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Abstract.  The objective of the present paper is to investigate the bending and free vibration behavior of 

functionally graded material (FGM) sandwich rectangular plates using an efficient and simple higher order shear 

deformation theory. Unlike other theories, there are only four unknown functions involved, as compared to five in 

other shear deformation theories. The most interesting feature of this theory is that it does not require the shear 

correction factor. Two common types of FGM sandwich plates are considered, namely, the sandwich with the FGM 

facesheet and the homogeneous core and the sandwich with the homogeneous facesheet and the FGM core. The 

equation of motion for the FGM sandwich plates is obtained based on Hamilton’s principle. The closed form 

solutions are obtained by using the Navier technique. A static and free vibration frequency is given for different 

material properties. The accuracy of the present solutions is verified by comparing the obtained results with the 

existing solutions. 
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1. Introduction 

 
In recent years, the application of functionally graded (FG) sandwich structures in aerospace, 

marine, civil construction is growing rapidly due to their high strength-to-weight ratio. There exist 

two common types: sandwich structures with FG core and sandwich structures with FG skins. 

With the wide application of FG sandwich structures, understanding static and vibration of FG 

sandwich structures becomes an important task. Several researchers have developed different 

computational models and carried out static and dynamic analyses of FGM structures. Zenkour 

(2005) studied the static response of FGM sandwich plates subjected to sinusoidal load employing 

different plate theories. Li et al. (2008) studied free vibration of FGM sandwich rectangular plates 

with simply supported and clamped edges using the Ritz method. Zenkour and Alghamdi (2008) 

developed a unified shear deformable plate and performed thermoelastic bending analysis of FGM 
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sandwich plate. Amirani et al. (2009) used the element free Galerkin method for free vibration 

analysis of sandwich beam with FG core. Naves et al. (2012) studied the static analysis of 

functionally graded sandwich plates according to a hyperbolic theory considering Zig-Zag and 

warping effects. Akbaş (2015a) studied the wave propagation of a functionally graded beam in 

thermal environments. Steel and Composite Structures. Akbaş (2015b) investigated the free 

vibration and bending of functionally graded beams resting on elastic foundation. Akbaş (2015c) 

analyze the post-buckling of axially functionally graded three-dimensional beams. Thai et al. 

(2016) presented a new simple shear and normal deformations theory for static, dynamic and 

buckling analyses of functionally graded material (FGM) isotropic and sandwich plates. Belarbi et 

al. (2016) developed a 2D isoparametric finite element model based on the layerwise approach for 

the Bending analysis of sandwich plates. Akbaş (2017a) developed the vibration and static analysis 

of functionally graded porous plates. Akbaş (2017b) used the generalized differantial quadrature 

method for the stability of a non-homogenous porous plate. Akbaş (2017c) analyze the nonlinear 

static of functionally graded porous beams under thermal effect. Akbaş (2017d) analyze the forced 

vibration of functionally graded nanobeams. Mirza et al. (2018) studied the effect of boundary 

conditions on the non-linear forced vibration response of isotropic plates. Akbaş (2018) analyze 

the Geometrically nonlinear of functionally graded porous beams. Nazargah and Meshkani (2018) 

used an efficient partial mixed finite element model for static and free vibration analyses of FGM 

plates rested on two-parameter elastic foundations. Balubaid et al. (2019) developed the free 

vibration investigation of FG nanoscale plate using nonlocal two variables integral refined plate 

theory. Belbachir et al. (2019) analyze the bending of anti-symmetric cross-ply laminated plates 

under nonlinear thermal and mechanical loadings. Sahla et al. (2019) studied the free vibration 

analysis of angle-ply laminated composite and soft core sandwich plates. Draiche et al. (2019) 

analyze the static of laminated reinforced composite plates using a simple first-order shear 

deformation theory. Abualnour et al. (2019) used a new four variable trigonometric refined plate 

theory the the thermomechanical analysis of antisymmetric laminated reinforced composite plates. 

Alimirzaei et al. (2019) investigated the nonlinear analysis of viscoelastic micro-composite beam 

with geometrical imperfection using FEM: MSGT electro-magneto-elastic bending, buckling and 

vibration solutions. Berghouti et al. (2019) analyze the vibration of nonlocal porous nanobeams 

made of functionally graded material. Chaabane et al. (2019) developed an analytical study of 

bending and free vibration responses of functionally graded beams resting on elastic foundation. 

Medani et al. (2019) studied the static and dynamic behavior of (FG-CNT) reinforced porous 

sandwich plate. Semmah et al. (2019) analyze the thermal buckling of SWBNNT on Winkler 

foundation by non local FSDT. Draoui et al. (2019) used the FSDT for the static and dynamic 

behavior of nanotubes-reinforced sandwich plates. Tlidji et al. (2019) analyze the vibration of 

different material distributions of functionally graded microbeam. Adda Bedia et al. (2019) used a 

new Hyperbolic Two-Unknown Beam Model for bending and buckling analysis of a nonlocal 

strain gradient nanobeams. Bourada et al. (2019) investigated the dynamic of porous functionally 

graded beam using a sinusoidal shear deformation theory. Boussoula et al. (2020) used a simple 

nth-order shear deformation theory for thermomechanical bending analysis of different 

configurations of FG sandwich plates. Meksi et al. (2019) developed an analytical solution for 

bending, buckling and vibration responses of FGM sandwich plates. Hellal et al. (2019) analyze 

the dynamic and stability of functionally graded material sandwich plates in hygro-thermal 

environment using a simple higher shear deformation theory. Hussain et al. (2019) studied the 

nonlocal effect on the vibration of armchair and zigzag SWCNTs with bending rigidity. Karami et 

al. (2019a) used the Galerkin’s approach for buckling analysis of functionally graded anisotropic 
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nanoplates/different boundary conditions. Karami et al. (2019b) studied the wave propagation of 

functionally graded anisotropic nanoplates resting on Winkler-Pasternak foundation. Karami et al. 

(2019c) investigated the resonance behavior of functionally graded polymer composite nanoplates 

reinforced with grapheme nanoplatelets. Karami et al. (2019d) analyze the exact wave propagation 

of triclinic material using three dimensional bi-Helmholtz gradient plate model. Karami et al. 

(2019e) studied the pre stressed functionally graded anisotropic nanoshell in magnetic field. 

Kaddari et al. (2020) studied the structural behaviour of functionally graded porous plates on 

elastic foundation using a new quasi-3D model: bending and free vibration analysis. In addition, in 

recent years, many researchers have dealt the effect of stretching the thickness on FGM structures 

(Addou et al. 2019, Boutaleb et al. 2019, Khiloun et al. 2019, Zarga et al. 2019, Boulefrakh et al. 

2019, Boukhlif et al. 2019, Mahmoudi et al. 2019, Zaoui et al. 2019). 

Recently, Cunedioglu (2015) analyze the free vibration analysis of edge cracked symmetric 

functionally graded sandwich beams. Arani et al. (2017) studied theoretical investigation on 

vibration frequency of sandwich plate with PFRC core and piezomagnetic face sheets under 

variable in-plane load. Abdelaziz et al. (2017) used an efficient hyperbolic shear deformation 

theory for bending, buckling and free vibration of FGM sandwich plates with various boundary 

conditions. Shashank and Pradyumna (2018) used a higher-order layerwise theory for functionally 

graded sandwich plates. Abazid et al. (2018) used a novel shear and normal deformation theory for 

hygrothermal bending response of FGM Sandwich plates on Pasternak elastic foundation. Ahmadi 

(2018) studied the three-dimensional and free-edge hygrothermal stresses in general long 

Sandwich plates. Dash et al. (2018) investigated modal of FG sandwich doubly curved shell 

structure. Sudhakar et al. (2018) developed of super convergent euler finite elements for the 

analysis of sandwich beams with soft core. Dash et al. (2018) developed modal of FG sandwich 

doubly curved shell structure. Kolahdouzan et al. (2018) analyze of buckling and free vibration of 

FG-CNTRC-micro sandwich plate. Akbaş (2019) studied the forced vibration analysis of 

functionally graded sandwich deep beams. Mahmoud et al. (2019) analyze the thermodynamic 

behavior of functionally graded sandwich plates resting on different elastic foundation and with 

various boundary conditions. 

