear deformation 
beam models for CNTs. The results reveal also that the nonlocal parameter has significant effect 
on the thermal buckling behavior of nano-sized carbon nanotubes. 
 
 
2. Governing equations 
 

According to the Timoshenko beam theory, the displacement field of any point in the beam 
writes 

)()(),( 0 xzxuzxu                                                       (1a) 
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)(),( 0 xwzxw                                                            (1b) 

where x  is the longitudinal coordinate measured from the left end of the beam, z  the coordinate 
measured from the mid-plane of the beam, w  the transverse displacement, u  the longitudinal 
displacement, )(0 xu  and )(0 xw  are the displacement components of a point located on the neutral 
axis and )(x  is the section normal vector rotation about the y-axis. The nonlinear von Karman 
strain–displacement relations are used as follows 
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where x  the normal strain, xz  the transverse shear strain. 
For the Timoshenko beam model with the thermal stress and using the principle of virtual 

displacements (Fung 1965), the following relation can be derived  
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where Q  is the shear force, M  the resultant bending moment, )(xq  is the van der Waals force 

between the inner and outer tubes, and tN  the thermal force which can be expressed as 




21

   


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Nt                                                              (5) 

where   is the thermal expansion coefficient, T  the temperature change, A  the cross area and   
the Poisson’s ratio. 

The bending moment and the shear force can be defined by 

      
A

xdAzM  ,  
A

xzdAQ                                                    (6) 

where x  is the normal stress, and xz  the transverse shear stress. 
As written, the governing buckling equations appear in the same form as the local Timoshenko 

beam theory, but it must be recognized that the bending moment and shear force expressions for 
the nonlocal beam theory are different due to the nonlocal constitutive relations as will be shown 
below. 

The constitutive equation of classical elasticity is an algebraic relationship between the stress 
and strain tensors while that of Eringen’s nonlocal elasticity involves spatial integrals which 
represent weighted averages of the contributions of strain tensors of all points in the body to the 
stress tensor at the given point (Eringen et al. 1972, 1983, and 2002). Though it is difficult 
mathematically to obtain the solution of nonlocal elasticity problems due to the spatial integrals in 
Eringen’s constitutive equations, these integral-partial constitutive differential equations can be 

3



 
 
 
 
 
 

Abdelouahed Tounsi et al. 

 

converted to equivalent differential constitutive equations under certain conditions. The simplified 
nonlocal constitutive equation for the normal stress and strain in a one-dimensional case is given 
by (Eringen 1983) 

x
x
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0 )(                                                      (7a) 
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where E  and G  are the Young’s and shear modulus, respectively. 2
0 )( ae  is a nonlocal 

parameter revealing the nanoscale effect on the response of CNTs, 0e  is a constant appropriate to 
each material and a  is an internal characteristic length (e.g. length of C–C bond, lattice spacing, 
granular distance). Arash and Wang (2012) showed that the value of the nonlocal parameter 
depends on the boundary conditions, chirality, mode shapes, number of walls, and the nature of 
motion. In the investigation of the nonlocal parameter effect, it is crucial to determine the 
magnitude of the parameter 0e  since it has a significant influence on the effect of small length 
scale. So far, no experiments have been conducted to predict the magnitude of 0e  for CNTs. In the 
open literature (Arash and Ansari 2010, Wang 2005, Wang and Wang 2007), it is suggested that 
the value of nonlocal parameter can be determined by using a comparison of dispersion curves 
from the nonlocal continuum mechanics and molecular dynamics simulation. It should be noted 
that according to the previous discussions about the values of the nonlocal parameter in detail, ae0  
is usually considered as the single scale coefficient which is smaller than 2.0 nm for nanostructures 
(Wang and Wang 2007). 

From relations (7a), (7b), (6), (2), and (3), the bending moment M  and the shear force Q  for 
the nonlocal model can be expressed as 
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where   is the form factor of shear depending on the shape of the cross section. The 
recommended value of  , the adjustment coefficient, is 9/10 for a circular shape of the cross area. 

Substituting Eqs. (8) into Eqs. (4) and eliminating   yield the following differential equation 
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The above equation is the equilibrium equation of a Timoshenko beam considering the non-local 
effects. 
 

