Silver (I)- Schifft-base complex intercalated layered double hydroxide with antimicrobial activity

Mary Jenisha Barnabas a, Surendran Parambadath b, Saravanan Nagappan c, Ildoo Chung d and Chang-Sik Ha a

Department of Polymer Science and Engineering, School of Chemical Engineering, Pusan National University, Geumjeong-gu, Busan, 46241, Republic of Korea

(Received December 26, 2018, Revised November 20, 2020, Accepted January 2, 2021)

Abstract. In this work, silver nitrate complexes of sulfanilamide-5-methyl-2-thiophene carboxaldehyde (SMTCA) ligand intercalated Zn/Al-layered double hydroxide [Ag-SMTCA-LDH] were synthesized for the potential application as an antimicrobial system. The SMTCA ligand was synthesized by reacting sulfanilamide and 5-methyl-2-thiophene carboxaldehyde in methanol and further complexation with silver nitrate metal ions [Ag-SMTCA]. The structural analyses of synthesized compounds confirmed an intercalation of Ag-SMTCA into Zn/Al-NO3-LDH by flake/restacking method. SMTCA, Ag-SMTCA and Ag-SMTCA-LDH were characterized by 1H nuclear magnetic resonance (1H NMR) spectroscopy, Fourier-transform infrared (FTIR), ultraviolet-visible (UV-Vis) spectrophotometer, scanning electron microscopy (SEM) and transmission electron microscopy (TEM), X-ray diffraction (XRD), and thermogravimetric analysis (TGA). It was found that Ag-SMTCA-LDH exhibited good antimicrobial activity against both gram-positive (Bacillus subtilis, [B. subtilis], Staphylococcus aureus, [S. aureus]) and gram-negative (Escherichia coli, [E. coli], Pseudomonas aeruginosa [P. aeruginosa]) bacteria as well as excellent antioxidant activity.

Keywords: Schiff-base complex; layered double hydroxide; silver; antimicrobial activity; antioxidant activity

1. Introduction

5-methyl-2-thiophene carboxaldehyde is a natural and hydrophilic antimicrobial compound for various applications such as pharmaceutical, food, and wood preservation (Harinath et al. 2013). Its vigorous odor and immense volatility, however, limit its diverse applications. Furthermore, sulfu drugs are referred to as the type of drugs that act as therapeutic and protective against several bacterial infections such as eye infection, influenza, meningitis, actinomics infections, urinary tract diseases, and have been used as model compounds to reveal the mechanisms for the action of drugs. In particular, sulfanilamide, the first drug among such sulfu drugs, has been found to operative consistently and selectively as preventive and therapeutic assistant against distinct diseases (Ganesh et al. 2016, Keshk et al. 2016, Barnabas et al. 2017).

Schiff base and its derivatives are utilized as insecticides and fungicides, as good flavoring agent for liquor and bouquet, as decomposition inhibition factor for ferrous mixture in corrosive fluids (Caboni et al. 2012, Ingale et al. 2015, Cohen et al. 2017). Schiff base ligands are treated as powerful ligands, because they are easily synthesized via a simple one-pot condensation of aldehydes and alcohol solvent containing primary amine (Buey et al. 1998). The biologically active metal complex is synthesized by using nitrogen and sulphur present in the ring system of heterocyclic compounds. Metal complexes of Schiff bases have various applications along with their antifungal, antiviral, and antibacterial actions. Metal complexes of Schiff base ligands are ubiquitous because of their effective synthesis, wide applications, and the accessibility of divergent structural modifications (Delahaye et al. 2010, Kursanlu et al. 2019).

On the other hand, layered double hydroxides (LDHs) are bidimensional solids with plenty of positive charge with their brucite like layers (Isa et al. 2013). LDHs have the structural formula, [M2+1-xM3+x(OH)2](Am-)x/m·nH2O, where M2+ or M 3+ are divalent or trivalent metal cations, respectively, A n- is an interlayer m-valent anion, and x ranges from 0.17 to 0.33. LDHs showed excellent metal adsorption behaviour from aqueous solution due to the presence of positive charges in the surface layer and high surface area (Barbosa et al. 2002). The mechanism behind LDHs is due to the positive charge reaction, which enables the hydroxide ions encompassed by the exterior of the LDH minerals in solution to form metal hydroxides.