In the present study, the bending and free vibration of the FGM sandwich plates is investigated 

using the four-variable refined plate theory. The most interesting feature of this theory is that it 

does not require the shear correction factor. Two common types of FGM sandwich plates, namely, 

the sandwich with the FGM facesheet and the homogeneous core and the sandwich with the 

homogeneous facesheet and the FGM core, are considered. The present theory satisfies 

equilibrium conditions at the top and bottom faces of the sandwich plate. The Navier solution is 

used to obtain the closed form solutions for simply supported FGM sandwich plates. Numerical 

examples are presented to verify the accuracy of the present theory. Final conclusions are 

presented in Section 6. 
 

 

2. Problem formulation 
 

2.1 Geometrical configuration 
 

Consider the case of a rectangular FGM sandwich plate with the uniform thickness composed 

of three microscopically heterogeneous layers referring to rectangular coordinates (x, y, z) as 

shown in Fig. 1. The top and bottom faces of the plate are at z = ±h/2, and the edges of the plate 

are parallel to axes x and y. The plate is subjected to a transverse mechanical load applied at the 

315



 

 

 

 

 

 

Nafissa Zouatnia and Lazreg Hadji 

 

Fig. 1 Geometry of the rectangular FGM sandwich plate with uniform thickness in rectangular 

Cartesian coordinates 

 

 

  

Fig. 2 Sandwich plate configurations: (a) Sandwich plate with FGM facesheets and homogenous 

core (Type A); (b) Sandwich plate with homogenous facesheets and FGM core (Type B) 

 

 

top of the plate. 

The sandwich plate is composed of three elastic layers, namely, Layer 1, Layer 2, and Layer 3 

from bottom to top of the plate. The vertical ordinates of the bottom, the two interfaces, and the 

top are denoted by 𝛿0 = −ℎ/2, 𝛿1, 𝛿2, and h4 = h/2, respectively. For brevity, the ratio of the 

thicknes 𝛿3 = +ℎ/2 of each layer from bottom to top is denoted by the combination of three 

numbers, i.e., “1-0-1”, “2-1-2” and so on. As shown in Fig. 2, Types A and B are considered in the 

present study, i.e., the FGM facesheet and the homogeneous core and the homogeneous facesheet 

and the FGM core. 
 

2.2 Rule of mixture 
 

In the present study, material properties are estimated according to the rule of mixture. For 

Type A FGM sandwich plates, the effective material property like Young’s modulus 𝐸(𝑖), and 

mass density 𝜌(𝑖) for any ith layer is given as 
 

𝑃𝑒𝑓𝑓
(𝑖)
= 𝑃𝑐 + (𝑃𝑚 − 𝑃𝑐)𝜆

(𝑖) (1) 

 

where Pm and Pc are material properties of pure metallic and ceramic constituents, respectively. 

𝜆(𝑖) (i = 1, 2, 3) is the volume fraction of the metallic constituent for the ith layer of Type A FGM 

sandwich plate. The value of 𝜆(𝑖) lies between 0 and 1 and the variation of the same is given by 
 

𝜆(1) = (
𝑧 − 𝛿0
𝛿1 − 𝛿0

) ,          𝑧 ∈ [𝛿0, 𝛿1] (2a) 
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                  𝜆(2) = 1,          𝑧 ∈ [𝛿1, 𝛿2] (2b) 

 

 𝜆(3) = (
𝑧 − 𝛿3
𝛿2 − 𝛿3

) ,          𝑧 ∈ [𝛿2, 𝛿3] (2c) 

 

For Type B FGM sandwich plate, the effective material properties 𝐸(𝑖), 𝜌(𝑖) are obtained as 
 

               𝜆(1) = 0,          𝑧 ∈ [𝛿0, 𝛿1] (3a) 

 

𝜆(2) = (
𝑧 − 𝛿0
𝛿1 − 𝛿0

) ,          𝑧 ∈ [𝛿1, 𝛿2] (3b) 

 

                𝜆(3) = 1,          𝑧 ∈ [𝛿2, 𝛿3] (3c) 
 

2.3 Basic assumptions 
 

The assumptions of the present theory are as follows: 
 

– The displacements are small in comparison with the plate thickness. Therefore, the strains 

involved are infinitesimal. 

– The transverse displacement 𝑤 includes two components of bending 𝑤𝑏, and shear 𝑤𝑠. 
These components are functions of coordinates 𝑥, 𝑦 and time 𝑡 only. 

 

𝑤(𝑥, 𝑦, 𝑧, 𝑡) = 𝑤𝑏(𝑥, 𝑦, 𝑡) + 𝑤𝑠(𝑥, 𝑦, 𝑡) (4) 
 

The transverse normal stress𝜎𝑧is negligible in comparison with in-plane stresses 𝜎𝑥 and 𝜎𝑦. 

– The axial displacement 𝑢 in x-direction and 𝑣 in the y-direction, consists of extension, 

bending, and shear components. 
 

𝑢 = 𝑢0 + 𝑢𝑏 + 𝑢𝑠,          𝑣 = 𝑣0 + 𝑣𝑏 + 𝑣𝑠 (5) 
 

– The bending component 𝑢𝑏 and 𝑣𝑏 are assumed to be similar to the displacements given 

by the classical plate theory. Therefore, the expression for 𝑢𝑏 and 𝑣𝑏 can be given as 
 

𝑢𝑏 = −𝑧
𝜕𝑤𝑏
𝜕𝑥

,          𝑣𝑏 = −𝑧
𝜕𝑤𝑏
𝜕𝑦

 (6) 

 

– The shear components 𝑢𝑠 and 𝑣𝑠 gives rise, in conjunction with 𝑤𝑠, to the hyperbolic 

variation of shear strains 𝛾𝑥𝑧 ,  𝛾𝑦𝑧  and hence to shear stresses 𝜏𝑥𝑧 , 𝜏𝑦𝑧  through the 

thickness of the plate in such a way that shear stresses 𝜏𝑥𝑧, 𝜏𝑦𝑧 are zero at the top and 

bottom faces of the plate. Consequently, the expression for 𝑢𝑠 and 𝑣𝑠 can be given as 
 

𝑢𝑠 = −𝑓(𝑧)
𝜕𝑤𝑠
𝜕𝑥

,          𝑣𝑠 = −𝑓(𝑧)
𝜕𝑤𝑠
𝜕𝑦

 (7) 

 

where 
 

𝑓(𝑧) = 𝑧 −
ℎ

𝜋
𝑠𝑖𝑛 (

𝜋𝑧

ℎ
) (8) 
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2.4 Kinematics and constitutive equations 
 

Based on the assumptions made in the preceding section, the displacement field can be 

obtained using Eqs. (4)-(8) as 
 

𝑢(𝑥, 𝑦, 𝑧) = 𝑢0(𝑥, 𝑦, 𝑡) − 𝑧
𝜕𝑤𝑏
𝜕𝑥

− 𝑓(𝑧)
𝜕𝑤𝑠
𝜕𝑥

 

𝑣(𝑥, 𝑦, 𝑧) = 𝑣0(𝑥, 𝑦, 𝑡) − 𝑧
𝜕𝑤𝑏
𝜕𝑦

− 𝑓(𝑧)
𝜕𝑤𝑠
𝜕𝑦

 