2.1 Double-walled carbon nanotubes 
 
It is known that double – walled carbon nanotubes are distinguished from traditional elastic 

beam by their hollow two – layer structures and associated intertube van der Waals forces. The 
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thermal buckling load is the same for both tubes i.e. ttt NNN  21 . The Eq. (9) can be used to 
each of the inner and outer tubes of the double – walled carbon nanotubes. Assuming that the inner 
and outer tubes have the same thickness and effective material constants, we have 
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where subscripts 1 and 2 are used to denote the quantities associated with the inner and outer 
tubes, respectively, 12q  and 21q  denote the van der Waals pressure per unit axial length. 

The deflection of two tubes is coupled through the van der Waals force (Reulet et al. 2000). 
The van der Waals interaction potential, as a function of the interlayer spacing between two 
adjacent tubes, can be estimated by the Lennard – Jones model. The interlayer interaction potential 
between two adjacent tubes can be simply approximated by the potential obtained for two flat 
graphite monolayers, denoted by )(g , where   is the interlayer spacing (Girifalco and Lad 1956, 
Girifalco 1991). Since the interlayer spacing is equal or very close to an initial equilibrium 
spacing, the initial van der Waals force is zero for each of the tubes provided they deform 
coaxially. Thus, for small – amplitude sound waves, the van der Waals pressure should be a linear 
function of the difference of the deflections of the two adjacent layers at the point as follows 

  )( 2112 wwtcq                                                              (11a) 
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where t  the thickness of both the inner and outer nanotubes, and c  is the intertube interaction 
coefficient per unit length between two tubes, which can be estimated by (Sudak 2003) 
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where 1R  and 2R  are the radius of the inner and the outer tube, respectively. 
Let us assume the buckling modes as (Sears and Batra 2006, Batra 2007) 







 x

L

m
Aw


sin1  and  






 x

L

m
Bw


sin2                                      (13) 

The above equations satisfy the simply supported boundary conditions which are 
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Replacing Eq. (13) into Eq. (10), one can easily obtain 
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where 11K , 12K , 21K  and 22K  in Eq. (15) are defined as 
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For nontrivial solution, the determinant of the coefficient matrix in Eq. (15) must be zero. This 
gives the critical buckling temperature of the DWCNT in which the effects of the small scale and 
the van der Waals force between the inner and the outer tubes are shown.  

As a result, the non-dimensional critical temperature can be expressed as the following form   

crcr T
I

LA
T

2  
                                                         (17) 

 
 
3. Validity and applicability of continuum beam model for CNTs 
 

Applicability of continuum beam model for carbon nanotubes (CNTs) is examined by several 
authors (e.g. Wang and Hu (2005) and Harik (2001, 2002)). Harik (2001, 2002) reported ranges of 
applicability for the continuum beam model in the mechanics of carbon nanotubes and nanorods. 
Wang and Hu (2005) present a rigorous study, in which they check the validity of the beam model 
in studying the flexural waves, simulated by the molecular dynamics (MD), in a single – walled 
carbon nanotube. In this study, Wang and Hu (2005) observed that when the wave number is 
getting very large, the microstructure of the carbon nanotubes plays an important role in the 
flexural wave dispersion and significantly decreases the phase velocity of the flexural waves of 
high frequency.  

In the present study, the numerical results for critical buckling strains obtained from this 
continuum mechanics theory (using nonlocal Timoshenko beam model) are compared with those 
obtained from MD simulations and the Sanders shell theory (Silvestre et al. 2011). Since the MD 
simulations referenced herein consider the CNTs with fixed ends, we also consider the nonlocal 
Timoshenko beam model with fully clamped boundary conditions (Wang et al. 2006). In addition, 
CNT (5,5) is analyzed with a diameter 71.6d Å and CNT (7,7) with a diameter 40.9d Å, for 
different lengths. Both nanotubes are modelled using a thickness 66.0t  Å, Young’s modulus  
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Table 1 Comparison between critical buckling strains of CNT (5, 5) and CNT (7, 7) obtained from MD 
simulations, Sanders shell theory (SST) and the present nonlocal Timoshenko beam theory (TBT) 