Intercalation is a well-known methodology used for the insertion of various organic compounds into the interlayer of anionic clay or hydroxlate-like compounds, for potential
applications. In particular, recent studies focused on the poorly water-soluble drug intercalated LDHs attracted much interest (Marcato et al. 2013, Barnabas et al. 2017). In this sense, Schiff base complex-intercalated LDH was extensively investigated (Ukrainczyk et al. 1994, Zhang et al. 2005, Shi et al. 2010, Wang et al. 2013, Parida et al. 2016).

In addition, silver nanoparticles have high potential antibacterial activity against a variety of bacteria even at a very low concentration (Goss et al. 2003, Ray et al. 2007, Prabhu and Poulose 2012, Vanaja and Gurusamy 2012, Savic et al. 2016, Ganesh et al. 2016, Ding et al. 2017). Silver nanoparticles employed in a LDH matrix have an advantage in that the release of silver nanoparticles for longer periods is enhanced, avoiding toxicity to normal cells.

Taking all the aforementioned aspects into consideration, in this study, therefore, we aimed to synthesize functional Schiff base ligands using sulfanilamide and 5-methyl-2-thiophene carboxaldehyde and form their complexes with Ag(I), which were intercalated into Zn/Al-LDHs. We also investigated antimicrobial activities of the LDHs with Ag(I) complexed Schiff base ligands against either gram-positive or gram-negative bacteria’s as well as their antioxidant activities.

2. Experimental

2.1 Materials and Methods

Silver nitrate, aluminium(III) nitrate nonahydrate, zinc(II) nitrate hexahydrate, sulfanilamide, 5-methyl-2-thiophene carboxaldehyde, and sodium hydroxide (NaOH) were purchased from Sigma-Aldrich and used as received.

2.2 Synthesis of [Sulfanilamide-5-methyl-2-thiophene carboxaldehyde] (SMTCA)

5-Methyl-2-thiophene carboxaldehyde (2 mmol, 0.254 g) was taken in a 250 ml round flask and dissolved in 50 ml absolute methanol under stirring at 80 rpm. Similarly, sulfanilamide (2 mmol, 0.254 g) was dissolved in 50 ml absolute methanol, which was added to the above solution by drop-wise addition with stirring under reflux for 6 h at 60°C. The color of the solution was changed to yellow during stirring and the obtained solid precipitate was isolated. The material was filtered and washed with cold methanol several times and dried for overnight (see Scheme 1).

Scheme 1. Preparation of 5-methyl-2-thiophene carboxaldehyde-Sulfanilamide Schiff base ligand (SMTCA).

2.3 Synthesis of Ag-SMTCA complex

The hydrate metal complex was prepared by reacting 0.295 g (1.0 mmol) of AgNO₃ and 0.354 g (1 mmol) of the synthesized Schiff base ligand at a metal to ligand molar ratio of 1:2. The metal solution was added drop by drop to a hot solution of ligand (60°C) in methanol and refluxed further for 3 h. The reaction mixture was filtered, washed with methanol and dried at 50°C by using vacuum for 1 h. (see Scheme 2).

Scheme 2. Preparation of silver complexes of SMTCA ligand (Ag-SMTCA).

2.4 Synthesis of Zn-Al-LDH

Co-precipitation method was employed for the synthesis of Zn-Al-LDH according to the previous literature (Isa et al. 2013). Initially, a mixture of metal nitrate solution was prepared by mixing 0.5 M Zn²⁺ and 0.3 M Al³⁺ and then the pH of the solution was adjusted to pH 9-10 with addition of the required amount of 2 M NaOH. The obtained mixture was kept at 60°C for 24 h under stirring and cooled to room temperature. The white precipitate formed by this procedure was filtered, followed by washing with de-ionised water, and dried at 80°C for overnight. The pick-up material was ground smoothly into a fine powder.