𝑤(𝑥, 𝑦, 𝑧) = 𝑤𝑏(𝑥, 𝑦) + 𝑤𝑠(𝑥, 𝑦) 

(9) 

 

The strains associated with the displacements in Eq. (9) are 
 

𝜀𝑥 = 𝜀𝑥
0 + 𝑧𝑛𝑠 𝑘𝑥

𝑏 + 𝑓(𝑧𝑛𝑠) 𝑘𝑥
𝑠  

𝜀𝑦 = 𝜀𝑦
0 + 𝑧𝑛𝑠 𝑘𝑦

𝑏 + 𝑓(𝑧𝑛𝑠) 𝑘𝑦
𝑠  

𝛾𝑦𝑧 = 𝑔(𝑧𝑛𝑠) 𝛾𝑦𝑧
𝑠  

𝛾𝑥𝑧 = 𝑔(𝑧𝑛𝑠) 𝛾𝑥𝑧
𝑠  

𝜀𝑧 = 0 

(10) 

 

where 
 

𝜀𝑥
0 =

𝜕𝑢0
𝜕𝑥

,          𝑘𝑥
𝑏 = −

𝜕2𝑤𝑏
𝜕𝑥2

,          𝑘𝑥
𝑠 = −

𝜕2𝑤𝑠
𝜕𝑥2

, 

𝜀𝑦
0 =

𝜕𝑣0
𝜕𝑥

,          𝑘𝑦
𝑏 = −

𝜕2𝑤𝑏
𝜕𝑦2

,          𝑘𝑦
𝑠 = −

𝜕2𝑤𝑠
𝜕𝑦2

, 

𝛾𝑦𝑧
𝑠 =

𝜕𝑤𝑠
𝜕𝑥

,          𝛾𝑥𝑧
𝑠 =

𝜕𝑤𝑠
𝜕𝑥

,          𝑔(𝑧) = 1 − 𝑓’(𝑧),          𝑓’(𝑧) =
𝑑𝑓(𝑧)

𝑑𝑧
 

(11) 

 

For elastic and isotropic FGMs, the constitutive relations can be written as 
 

{
 
 

 
 
𝜎𝑥
𝜎𝑦
𝜏𝑦𝑧
𝜏𝑥𝑧
𝜏𝑥𝑦}

 
 

 
 
(𝑛)

=

[
 
 
 
 
𝑄11 𝑄12 0 0 0
𝑄12 𝑄22 0 0 0
0 0 𝑄44 0 0
0 0 0 𝑄55 0
0 0 0 0 𝑄66]

 
 
 
 
(𝑛)

{
 
 

 
 
𝜀𝑥
𝜀𝑦
𝛾𝑦𝑧
𝛾𝑥𝑧
𝛾𝑥𝑦}
 
 

 
 
(𝑛)

 (12) 

 

where 
 

𝑄11(𝑧) =
𝐸(𝑧)

(1 − 𝜈2)
,         𝑄12(𝑧) = 𝜈𝑄11(𝑧) (13) 

 

and 
 

𝑄44(𝑧) = 𝑄55(𝑧) = 𝑄66(𝑧) =
𝐸(𝑧)

2(1 + 𝜈)
 (14) 

 

2.5 Governing equations 
 

Using Hamilton’s energy principle derives the equation of motion of the FG plate 
 

∫ (𝛿 𝑈 + 𝛿 𝑉 − 𝛿 𝑇)𝑑𝑡
𝑇

0

= 0 (15) 
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where 𝛿 𝑈 is the variation of strain energy; 𝛿 𝑉 is the variation of work done by external forces; 

and 𝛿 𝑇 is the variation of kinetic energy. The variation of strain energy is calculated by 

 

𝛿 𝑈 = ∫ ∫ [𝜎𝑥𝛿 𝜀𝑥 + 𝜎𝑦𝛿 𝜀𝑦 + 𝜏𝑥𝑦𝛿 𝛾𝑥𝑦 + 𝜏𝑦𝑧𝛿 𝛾𝑦𝑧 + 𝜏𝑥𝑧𝛿 𝛾𝑥𝑧]𝑑𝑧𝑑𝛺

ℎ
2

−
ℎ
2

𝛺

 

        = ∫ [𝑁𝑥𝛿 𝜀𝑥
0 + 𝑁𝑦𝛿 𝜀𝑦

0 + 𝑁𝑥𝑦𝛿 𝜀𝑥𝑦
0 +𝑀𝑥

𝑏𝛿 𝑘𝑥
𝑏 +𝑀𝑦

𝑏𝛿 𝑘𝑦
𝑏 +𝑀𝑥𝑦

𝑏 𝛿 𝑘𝑥𝑦
𝑏 +𝑀𝑥

𝑠𝛿 𝑘𝑥
𝑠

𝛺

 

                    +𝑀𝑦
𝑠𝛿 𝑘𝑦

𝑠 +𝑀𝑥𝑦
𝑠 𝛿 𝑘𝑥𝑦

𝑠 + 𝑆𝑦𝑧
𝑠 𝛿 𝛾𝑦𝑧

𝑠 + 𝑆𝑥𝑧
𝑠 𝛿 𝛾𝑥𝑧

𝑠 ] 𝑑𝛺 

(16) 

 

where 𝛺 is the top surface and 𝑁, 𝑀, and 𝑆 are stress resultants defined by 
 

{

𝑁𝑥, 𝑁𝑦, 𝑁𝑥𝑦

𝑀𝑥
𝑏, 𝑀𝑦

𝑏, 𝑀𝑥𝑦
𝑏

𝑀𝑥
𝑠, 𝑀𝑦

𝑠, 𝑀𝑥𝑦
𝑠

} = ∑∫ (𝜎𝑥, 𝜎𝑦, 𝜏𝑥𝑦)
(𝑛)
{
1
𝑧

𝑓(𝑧)
} 𝑑𝑧

ℎ𝑛+1

ℎ𝑛

3

𝑛=1

 (17a) 

 

(𝑆𝑥𝑧
𝑠 , 𝑆𝑦𝑧

𝑠 ) = ∑∫ (𝜏𝑥𝑧, 𝜏𝑦𝑧)
(𝑛)
𝑔(𝑧)𝑑𝑧

ℎ𝑛+1

ℎ𝑛

3

𝑛=1

 (17b) 

 

Where ℎ𝑛+1 and ℎ𝑛 are the top and bottom z-coordinates of the nth layer. 

The variation of work done by external forces can be expressed as 
 

𝛿 𝑉 = −∫𝑞(𝛿 𝑤𝑏 + 𝛿 𝑤𝑏) 𝑑𝛺
𝛺

 (18) 

 

where 𝑞 is the transverse load. The variation of kinetic energy can be written as 
 

𝛿 𝑇 = ∫ ∫[𝑢̇𝛿 𝑢̇ + 𝑣̇𝛿 𝑣̇ + 𝑤̇𝛿 𝑤̇] 𝜌(𝑧) 
𝛺

ℎ
2

−
ℎ
2

𝑑𝛺 𝑑𝑧 

        = ∫{𝐼0[𝑢̇0𝛿𝑢̇0 + 𝑣̇0𝛿𝑣̇0 + (𝑤̇𝑏 + 𝑤̇𝑠)(𝛿𝑤̇𝑏 + 𝛿𝑤̇𝑠)]
𝐴

 

            −𝐼1 (𝑢̇0
𝜕𝛿𝑤̇𝑏
𝜕𝑥

+
𝜕𝑤̇𝑏
𝜕𝑥

𝛿 𝑢̇0 + 𝑣̇0
𝜕𝛿𝑤̇𝑏
𝜕𝑦

+
𝜕𝑤̇𝑏
𝜕𝑦

𝛿 𝑣̇0) 