L  (Å) d (Å) MD TBT SST 
16.09 6.71 0.08146 0.08216 0.08729 
21.04 6.71 0.07528 0.07460 0.08288 
28.46 6.71 0.06992 0.06302 0.07858 
28.29 9.40 0.06514 0.06542 0.06582 
40.59 9.40 0.04991 0.05763 0.05885 
52.88 9.40 0.04710 0.04962 0.05600 

 

 
Fig. 1 Comparison of critical buckling temperature of DWCNT with different length-to-diameter ratios 
          for different modes based on Euler beam and Timoshenko beam models ( 00 ae ) 

 
 

5.5E  TPa and Poisson’s ratio 19.0  (Yakobson et al. 1996). The lengths of CNTs used in 
the following table are extracted from the work done by Silvestre et al. (2011). The results from 
MD simulations, nonlocal Timoshenko beam and Sanders shell models are compared in Table 1. It 
is seen that the critical buckling strains are in good agreement as compared with the results 
obtained from MD simulations as well as Sanders shell theory. Based on the MD simulation 
results, the value of nonlocal constant is determined for CNTs based on an averaging process. The 
best match between MD simulations and nonlocal formulations is achieved for a nonlocal constant 
value of nm 54.00 ae  for CNT (5, 5) and nm 05.10 ae  for CNT (7, 7) with good accuracy (the 
error is less than 10%). 
 
 
4. Results and discussions 
 

In this section, numerical calculations for the thermal buckling properties of DWCNT are 
carried out. The material constants used in the calculation are the Young’s modulus 1E  TPa  
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Fig. 2 Critical buckling temperature of DWCNT with different nonlocal values for different modes 

based on Timoshenko beam model ( 20/ dL ) 
 

 
Fig. 3 Variations of critical buckling temperature of DWCNT with respect to the scale parameter for 

different length-to-diameter ratio with the number mode 1m  
 
 
with the effective thickness of single-walled carbon nanotubes taken to be t  = 0.258 nm. The 
Poisson’s ratio 3.0 , the shear modulus 4.0G  TPa, the shear coefficient 10/9  and the 
temperature expansion coefficient 6101.1   K-1 which is for the case of the high temperature 
(Amara et al. 2010, Yao and Han 2006). The inner diameter 7.01 d  nm and the outer diameter 

4.12 d  nm. 
The computational results of non-dimensional critical buckling temperature crT  of DWCNT 

are shown in Fig. 1. In this figure, we illustrate a comparison between the Euler beam model and 
Timoshenko beam model. It can be seen that the non-dimensional critical buckling temperature 
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increases with increasing the number mode and the length-to-diameter ratio dL / . The non-
dimensional critical buckling temperature calculated by Timoshenko beam model is lower than 
that obtained by Euler beam model and especially at higher buckling modes. This is because the 
presence of rotary inertia and shear deformation tends to make the nanotube less stiff. The effect of 
rotary inertia and shear deformation on the non-dimensional critical buckling temperature is 
significant as the value of the buckling mode becomes high.  

The effect of nonlocal parameter on the non-dimensional critical buckling temperature crT  of 
DWCNT is shown in Fig. 2. The parameter value of 00 ae  implies that the nonlocal effect is 
neglected. It can be seen that the effect of nonlocal parameter ae0  on the critical buckling 
temperature is significant, especially at higher-order modes. Increasing the nonlocal effect 
decreases the critical buckling temperature. 

Fig. 3 shows the variation of the non-dimensional critical buckling temperature versus the scale 
parameter ae0  for different values of the length-to-diameter ratio dL / . This investigation 
demonstrates that the non-dimensional critical buckling temperature decreases as scale parameter 
increases. This reduction in the critical buckling temperature is most pronounced when the carbon 
nanotube is short. 
 
 
5. Conclusions 
 

This paper presents closed-form solutions for the thermal buckling of double-walled carbon 
nanotubes within the context of the nonlocal elasticity model. The geometrical nonlinearity is 
modelled using von Karman’s assumptions. The influences of the scale parameter, the ratio of the 
length to the diameter, the transverse shear deformation and rotary inertia on the critical buckling 
temperature are discussed. According to the analysis, the following results were obtained:  

• The effects of rotary inertia and shear deformation on the critical buckling temperature of 
DWCNT increased with decreasing the length-to-diameter ratio, especially at higher-order modes.  

• Increasing the value of nonlocal parameter decreased the critical buckling temperature, 
especially at higher order modes. 
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