2.5 Intercalation of metal complex into Zn-Al-LDH

Zn/Al-LDH (0.075 g) was added to 30 mmol formamide and stored for 24 h, which was then changed to a translucent
colloidal suspension in 24 h. Ag-SMTCA complex (0.4 g) in 25 ml methanol was added to the colloidal suspension, where the translucent suspension was immediately changed to cloudy one. Then the cloudy suspension was stirred hardily for 24 h, stored at 60°C for 48 h, and then cooled to room temperature. The resulted intercalated materials were designated as Ag-SMTCA-LDH (see Scheme 3).

2.6 Antimicrobial study

The in-vitro antimicrobial screening test of the Ag-SMTCA-LDH was done both for gram-positive B. subtilis, S. aureus and gram-negative E. coli, P. aeroginosa microorganisms. The compounds were stored to dry at room temperature and dissolved in dimethyl formamide (DMF). The sterilized nutrient agar (NA) medium was solidified on petri dishes. 100 μl of bacterial cultures (B. subtilis, S. aureus and E. coli, P. aeroginosa) were streaked on the surface of the solidified NA medium. Different concentrations (25, 50 and 100 μg/mL) of Ag-SMTCA-LDH solutions were prepared in DMF and loaded into a sterilized paper disk with 6 mm diameter. The bacterial cultures with samples were incubated for 24 h at 37°C in the incubation chamber (Khanye et al. 2011). Then inhibition zones (DIZ) appeared around the samples disk were measured in millimetre as antibacterial effect of Ag-SMTCA-LDH. Three times of measurement was averaged.

2.7 DPPH (2,2-diphenyl-1-picryl-hydrazyl-hydrate) radical scavenging analysis

The scavenging effect on DPPH radical was investigated by using different sample concentration according to the previous method (Pan et al. 2008); extract solution, 0.2 mL; 95% ethanol at various concentrations; 0.004% (w/v) of 8 mL stock solution of DPPH in ethanol (95%); Ag-SMTCA-LDH of five different concentrations (100, 200, 300, 400, 500 mg mL⁻¹); Evaluating UV-vis absorbance at 517 nm; Ascorbic acid for the act of positive control. The DPPH free radical scavenging action was determined by the following equation.

\[
\text{DPPH scavenging effect (\%) } = \left[\frac{(A_0 - A_t)}{A_0} \right] \times 100
\]

where \(A_0\) is the absorbance of the control and \(A_t\) is the absorbance of the sample. More details of the DPPH radical scavenging analysis are described in the literature (Khoo et al. 2014).

2.8 Characterization

Powder X-ray diffraction (XRD, Bruker AXN) was conducted using Ni-filtered CuKα radiation (λ = 0.15418 nm) at 40 kV and 40 mA in order to reveal the crystalline structure of the synthesized materials (Kong et al. 2010). The XRD patterns were collected in the wide-angle range from 10° to 60° 2θ. The 1H NMR (Bruker DSX 400) spectra were obtained to reveal the nature of ligand using a 4 mm zirconia rotor spinning at 6 kHz. 1H NMR spectra were recorded in deuterated dimethyl sulfoxide (DMSO-d6) with a small amount of tetramethylsilane (TMS) as an internal standard. Fourier transform infrared (FTIR, JASCO FTIR 4100) spectroscopy was used to identify the functional groups present in the materials using KBr pellets over the frequency range, 4000 – 400 cm⁻¹ with 2 cm⁻¹ resolution. Scanning electron microscopy (SEM, JEOL 6400) images were obtained after thin gold film coating to check the surface morphology at an acceleration voltage of 20 kV. Transmission electron microscopy (TEM, JEOL 6400) images were obtained at an accelerating voltage of 200 kV to check the morphology of samples in depth. Thermogravimetric analysis (TGA, Perkin Elmer Pyris Diamond) was done to check the thermal stability with the controlled heating rate (10°C min⁻¹) under nitrogen atmosphere. The ultraviolet (UV) absorption spectra of the samples were recorded for measuring the absorbance values to reveal the complex nature of ligand in depth as well as the antioxidant activity using a UV-visible spectrophotometer (U-2010, HITACHI Co.).
3. Results and discussion