            −𝐽1 (𝑢̇0
𝜕𝛿𝑤̇𝑠
𝜕𝑥

+
𝜕𝑤̇𝑠
𝜕𝑥

𝛿 𝑢̇0 + 𝑣̇0
𝜕𝛿𝑤̇𝑠
𝜕𝑦

+
𝜕𝑤̇𝑠
𝜕𝑦

𝛿 𝑣̇0) 

            +𝐼2 (
𝜕𝑤̇𝑏
𝜕𝑥

𝜕𝛿 𝑤̇𝑏
𝜕𝑥

+
𝜕𝑤̇𝑏
𝜕𝑦

𝜕𝛿 𝑤̇𝑏
𝜕𝑦

) + 𝐾2 (
𝜕𝑤̇𝑠
𝜕𝑥

𝜕𝛿 𝑤̇𝑠
𝜕𝑥

+
𝜕𝑤̇𝑠
𝜕𝑦

𝜕𝛿 𝑤̇𝑠
𝜕𝑦

) 

            +𝐽2 (
𝜕𝑤̇𝑏
𝜕𝑥

𝜕𝛿 𝑤̇𝑠
𝜕𝑥

+
𝜕𝑤̇𝑠
𝜕𝑥

𝜕𝛿 𝑤̇𝑏
𝜕𝑥

+
𝜕𝑤̇𝑏
𝜕𝑦

𝜕𝛿 𝑤̇𝑠
𝜕𝑦

+
𝜕𝑤̇𝑠
𝜕𝑦

𝜕𝛿 𝑤̇𝑏
𝜕𝑦

)} 𝑑𝛺 

(19) 

 

Where dot-superscript convention indicates the differentiation with respect to the time variable 

𝑡; and (𝐼0, 𝐼1, 𝐽1, 𝐼2, 𝐽2, 𝐾2) are mass inertias defined as 
 

(𝐼0, 𝐼1, 𝐽1, 𝐼2, 𝐽2, 𝐾2) = ∑∫ (1, 𝑧, 𝑓, 𝑧2, 𝑧 𝑓, 𝑓2)𝜌(𝑧)𝑑𝑧
ℎ𝑛+1

ℎ𝑛

3

𝑛=1

 (20) 
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Substituting the expressions for 𝛿 𝑈, 𝛿 𝑉, and 𝛿 𝑇 from Eqs. (16), (18), and (19) into Eq. (15) 

and integrating by parts, and collecting the coefficients of 𝛿 𝑢0, 𝛿 𝑣0, 𝛿 𝑤𝑏, and 𝛿 𝑤𝑠 , one 

obtains the following equations of motion 
 

𝛿 𝑢0:   
𝜕𝑁𝑥
𝜕𝑥

+
𝜕𝑁𝑥𝑦
𝜕𝑦

= 𝐼0𝑢̈0 − 𝐼1
𝜕𝑤̈𝑏
𝜕𝑥

− 𝐽1
𝜕𝑤̈𝑠
𝜕𝑥

 (21a) 

 

𝛿 𝑣0:   
𝜕𝑁𝑥𝑦
𝜕𝑥

+
𝜕𝑁𝑦
𝜕𝑦

= 𝐼0𝑣̈0 − 𝐼1
𝜕𝑤̈𝑏
𝜕𝑦

− 𝐽1
𝜕𝑤̈𝑠
𝜕𝑦

 (21b) 

 

𝛿 𝑤𝑏:   
𝜕2𝑀𝑥

𝑏

𝜕𝑥2
+ 2

𝜕2𝑀𝑥𝑦
𝑏

𝜕𝑥𝜕𝑦
+
𝜕2𝑀𝑦

𝑏

𝜕𝑦2
+ 𝑞 

             = 𝐼0(𝑤̈𝑏 + 𝑤̈𝑠) + 𝐼1 (
𝜕𝑢̈0
𝜕𝑥

+
𝜕𝑣̈0
𝜕𝑦
) − 𝐼2𝛻

2𝑤̈𝑏 − 𝐽2𝛻
2𝑤̈𝑠 

(21c) 

 

𝛿 𝑤𝑠:   
𝜕2𝑀𝑥

𝑠

𝜕𝑥2
+ 2

𝜕2𝑀𝑥𝑦
𝑠

𝜕𝑥𝜕𝑦
+
𝜕2𝑀𝑦

𝑠

𝜕𝑦2
+
𝜕𝑆𝑥𝑧

𝑠

𝜕𝑥
+
𝜕𝑆𝑦𝑧

𝑠

𝜕𝑦
+ 𝑞 

             = 𝐼0(𝑤̈𝑏 + 𝑤̈𝑠) + 𝐽1 (
𝜕𝑢̈0
𝜕𝑥

+
𝜕𝑣̈0
𝜕𝑦
) − 𝐽2𝛻

2𝑤̈𝑏 − 𝐾2𝛻
2𝑤̈𝑠 

(21d) 

 

Substituting Eq. (12) into Eq. (17) and integrating through the thickness of the plate, the stress 

resultants are given as 
 

{
𝑁
𝑀𝑏

𝑀𝑠
} = [

𝐴 0 𝐵𝑠

0 𝐷 𝐷𝑠

𝐵𝑠 𝐷𝑠 𝐻𝑠
] {
𝜀
𝑘𝑏

𝑘𝑠
} ,     𝑆 = 𝐴𝑠𝛾 (22) 

 

where 
 

𝑁 = {𝑁𝑥, 𝑁𝑦, 𝑁𝑥𝑦}
𝑡
,   𝑀𝑏 = {𝑀𝑥

𝑏, 𝑀𝑦
𝑏, 𝑀𝑥𝑦

𝑏 }
𝑡
,   𝑀𝑠 = {𝑀𝑥

𝑠, 𝑀𝑦
𝑠, 𝑀𝑥𝑦

𝑠 }
𝑡
, (23a) 

 

𝜀 = {𝜀𝑥
0, 𝜀𝑦

0, 𝛾𝑥𝑦
0 }

𝑡
,     𝑘𝑏 = {𝑘𝑥

𝑏, 𝑘𝑦
𝑏, 𝑘𝑥𝑦

𝑏 }
𝑡
,     𝑘𝑠 = {𝑘𝑥

𝑠 , 𝑘𝑦
𝑠 , 𝑘𝑥𝑦

𝑠 }
𝑡
, (23b) 

 

𝐴 = [

𝐴11 𝐴12 0
𝐴12 𝐴22 0
0 0 𝐴66

] ,   𝐴 = [

𝐵11 𝐵12 0
𝐵12 𝐵22 0
0 0 𝐵66

] ,   𝐷 = [

𝐷11 𝐷12 0
𝐷12 𝐷22 0
0 0 𝐷66

], (23c) 

 

𝐵𝑠 = [

𝐵11
𝑠 𝐵12

𝑠 0

𝐵12
𝑠 𝐵22

𝑠 0

0 0 𝐵66
𝑠
],   𝐷𝑠 = [

𝐷11
𝑠 𝐷12

𝑠 0

𝐷12
𝑠 𝐷22

𝑠 0

0 0 𝐷66
𝑠
],   𝐻𝑠 = [

𝐻11
𝑠 𝐻12

𝑠 0

𝐻12
𝑠 𝐻22

𝑠 0

0 0 𝐻66
𝑠
], (23d) 

 

𝑆 = {𝑆𝑥𝑧
𝑠 , 𝑆𝑦𝑧

𝑠 }
𝑡
,       𝛾 = {𝛾𝑥𝑧, 𝛾𝑦𝑧}

𝑡
,       𝐴𝑠 = [

𝐴44
𝑠 0

0 𝐴55
𝑠 ], (23e) 

 

The stiffness coefficients 𝐴𝑖𝑗 and 𝐷𝑖𝑗, etc., are defined as 
 

{

𝐴11 𝐵11 𝐷11 𝐵11
𝑠 𝐷11

𝑠 𝐻11
𝑠

𝐴12 𝐵12 𝐷12 𝐵12
𝑠 𝐷12

𝑠 𝐻12
𝑠

𝐴66 𝐵66 𝐷66 𝐵66
𝑠 𝐷66

𝑠 𝐻66
𝑠
} = ∑∫ 𝑄11

(𝑛)(1, 𝑧, 𝑧2, 𝑓(𝑧), 𝑧 𝑓(𝑧), 𝑓2(𝑧)) {

1
𝜈(𝑛)

1 − 𝜈(𝑛)

2

}𝑑𝑧
ℎ𝑛+1

ℎ𝑛

3

𝑛=1

 (24a) 
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(𝐴22, 𝐵22, 𝐷22, 𝐵22
𝑠 , 𝐷22

𝑠 , 𝐻22
𝑠 ) = (𝐴11, 𝐵11, 𝐷11, 𝐵11

𝑠 , 𝐷11
𝑠 , 𝐻11

𝑠 ) (24b) 

 

𝐴44
𝑠 = 𝐴55

𝑠 =∑∫
𝐸(𝑧)

2(1 + 𝜈)
[𝑔(𝑧)]2𝑑𝑧

ℎ𝑛+1

ℎ𝑛

3

𝑛=1

 (24c) 

 

By substituting Eq. (22) into Eq. (21), the equations of motion can be expressed in terms of 

displacements (𝛿 𝑢0, 𝛿 𝑣0, 𝛿 𝑤𝑏, 𝛿 𝑤𝑠) as 

 

𝐴11
𝜕2𝑢0
𝜕𝑥2

+ 𝐴66
𝜕2𝑢0
𝜕𝑦2

+ (𝐴12 + 𝐴66)
𝜕2𝑣0
𝜕𝑥𝜕𝑦

𝐵11
𝜕3𝑤𝑏
𝜕𝑥3

 

−(𝐵12 + 2𝐵66)
𝜕3𝑤𝑏
𝜕𝑥𝜕𝑦2

− (𝐵12
𝑠 + 2𝐵66

𝑠 )
𝜕3𝑤𝑠
𝜕𝑥𝜕𝑦2

− 𝐵11
𝑠
𝜕3𝑤𝑠
𝜕𝑥3

 

= 𝐼0𝑢̈0 − 𝐼1
𝜕𝑤̈𝑏
𝜕𝑥

− 𝐽1
𝜕𝑤̈𝑠
𝜕𝑥

 

(25a) 

 

𝐴22
𝜕2𝑣0
𝜕𝑦2

+ 𝐴66
𝜕2𝑣0
𝜕𝑥2

+ (𝐴12 + 𝐴66)
𝜕2𝑢0
𝜕𝑥𝜕𝑦

 

−B22
𝜕3𝑤𝑏
𝜕𝑦3

− (𝐵12
𝑠 + 2𝐵66

𝑠 )
𝜕3𝑤𝑠
𝜕𝑥2𝜕𝑦

− 𝐵22
𝑠
𝜕3𝑤𝑠
𝜕𝑦3

 

= 𝐼0𝑣̈0 − 𝐼1
𝜕𝑤̈𝑏
𝜕𝑦

− 𝐽1
𝜕𝑤̈𝑠
𝜕𝑦

, 

(25b) 

 

𝐵11
𝜕3𝑢0
𝜕𝑥3

+ (𝐵12 + 2𝐵66)
𝜕3𝑢0
𝜕𝑥𝑦2

+ (𝐵12 + 2𝐵66)
𝜕3𝑣0
𝜕𝑥2𝑦

+ 𝐵22
𝜕3𝑣0
𝜕𝑦3

 

−𝐷11
𝜕4𝑤𝑏
𝜕𝑥4

− 2(𝐷12 + 2𝐷66)
𝜕4𝑤𝑏
𝜕𝑥2𝜕𝑦2

 − 𝐷22
𝜕4𝑤𝑏
𝜕𝑦4

− 𝐷11
𝑠
𝜕4𝑤𝑠
𝜕𝑥4

 

−2(𝐷12
𝑠 + 2𝐷66

𝑠 )
𝜕4𝑤𝑠
𝜕𝑥2𝜕𝑦2

 − 𝐷22
𝑠
𝜕4𝑤𝑠
𝜕𝑦4

+ 𝑞 

= 𝐼0(𝑤̈𝑏 + 𝑤̈𝑠) + 𝐼1 (
𝜕𝑢̈0
𝜕𝑥

+
𝜕𝑣̈0
𝜕𝑦
) − 𝐼2𝛻

2𝑤̈𝑏 − 𝐽2𝛻
2𝑤̈𝑠 

(25c) 

 

𝐵11
𝑠
𝜕3𝑢0
𝜕𝑥3

+ (𝐵12
𝑠 + 2𝐵66

𝑠 )
𝜕3𝑢0
𝜕𝑥𝜕𝑦2

+ (𝐵12
𝑠 + 2𝐵66

𝑠 )
𝜕3𝑣0
𝜕𝑥2𝜕𝑦

+ 𝐵22
𝑠
𝜕3𝑣0
𝜕𝑦3

 

−𝐷11
𝑠
𝜕4𝑤𝑏
𝜕𝑥4

 − 2(𝐷12
𝑠 + 2𝐷66

𝑠 )
𝜕4𝑤𝑏
𝜕𝑥2𝜕𝑦2

− 𝐷22
𝑠
𝜕4𝑤𝑏
𝜕𝑦4

− 𝐻11
𝑠
𝜕4𝑤𝑠
𝜕𝑥4

 

−2(𝐻12
𝑠 + 2𝐻66

𝑠 )
𝜕4𝑤𝑠
𝜕𝑥2𝜕𝑦2

− 𝐻22
𝑠
𝜕4𝑤𝑠
𝜕𝑦4

+ 𝐴55
𝑠
𝜕2𝑤𝑠
𝜕𝑥2

 + 𝐴44
𝑠
𝜕2𝑤𝑠
𝜕𝑦2

+ 𝑞 

= 𝐼0(𝑤̈𝑏 + 𝑤̈𝑠) + 𝐽1 (
𝜕𝑢̈0
𝜕𝑥

+
𝜕𝑣̈0
𝜕𝑦
) − 𝐽2𝛻

2𝑤̈𝑏 − 𝐾2𝛻
2𝑤̈𝑠 

(25d) 

 

2.6 Navier solution for simply supported rectangular sandwich plates 
 

Rectangular plates are generally classified according to the type of support used. Here, we are 

concerned with the exact solutions of Eq. (25) for a simply supported FG sandwich plate. Based on 

the Navier approach, the solutions are assumed as 
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{

𝑢0
𝑣0
𝑤𝑏
𝑤𝑠

} = ∑∑

{
 
 

 
 𝑈𝑚𝑛𝑒

𝑖𝜔 𝑡 𝑐𝑜𝑠( 𝜆 𝑥) 𝑠𝑖𝑛( 𝜇 𝑦)

𝑉𝑚𝑛𝑒
𝑖𝜔 𝑡 𝑠𝑖𝑛( 𝜆 𝑥) 𝑐𝑜𝑠( 𝜇 𝑦)

𝑊𝑏𝑚𝑛𝑒
𝑖𝜔 𝑡 𝑠𝑖𝑛( 𝜆 𝑥) 𝑠𝑖𝑛( 𝜇 𝑦)

𝑊𝑠𝑚𝑛𝑒
𝑖𝜔 𝑡 𝑠𝑖𝑛( 𝜆 𝑥) 𝑠𝑖𝑛( 𝜇 𝑦)}

 
 

 
 ∞

𝑛=1

∞

𝑚=1

 (26) 

 

where 𝑈𝑚𝑛 , 𝑉𝑚𝑛 , 𝑊𝑏𝑚𝑛  and 𝑊𝑠𝑚𝑛  are arbitrary parameters to be determined, 𝜔  is the 

eigenfrequency associated with (𝑚,𝑛)th eigenmode, and 𝜆 = 𝑚𝜋/𝑎 and 𝜇 = 𝑛𝜋/𝑏. 