3.1 Characterization of SMTCA, Ag-SMTCA, Zn/Al-LDH, and Ag-SMTCA-LDH

3.1.1 XRD analysis

Figs. 1(a) and (b) show the powder X-ray diffraction (XRD) patterns of SMTCA (Fig. 1(a)) and the metal complex (Ag-SMTCA, Fig. 1(b)). The free ligand clearly showed three sharp peaks at the 2θ positions of 14.4°, 18.5°, and 31.1°. The SMTCA ligand showed several weak crystalline peaks at 2θ position of 15.8°, 20.0°, 23.5°, 24.7°, 25.7°, 27.4°, 29.6°, 32.5°, 34.7°, 35.4°, 37.5°, 38.3°, 41.5°, 44.1°, and 44.8°. The obtained peaks illustrate the crystalline nature of the synthesized SMTCA ligand. The XRD pattern of the metal complex (Ag-SMTCA) showed almost similar peaks as that of SMTCA ligand as well as the four distinct diffraction peaks at 38.1°, 44.1°, and 47.8° that can be assigned as (111), (200), and (220) planes, respectively, of the fcc crystalline structure of Ag (Ji et al. 2015). It is seen that the peak intensities of Ag-SMTCA complex was increased as compared to that of SMTCA, meaning enhanced crystalline behavior of the metal complex (Fig. 1(b)) (Kursunlu et al. 2009).

In general, high crystallinity with a typical hydroxalate structure is observed for the Zn/Al-LDHs prepared by co-precipitation method, whereas a little lower degree of crystallinity is observed for the Zn-Al-LDHs when they are prepared by the reconstruction method (Marcato et al. 2013). The XRD pattern of Zn/Al-LDH (Fig. 1(c)) shows several sharp and intense peaks in the 2θ angles at 11.3°, 22.9°, 34.5°, 38.8°, 46.1°, 52.0°, and 55.5°, which are attributed to (003), (006), (015), (018), (110) and (113) planes of the typical well-crystallized hydroxalate-like LDH materials (Zhang et al. 2005, 2016, Zhao et al. 2012, Abderrazek et al. 2016, Yuan et al. 2017). The typical X-ray patterns of LDHs containing basal (003) reflections are related to the hydroxide layers of Zn/Al-LDHs (Cohen et al. 2017, Mishra et al. 2013). The XRD pattern of Ag/SMTCA-LDH nanocomposites showed sharp and weak crystalline peaks in the 2θ angles at 10.8°, 18.6°, 21.8°, 27.9°, 32.3°, 34.1°, 38.0°, 46.2°, 50.9°, 54.9°, 57.5°, and 58.7° (Fig. 1(d)), which exhibits the combined crystalline structure of both Ag-SMTCA and Zn/Al-LDH. It is interesting to note that the crystalline structure of Ag such as (111), (200), and (220) planes is noticeably observed for Ag-SMTCA-LDH (Ji et al. 2015), while it is not clearly observed for Ag-SMTCA if one compares Figs. 1(b) and (d). The result is due to the fact that 1:2 molar ratio of metal to ligand was used to prepare Ag-SMTCA, while large excess of Ag-SMTCA to Zn/Al-LDH (ca. 5 times based on weight %) was used to intercalate Zn/Al-LDH into the Ag-SMTCA. The 2θ values of (003) and (018) diffractions of Ag-SMTCA-LDH nanocomposites exhibited a small shift to lower angles when compared to those of Ag-SMTCA and Zn/Al-LDH, respectively, with the appearance of new peaks in addition to the disappearance of some peaks due to both Ag-SMTCA and Zn/Al-LDH, which were due to somewhat the intercalation of the Ag-SMTCA ligand into Zn/Al-LDH, acknowledging good agreement with those from literatures (Nocchetti et al. 2013, Noh et al. 2012).
Silver (I)-Schiff-base complex intercalated layered double hydroxide with antimicrobial activity

3.1.2 FTIR analysis

Fig. 2A(a) shows the FTIR spectra of (a) SMTCA and (b) Ag-SMTCA samples. The pure ligand exhibited the characteristic vibrational bands of -CH, C=C, C=N, and S=O groups (Fig. 2A(a)). The vibrational frequencies of the above functional moieties were persisted even after the complexation with silver nitrate ions (Fig. 2A(b)).

The FTIR spectrum (KBr) of SMTCA showed characteristic absorption peaks at 1690 cm⁻¹ (imino group) and 1320 cm⁻¹/1150 cm⁻¹ (sulfonyl group). The -CH stretching vibrations of the methyl group present in the SMTCA were also identified in the wavenumbers between 3000 and 2850 cm⁻¹ (Nunes et al., 2015). Furthermore, the FTIR spectrum of the metal complex showed new strong vibrating peaks around 445 cm⁻¹, proving the presence of metal-nitrogen (M-N) and metal-oxide (M-O) bonds in the Ag-SMTCA complex.

Fig. 2B(a) illustrates the FTIR spectrum of the Zn/Al-LDH sample. The 𝜈₃ vibration signal of CO₃²⁻ is observed at 1384 cm⁻¹. The stretching vibrations of hydroxyl groups and water in the surface and interlayer were observed with the broad band center at 3451 cm⁻¹. The absorption peak of O-H stretching in free water is observed usually at 3600 cm⁻¹, while the shift to a lower frequency in LDHs suggests the formation of hydrogen bonds between water in the interlayer and guest anions and/or with the layer hydroxide groups. The weak band at 1638 cm⁻¹ is due to a bending mode of water molecules. The presence of M-O and O-M-O groups can be also proved from the vibration bands at 446 and 672 cm⁻¹. The existence of the above spectral vibrations with decreased intensities in the spectrum in comparison to that before complexation revealed the presence of Ag-SMTCA complex in the interlayer cavity of Zn/Al-LDH (Fig. 2B(b)) This is the preliminary analytical evidence for the intercalation of the Ag-SMTCA complex into the Zn/Al-LDH gallery.

Fig. 3 ¹H NMR spectra of (a) SMTCA; and (b) Ag-SMTCA complex.
3.1.3 1H NMR spectra

In Fig. 3, the 1H NMR spectrum of SMTCA shows signals of aromatic and thiophenic protons at δ 7–8 ppm, imine protons at δ 8.7 ppm, and methyl protons at δ 3.4 ppm with the concurrent disappearance of signals of aldehyde protons at 9.8 ppm (Rani and Mohamad 2014). In Ag-SMTCA complexes, the signal from imine proton was also observed at δ 8.7 ppm, and the appearance of a new signal at δ 2.1 ppm are due to the presence of three proton integrals which are the characteristic of acetate metal coordination. In this way, the bidentate nature of ligand can be proved from the 1H NMR spectra (Table 1).

3.1.4 SEM and TEM analysis

The SEM and TEM images for the Zn/Al-LDH are illustrated in Figs. 4(a) and (b), respectively. The micrographs show a relatively narrow particle size distribution (50-500 nm) and aggregates of dense and non-porous plate-like structures, which is in accordance with an LDH particle. Furthermore, the crystal morphology of intercalated compounds was not significantly affected, as observed in the XRD patterns.

Similar morphology was observed in the TEM images of the Zn/Al-LDH with the plate-like structure and the size ranging from 30-500 nm (Cohen et al. 2017, Ray et al. 2007). This kind of plate-like structure was already reported elsewhere (Zhang et al. 2016, Abderrazek et al. 2016, Yuan et al. 2017). Figs. 4(c) and (d) present the SEM and TEM images of Ag-SMTCA-LDH, respectively. A plate-like morphology was noticed for the pristine Zn/Al-LDH, while a sheet-like morphology was observed after preparing intercalated Ag-SMTCA-LDH, whose average particle size was ca. 100 nm.