The transverse load 𝑞 is also expanded in the double-Fourier sine series as 
 

𝑞(𝑥, 𝑦) = ∑∑𝑞𝑚𝑛 𝑠𝑖𝑛( 𝜆 𝑥) 𝑠𝑖𝑛( 𝜇 𝑦)

∞

𝑛=1

∞

𝑚=1

 (27) 

 

For the case of a sinusoidally distributed load, we have 
 

𝑚 = 𝑛 = 1          and          𝑞11 = 𝑞0 (28) 

 

where 𝑞0 represents the intensity of the load at the plate centre. 

Substituting Eqs. (26) and (27) into Eq. (25), the analytical solutions can be obtained from 

 

([

𝑎11 𝑎12 𝑎13 𝑎14
𝑎12 𝑎22 𝑎23 𝑎24
𝑎13 𝑎23 𝑎33 𝑎34
𝑎14 𝑎24 𝑎34 𝑎44

] − 𝜔2 [

𝑚11 𝑚12 𝑚13 𝑚14

𝑚12 𝑚22 𝑚23 𝑚24

𝑚13 𝑚23 𝑚33 𝑚34

𝑚14 𝑚24 𝑚34 𝑚44

]){

𝑈𝑚𝑛
𝑉𝑚𝑛
𝑊𝑏𝑚𝑛

𝑊𝑠𝑚𝑛

} = {

0
0
𝑞𝑚𝑛
𝑞𝑚𝑛

} (29) 

 

in which 
 

𝑎11 = 𝐴11𝜆
2 + 𝐴66𝜇

2 
𝑎12 = 𝜆 𝜇 (𝐴12 + 𝐴66) 
𝑎13 = −𝜆 [𝐵11𝜆

2 + (𝐵12 + 2𝐵66)𝜇
2] 

𝑎14 = −𝜆 [𝐵11
𝑠 𝜆2 + (𝐵12

𝑠 + 2𝐵66
𝑠 )𝜇2] 

𝑎22 = 𝐴66𝜆
2 + 𝐴22𝜇

2 
𝑎23 = −𝜇 [(𝐵12 + 2𝐵66)𝜆

2 + 𝐵22𝜇
2] 

𝑎24 = −𝜇 [(𝐵12
𝑠 + 2𝐵66

𝑠 )𝜆2 + 𝐵22
𝑠 𝜇2] 

𝑎33 = 𝐷11𝜆
4 + 2(𝐷12 + 2𝐷66)𝜆

2𝜇2 + 𝐷22𝜇
4 

𝑎34 = 𝐷11
𝑠 𝜆4 + 2(𝐷12

𝑠 + 2𝐷66
𝑠 )𝜆2 𝜇 2 + 𝐷22

𝑠  𝜇 4 
𝑎44 = 𝐻11

𝑠 𝜆4 + 2(𝐻11
𝑠 + 2𝐻66

𝑠 )𝜆2𝜇2 + 𝐻22
𝑠 𝜇4 − 𝐴55

𝑠 𝜆2 − 𝐴44
𝑠 𝜇2 

𝑚11 = 𝑚22 = −𝐼0,    𝑚13 = 𝜆𝐼1,     𝑚14 = 𝜆𝐽1,     𝑚23 = 𝜇𝐼1 

𝑚24 = 𝜇𝐽1,     𝑚33 = −(𝐼0 + 𝐼2(𝜆
2 + 𝜇2)), 

𝑚34 = −(𝐼0 + 𝐽2(𝜆
2 + 𝜇2)),     𝑚44 = −(𝐼0 + 𝐾2(𝜆

2 + 𝜇2)), 

(30) 

 

 

3. Results and discussion 
 

In this study, static and dynamic analysis of simply supported FGM sandwich plates by the 

present refined plate theory is suggested for investigation. Navier solutions for bending and free 

vibration analysis of FGM sandwich plates are presented by solving Eq. (29). A wide range of 

convergence and comparison studies are taken up in order to evaluate the accuracy of the 

formulation. Parametric studies are then carried out to investigate the effects of different geometric 
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parameters on the static and free vibration behaviors of FGM sandwich plates and the same are 

discussed in subsequent sections. 
 

3.1 Static analysis of FGM sandwich plates 
 

Displacement and stresses obtained from the present formulation are presented for simply 

supported square (𝑎/𝑏 = 1) Type A and Type B FGM sandwich plates subjected to a sinusoidal 

transverse mechanical load 𝑃𝑧 = 𝑝0 𝑠𝑖𝑛 (
𝜋𝑥

𝑎
) 𝑠𝑖𝑛 (

𝜋𝑦

𝑏
) applied at the top surface of the plate. 

 

3.1.1 Sandwich plate with FGM facesheets (Type A) 
Static analysis of FGM sandwich plate of Type A is discussed here. Unless mentioned 

otherwise, The top and bottom facesheets of the sandwich are assumed to be made of FGM with 

alumina at the upper surface and aluminum at the lower surface of the top facesheet and the core 

of the sandwich is made of pure metal i.e., aluminum and plate is symmetric about x-axis. The 

elastic properties of aluminum (Al) are given by 𝐸𝑚 = 70 𝐺𝑃𝑎, 𝜌𝑚 = 2707 𝑘𝑔/𝑚3and 𝜈𝑚 =
0.3 and the same for alumina (Al2O3) are 𝐸𝑐 = 380 𝐺𝑃𝑎, 𝜌𝑐 = 3800 𝑘𝑔/𝑚

3and 𝜈𝑐 = 0.3. 

Numerical results are presented in terms of non-dimensional stresses and deflection. The 

various nondimensional parameters used are 
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3
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(31) 

 

Where 𝐸0 = 1 𝐺𝑃𝑎. Table 1 presents non-dimensional displacement and stresses for a 2-1-2 

FGM sandwich plate obtained by present refined plate theory with the results of Shashank and 

Pradyumna (2018) and Neves et al. (2012). In this comparison study, the upper surface of top layer 

is made of metal (Aluminum) and bottom surface of same is made of ceramic (Zirconia, ZrO2 

having 𝐸𝑐 = 151 𝐺𝑃𝑎, 𝜈𝑐 = 0.3), the core of the sandwich is made of ceramic and the plate is 

symmetric about 𝑥 axis. It is observed from Table 1 that the results obtained using present theory 

is in good agreement with those of Shashank and Pradyumna (2018) and Naves et al. (2012) for 

transverse displacement 𝑤 as well as for in-plane 𝜎𝑥𝑥 and transverse shear stresses 𝜏𝑥𝑧. 