3.1.5 TGA curves

TGA curves of (a) Zn/Al-LDH and (b) Ag-SMTCA-LDH were presented in Fig. 5. For LDHs, the initial two step weight losses were observed due to physically adsorbed water at 30-100°C (2.37% mass loss) and the dihydroxylation of the brucite-like layers at 100-250°C (13.69% mass loss), respectively. The 24.99% mass loss around 250-500°C is attributed to the decomposition of nitrate anions. The complete decomposition of LDH can be observed with the last weight loss (500-800°C, 4.57% mass loss). The sharp degradation around 100°C is coming from

<table>
<thead>
<tr>
<th>Ligand/Complex</th>
<th>Thiophene proton</th>
<th>Imine proton</th>
<th>Methyl proton</th>
<th>Aldehyde proton</th>
<th>Acetate</th>
</tr>
</thead>
<tbody>
<tr>
<td>SMTCA</td>
<td>7.8</td>
<td>8.7</td>
<td>3.4</td>
<td>9.8</td>
<td>-</td>
</tr>
<tr>
<td>Ag-SMTCA</td>
<td>-</td>
<td>8.7</td>
<td>-</td>
<td>-</td>
<td>2.1</td>
</tr>
</tbody>
</table>

Table 1 1H NMR spectral data of ligand (SMTCA) with its (Ag-SMTCA) complexes (unit; ppm).

Fig. 4 SEM and TEM images of Zn/Al-LDH [(a) and (b)]; and Ag-SMTCA-LDH [(c) and (d)], respectively.

Fig. 5 TGA curves of (a) Zn/Al-LDH; and (b) Ag-SMTCA-LDH.
Silver (I)-Schiff-base complex intercalated layered double hydroxide with antimicrobial activity

Fig. 6 UV-vis spectra of (a) SMTCA; (b) Ag-SMTCA; (c) Zn/Al-LDH; and (d) Ag-SMTCA-LDH.

the loss of physically absorbed water and the weight loss was found to be 7%.

A gradual weight loss in between 100 and 350°C, which was predicted to 5%, is due to the elimination of crystal water and the metamorphism. On the other hand, the materials exhibited distinct weight loss in between 350 and 800°C, indicating the decomposition of organic complex from the intercalated cavity, followed by steady weight loss. The total organic functionality in both materials were estimated at 24 wt.% for Ag-SMTCA-LDH.

3.1.6 UV-vis spectroscopic analysis

In Fig. 6, two distinct regions were observed for the ligand complex and intercalated LDH on UV-vis spectra in the range of 250-450 nm. In general, the electronic intraligand transitions are detected in the range of 250-400 nm and the d-d transition is encountered at higher wavelength. The spectrum of the complex mostly shows the important bands of the free ligand with minor modification of band wavelength and intensity as well as the appearance of new bands at higher wavelengths. The three bands in the region of 250-400 nm for SMTCA and the complex are attributed to the σ → σ*, π → π* or n → π* transitions, respectively. (Ran et al. 2011) Furthermore, the weak broad band in the region of 400-450 nm for Ag(I) complex is due to the 4A2 (F) → 4T1(F) transition, suggesting tetrahedral geometry for the silver nitrate complex. The UV-vis spectrum of the Ag-SMTCA-LDH complex that is similar to the free complex suggests that the complex has been shielded by LDH during intercalation, since LDH shows high reflectance in visible region (Shebl et al. 2010).

3.1.7 Antibacterial properties

Antibacterial properties of materials are quite important for end uses in industrial applications such as food packaging and drug delivery system, and so on (Sharaby 2007, Rani and Mohamad 2014, Rubino et al. 2017). In this sense, it is well known that both Zn and Zn/Al-LDH as well as Ag and Ag-LDH exhibit excellent antibacterial activities (Dibrov et al. 2002, Noh et al. 2012, Nocchetti et al. 2013, Mishra et al. 2013, Rasouli et al. 2017, Peng et al. 2018). The Schiff base complex was also known to show good antibacterial activity (Shebl et al. 2010, Ahmadi and Amani 2012, Jamuna et al. 2012, Wang and Zhang 2012, Khoo et al. 2014, Nunes et al. 2015, Ingale et al. 2015, Salehi et al. 2016, Zanvettor et al. 2016, Wang et al. 2016, Ozbek et al. 2017). In the present work, we focused only the antibacterial activity of the final resultant material, Ag-SMTCA-LDH composites, since good antibacterial activities of other materials such as Schiff base complex, Ag-Schiff base complex, and LDH are already well documented as mentioned above. The antimicrobial activity of the prepared Ag-SMTCA-LDH composites against Bacillus subtilis, Staphylococcus aureus (gram-positive) and Escherichia coli, Pseudomonas aeruginosa (gram-
negative) was tested using the Muller-Hinton agar and nutrient broth for the comparison with the synthesized pristine complexes, ligands, and LDHs. Details of the measurement for the antimicrobial susceptibility are described in the literature (Uddin et al. 2014). The perceptivity of the bacterial strains can be confirmed from the diameter of the inhibition zone (DIZ).