Next comparison of non-dimensional in-plane stresses 𝜎𝑥𝑥 (
𝑎

2
,
𝑏

2
,
𝑧

ℎ
), 𝜎𝑦𝑦 (

𝑎

2
,
𝑏

2
,
𝑧

ℎ
) and shear 

stress 𝜏𝑥𝑦 (0,0,
𝑧

ℎ
) through the thickness of the sandwich plate are shown in Figs. 3-5, repectively 

 

 

Table 1 Non-dimensional transverse displacement and stresses of 2-1-2 sandwich plate 

with FGM facesheets (p = 1, a/h = 10) 

Theory 𝑤̄ 𝜎̄𝑥𝑥 𝜏̄𝑥𝑧 

Present 0.3062 1.4634 0.2777 

Shashank and Pradyumna (2018) 0.3058 1.4806 0.2791 

Naves et al. (2012) 0.3090 1.4742 0.2744 
 

323



 

 

 

 

 

 

Nafissa Zouatnia and Lazreg Hadji 

 

Fig. 3 Comparison of 𝜎̄𝑥𝑥 for a simply supported 2-1-2 sandwich square plate with FGM 

facesheets (a/h = 10) 
 

 

 

Fig. 4 Comparison of 𝜎̄𝑦𝑦 for a simply supported 2-1-2 sandwich square plate with FGM 

facesheets (a/h = 10) 
 

 

 

Fig. 5 Comparison of 𝜏𝑥𝑦 for a simply supported 2-1-2 sandwich square plate with FGM 

facesheets (a/h = 10) 
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Fig. 6 Variation of 𝜎̄𝑥𝑥 through the thickness for a simply supported 1-3-1 sandwich square 

plate of Type A (a/h = 10) 
 

 

 

Fig. 7 Variation of 𝜎̄𝑦𝑦 through the thickness for a simply supported 1-3-1 sandwich square 

plate of Type A (a/h = 10) 
 

 

 

Fig. 8 Variation of 𝜏𝑥𝑦 through the thickness for a simply supported 1-3-1 sandwich square 

plate of Type A (a/h = 10) 
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for a 2-1-2 sandwich plate with FGM facesheets for volume fraction index (p) of 0.2 and 2. 

Material properties and FGM sandwich plate configuration are assumed to be same as considered 

in previous example. The stresses are tensile at the top surface and compressive at the bottom 

surface. 

The variation of in-plane stresses 𝜎𝑥𝑥, 𝜎𝑦𝑦 and 𝜏𝑥𝑦 through the thickness of 1-3-1 Type A 

Al-Al2O3 FGM sandwich plate are presented in Figs. 6-8, respectively for three different volume 

fraction index of p = 0.2, 2 and 10. As observed from Figs. 6-8, there is a gradual variation of 

stresses for a volume fraction index of p = 0.2, whereas for p = 10, a sharp kink is observed at the 

interface. The reason for the kink in the variation of stresses is attributed to the variation of 

material properties along the thickness of the sandwich. For the sandwich considered in this study, 

a volume fraction index of p = 0.2 makes both top and bottom facesheets rich in ceramic 

constituent and the core is also made of same material and hence, there is a gradual variation of 

stresses along the thickness. For p = 10, FGM facesheets are rich in metal and the core is made of 

pure ceramic a mismatch of properties at the interface is leading to a sudden change of stresses, 

which is clearly indicated in Figs. 6-8. 

 

3.1.2 Sandwich with FGM core (Type B) 
After analyzing sandwich plate with FGM facesheets, displacement and stresses of sandwich 

plate with homogenous facesheets and FGM core (Type B) are studied. The plate is subjected to 

sinusoidal transverse mechanical load 𝑃𝑧 = 𝑝0 𝑠𝑖𝑛 (
𝜋𝑥

𝑎
) 𝑠𝑖𝑛 (

𝜋𝑦

𝑏
)applied at the top surface of the 

plate. The sandwich plate has an FGM core made of Al-Al2O3. The top facesheet of the plate is 

made of alumina (Al2O3) and the bottom facesheet is considered to be made of aluminum (Al). 

First, the accuracy of the present formulation is evaluated by carrying out static analysis for a 1-8-

1 Type B FGM sandwich plate. The transverse displacement and stresses are obtained for a 1-8-1 

Type B FGM sandwich plate. The following non-dimensional parameters are used for transverse 

displacement and stresses. 
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(32) 

 

Tables 2 and 3 present non-dimensional transverse displacement and stresses for FGM 

sandwich plate obtained by present refined theory. It is observed from Tables 2 and 3 that the 

results obtained by the present theory match well with those of Shashank and Pradyumna (2018), 

Brischetto (2009), Carrera et al. (2011) and Neves et al. (2012) for 𝑎/ℎ ratios of 4, 10 and 100 

and for two values of volume fraction index of 1 and 10 considered here. 

Figs. 9-12 show the plots of variation of in-plane stresses 𝜎𝑥𝑥 (
𝑎

2
,
𝑏

2
,
𝑧

ℎ
) and 𝜎𝑦𝑦 (

𝑎

2
,
𝑏

2
,
𝑧

ℎ
) and 

transverse shear stresses 𝜏𝑥𝑧 (0,
𝑏

2
,
𝑧

ℎ
) and 𝜏𝑦𝑧 (

𝑎

2
, 0,

𝑧

ℎ
) along the thickness of a 1-3-1 simply 

supported sandwich plate, respectively using the present theory. The FGM sandwich plate is 

considered to be made of Al2O3 and Al. 𝑎/𝑏 = 1 and 𝑎/ℎ = 100 and the plate is subjected to a 

sinusoidal transverse load. 

It is evident from Figs. 9 and 10 that the variation of in-plane stresses (𝜎
𝑥𝑥

and 𝜎𝑦𝑦) along the 

thickness is nonlinear, since the effective Young’s modulus of the core layer varies through the 
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Table 2 Non-dimensional transverse displacement and stresses for FGM sandwich plate of Type B (p = 1) 

𝑎/ℎ Theory 𝑤̄ 𝜎̄𝑥𝑥 𝜏̄𝑥𝑧 𝜏̄𝑥𝑦 

4 

Present 0.7721 0.6119 0.2726 0.3295 

Shashank and Pradyumna (2018) 0.7716 0.6148 0.2701 0.3413 

Brischetto (2009) 0.7629 0.6530 – 0.3007 

Carrera et al. (2011) 0.7735 – 0.2596 – 

Naves et al. (2012) 0.7746 0.6130 0.2709 0.3301 

10 

Present 0.6336 1.5705 0.2738 0.8456 

Shashank and Pradyumna (2018) 0.6323 1.5661 0.2613 0.8541 

Brischetto (2009) – – – – 

Carrera et al. (2011) 0.6337 – 0.2593 – 

Naves et al. (2012) 0.6357 1.5700 0.2724 0.8453 

100 

Present 0.6073 15.7819 0.2740 8.4979 

Shashank and Pradyumna (2018) 0.6074 15.5157 0.2624 8.4701 

Brischetto (2009) 0.6073 15.7840 – 8.4968 

Carrera et al. (2011) 0.6072 – 0.2593 – 

Naves et al. (2012) 0.6087 15.7826 0.2743 8.4644 

 

 
Table 3 Non-dimensional transverse displacement and stresses for FGM sandwich plate of Type B (p = 10) 

𝑎/ℎ Theory 𝑤̄ 𝜎̄𝑥𝑥 𝜏̄𝑥𝑧 𝜏̄𝑥𝑦 

4 

Present 1.2216 0.3356 0.1949 0.1807 

Shashank and Pradyumna (2018) 1.2315 0.3613 0.2111 0.1832 

Brischetto (2009) 1.2232 0.3627 – 0.1412 

Carrera et al. (2011) 1.2240 – 0.1935 – 

Naves et al. (2012) 1.2183 0.3247 0.1995 0.1749 

10 

Present 0.8738 0.9364 0.1963 0.5041 

Shashank and Pradyumna (2018) 0.8697 0.9236 0.2135 0.5004 

Brischetto (2009) – – – – 

Carrera et al. (2011) 0.8743 – 0.1944 – 

Naves et al. (2012) 0.8712 0.9214 0.2017 0.4962 

100 

Present 0.8077 9.5489 0.1965 5.1417 

Shashank and Pradyumna (2018) 0.8076 9.4452 0.2125 5.0719 

Brischetto (2009) 0.8077 9.5501 – 5.1402 

Carrera et al. (2011) 0.8077 – 0.1946 – 

Naves et al. (2012) 0.8045 9.4300 0.2230 5.0672 

 