In general, compounds are active if clear zones around the wells exist. The DIZ can be predicted in millimeter scale.

Fig. 7 represents the formation of inhibition zones of the synthesized materials, which shows the antibacterial activity of (a) *B. subtilis*, (b) *E. coli*, (c) *S. aureus*, and (d) *P. aeruginosa* at various concentrations (25, 50, 100 µg/mL) of Ag-SMTCA-LDH. Though it is not clear to see the differences in the images, where the names of different bacterial strains and different concentrations in numbers are marked in the petri dishes, all the antibacterial activities in Fig. 7 are listed numerically in Table 2. Table 2 clearly compares the antibacterial activity of the combined metal oxides against both bacteria of *B. subtilis, S. aureus, E. coli*, and *P. aeruginosa*. Excellent antibacterial activity was observed for all the samples against both gram-positive and gram-negative bacteria. The results indicate that the complex intercalated LDH materials possess good antibacterial activity. The activities of gentamycin were reported as a positive control, whereas LDH has been used as a negative control against the bacteria. Around 10 mm and 12 mm DIZ were observed for the Ag-SMTCA-LDH and nanoparticles, respectively, by agar dilution method. We encountered that the decrease of nanoparticles size in the mixed metal oxide would facilitate the enhanced antibacterial activity. In most cases, a compound containing higher specific surface area can show better antibacterial activity. The composites retain antimicrobial activity of Ag-SMTCA-LDH.

The mechanism of inhibitory action of Ag on microorganisms is partially known. Since Ag have positive charge, it will attach with the negative charged microorganisms by the electrostatic attraction in the cell wall membrane (Dibrov et al. 2002). The Ag closely associated with cell wall of bacteria by forming ‘pits’ finally affects the permeability, and causes cell death (Sondi and Salopek-Sondi 2004). Zn/Al-LDH also exhibits excellent antibacterial activity, while Ag incorporated Zn/Al-LDH shows much enhanced antibacterial activity due to the synergistic effects of Ag and Zn/Al-LDH (Mishra et al. 2013). As expected, therefore, the Ag-SMTCA-LDH showed excellent antimicrobial activity against *S. aureus* and *P. aeruginosa* and inactive against the former strains.

Table 2 Antimicrobial activity of Ag-SMTCA-LDH.

<table>
<thead>
<tr>
<th>Material</th>
<th>Concentration (µg/mL)</th>
<th>B. subtilis</th>
<th>S. aureus</th>
<th>P. aeruginosa</th>
<th>E. coli</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ag-SMTCA-LDH</td>
<td>25</td>
<td>10</td>
<td>0</td>
<td>16</td>
<td>12</td>
</tr>
<tr>
<td></td>
<td>50</td>
<td>11</td>
<td>10</td>
<td>17</td>
<td>13</td>
</tr>
<tr>
<td></td>
<td>100</td>
<td>12</td>
<td>12</td>
<td>19</td>
<td>14</td>
</tr>
<tr>
<td>Gentamycin</td>
<td>-</td>
<td>26</td>
<td>28</td>
<td>30</td>
<td>28</td>
</tr>
</tbody>
</table>

In general, *S. aureus* and *P. aeruginosa* are more deadly acute infections which actively react or interact with biofilms, leading to intractable chronic infections (Wang and Zhang 2012). It should be noteworthy that our synthesized materials showed excellent antibacterial activity to various bacterial strains, hinting the excellent applicability of our material as an antibacterial agent.

3.1.8 Antioxidant activity by DPPH assay

Thermal and oxidative degradation of materials usually occurs in the presence of heat and UV radiation such as in sunlight. Thus, various functional additives such as antioxidants are required to improve the thermo-oxidative stability and function of materials (Pan et al. 2008, Zhang et al. 2017). In particular, intercalated LDH nanohybrid system constructed using host–guest chemistry has been employed as multifunctional nanofiller to fabricate highly durable polymer composites with good antioxidant activity (Lonkar et al. 2013b). The antioxidant hybrid compounds were reported by intercalating low molecular weight antioxidant species into the interlayer spacing of LDHs. In comparison with organic antioxidants, intercalated antioxidants was found to have three merits: (1) the host–guest interaction effectively enhances the thermal stability of the antioxidant species; (2) the host–guest interaction prevents the migration of the antioxidant species from the LDH; (3) the inorganic–organic interface between the intercalated antioxidant and the matrix material limits the migration of the antioxidant from the matrix material (Lonkar et al. 2013a, b, Feng et al. 2014). For example, it was reported that some LDH including Zn/Al-LDH exhibits good antioxidant activity when an antioxidant agent such as 3-(3,5-di-tert-butyl-4-hydroxyphenyl)propionate(DBHP) or carnosine was intercalated (Lacikova et al. 2009, Kong et al. 2010, Lonkar et al. 2013a, b, Zhang et al. 2017). In addition, Schiff base metal complex was also reported to show good antioxidant activity (Harinath et al. 2013). Inspired by all those previous works, we checked the antioxidant effect of LDH, g-SMTCA, and Ag-SMTCA-LDH.

Fig. 8 illustrates dose-response bar charts for the DPPH scavenging activity of LDH, Ag-SMTCA and Ag-SMTCA-LDH, showing that all the materials showed potential free radical scavengers with powerful inhibition activity in a dose-dependent manner. Nonetheless, the inhibition of the DPPH radical scavenging activity of Ag-SMTCA-LDH increases rapidly with increasing concentration as compared with Ag-SMTCA. Interestingly, the Ag-SMTCA-LDH exhibited a maximum scavenging efficacy of 91.45% (within 30 min) at 500 mg mL⁻¹, which was much higher.
than that of Ag-SMTCA (85.25%). Such higher scavenging activity for DPPH is in part due to more oxidant being incorporated onto the surface of Ag-SMTCA-LDH with increasing Ag amounts owing to their high surface area. Therefore, the absorption reduction is minimal at lower concentration of Ag-SMTCA-LDH. It should be noteworthy that the intercalations of Ag-SMTCA in the LDH galleries acquire excellent antioxidant activity.

4. Conclusions

In summary, we demonstrated that the Schiff base ligand derived from sulfanilamide and 5-methyl-2-thiophene carboxaldehyde and the complexation with silver nitrate ions were successfully synthesized and confirmed the intercalation of the complex into the interlayer cavities of Zn/Al-LDH. The detailed characterization of Zn/Al-LDH confirmed the successful development of highly layered plate-like LDH nanoparticles. Further, the homoegeneous Schiff base ligand was synthesized, and the complexation was carried out at mild reaction conditions. The structural analysis confirmed the successful intercalation of Ag-SMTCA-LDH antioxidant into clay galleries. The incorporation of Ag-SMTCA-LDH into LDH layers also maintained the overall morphology. The Schiff base complex intercalated into the layered structure of LDH (Ag-SMTCA-LDH) exhibited excellent activities against both gram-negative *E. coli* and *P. aeruginosa*, and gram-positive *S. aureus* and *B. subtilis* bacteria’s. In addition, we successfully incorporated an active antioxidant compounds into LDH galleries, which demonstrated that our method is a feasible approach in order to increase the physicochemical stability and longevity. It is assumed that the fine tuning of this active agent by intercalation and de-intercalation with different LDHs, basicity, and charge densities can make the use of the material for wider applications.

Acknowledgments

The work was supported by the National Research Foundation of Korea (NRF) Grant funded by the Ministry of Science and ICT, Korea (NRF-2017R1A2B3012961) and Brain Korea 21 Plus Program (4199990414196)).

References