 

thickness for a value of p. From Figs. 11 and 12, it is clear that the variations of non-dimensional 

transverse shear stresses 𝜏𝑥𝑧 and 𝜏𝑦𝑧 are parabolic in nature. 
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Fig. 9 Variation of 𝜎̄𝑥𝑥 through the thickness of a simply supported 1-3-1 sandwich square 

plate of Type B (a/h = 100) 
 

 

 

Fig. 10 Variation of 𝜎̄𝑦𝑦 through the thickness of a simply supported 1-3-1 sandwich square 

plate of Type B (a/h = 100) 
 

 

 

Fig. 11 Variation of 𝜏𝑥𝑧 through the thickness of a simply supported 1-3-1 sandwich square 

plate of Type B (a/h = 100) 
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Fig. 12 Variation of 𝜏𝑦𝑧 through the thickness of a simply supported 1-3-1 sandwich square 

plate of Type B (a/h = 100) 

 

 

3.2 Free vibration analysis of FGM sandwich plate 
 

Free vibration analysis of simply supported FG sandwich plates by the present refined theory is 

suggested for investigation. Both Type A and Type B configurations of FGM sandwich plates, as 

mentioned before are considered for the investigation. 

After evaluating the accuracy of the natural frequencies obtained using the present formulation, 

parametric study is taken up to investigate the effects of geometrical parameters and volume 

fraction index on the free vibration behavior of FGM sandwich plates. 

First, in order to evaluate the correctness of the present theory, the non-dimensional frequencies 

of Al2O3/Al sandwich plate with FGM facesheets and homogenous core (Type A) are compared 

with the results of Shashank et al. (2018) and the three-dimensional solutions given by Li et al. 

(2008). The non-dimensional frequency parameter is considered as 𝜔 = 𝜔(𝑎2/ℎ)√𝜌0/𝐸0 (where 

𝜌0 = 1 𝑘𝑔/𝑚
3, 𝐸0 = 1 𝐺𝑃𝑎). The upper and lower surfaces of the top facesheet are rich in 

ceramic and metal, respectively and the core of the sandwich plate is made of pure metal (Type A). 

The plate is considered as symmetric about its mid-plane. 

Table 4 present non-dimensional frequencies of 2-1-2, 1-1-1, 1-2-1 and 1-8-1 FGM sandwich 

square plate for simply supported condition, for volume fraction index p of 0.5, 1, 5 and 10 having 

a/h ratios 10 and 100. 

It is observed from Table 4 that, volume fraction index p varying from 0.5 to 10 and 𝑎/ℎ 

ratios of 10 and 100, the present theory results match well with 3D results of Li et al. (2008) and 

Shashank and Pradyumna (2018). 

After establishing the correctness of the present theory, parametric studies are taken up for 1-3-

1 FGM sandwich plate of Type A to study the effects of varying volume fraction index and 𝑎/ℎ 

ratio on natural frequencies. It is observed from Table 5 that with increase of n from 0.5 to 10, the 

natural frequencies are found to be increasing as the ceramic content in FGM facesheet increases 

resulting in the enhancement of stiffness. Also, it is evident from Table 5 that when 𝑎/ℎ ratio 

increases from 5 to 100, the natural frequencies are found to be increasing. 
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Table 4 Comparison of non-dimensional natural frequencies of simply supported Al2O3/Al sandwich plates 

with homogenous core and FGM facesheets (Type A) 

𝑎/ℎ 𝑝 Theory 2-1-2 1-1-1 1-2-1 1-8-1 

10 

0.5 

Present 1.5273 1.4852 1.4155 1.2052 

Shashank and Pradyumna (2018) 1.5445 1.4975 1.4231 1.2072 

Li et al. (2008) 1.5259 1.4846 1.4166 1.2055 

1 

Present 1.6811 1.6367 1.5591 1.3082 

Shashank and Pradyumna (2018) 1.6927 1.6435 1.5636 1.3086 

Li et al. (2008) 1.6744 1.6305 1.5579 1.3083 

5 

Present 1.8387 1.8128 1.7435 1.4663 

Shashank and Pradyumna (2018) 1.8178 1.7853 1.7250 1.4643 

Li et al. (2008) 1.8261 1.7896 1.7267 1.4665 

10 

Present 1.8496 1.8323 1.7703 1.4945 

Shashank and Pradyumna (2018) 1.8284 1.7928 1.7418 1.4915 

Li et al. (2008) 1.8399 1.8081 1.7481 1.4948 

100 

0.5 

Present 1.6229 1.5817 1.5066 1.2656 

Shashank and Pradyumna (2018) 1.6317 1.5826 1.5073 1.2661 

Li et al. (2008) 1.6229 1.5817 1.5066 1.2656 

1 

Present 1.7917 1.7538 1.6749 1.3833 

Shashank and Pradyumna (2018) 1.7926 1.7547 1.6756 1.3839 

Li et al. (2008) 1.7916 1.7538 1.6749 1.3833 

5 

Present 1.9433 1.9365 1.8855 1.5703 

Shashank and Pradyumna (2018) 1.9439 1.9370 1.8860 1.5709 

Li et al. (2008) 1.9431 1.9362 1.8853 1.5704 

10 

Present 1.9469 1.9508 1.9119 1.6046 

Shashank and Pradyumna (2018) 1.9475 1.9511 1.9123 1.6052 

Li et al. (2008) 1.9469 1.9504 1.9116 1.6046 

 

 

Next, free vibration analysis of Type B FGM sandwich plate is taken up. Table 6 gives the 

results of 1-8-1 power-law FGM square plate of Type B. This sandwich with FGM core and 

homogenous facesheets is made up of alumina and aluminum. The top facesheet is rich in metal 

and the bottom facesheet is ceramic rich. The properties of the FGM core of the sandwich are 

graded between aluminum and alumina from top to bottom. The properties of the FGM core of the 

sandwich are graded between aluminum and alumina from top to bottom. 

Table 6 present the non-dimensional frequencies 𝜔 = 𝜔(𝑎2/ℎ)√𝜌0/𝐸0  (where 𝜌0 =

1 𝑘𝑔/𝑚3, 𝐸0 = 1 𝐺𝑃𝑎) of simply supported FGM sandwich plates using the present theory. It is 

observed from Table 7 that the converged results are found to be in good agreement with the 3D 

results of Li et al. (2008) and the results of Shashank and Pradyumna (2018) for volume fraction 

index (p) of 0.5, 1, 5 10, 𝑎/ℎ ratio of 10 and 100. 

Next, effects of varying volume fraction index p and 𝑎/ℎ ratios on the non-dimensional 

natural frequencies of 1-3-1 Type B FGM sandwich plate are studied. Table 7 presents non- 
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Table 5 Non-dimensional natural frequencies of simply supported 1-3-1 Al2O3/Al sandwich plates with 

homogenous core and FGM facesheets (Type A) 

𝑎/ℎ Theory 
𝑝 

0.5 1 2 5 10 

5 
Present 1.1824 1.2756 1.3454 1.4006 1.4231 

Shashank and Pradyumna (2018) 1.1920 1.2833 1.3436 1.3786 1.3870 

10 
Present 1.3611 1.4965 1.6003 1.6789 1.7075 

Shashank and Pradyumna (2018) 1.3650 1.4997 1.5994 1.6688 1.6908 

100 
Present 1.4446 1.6043 1.7286 1.8215 1.8535 

Shashank and Pradyumna (2018) 1.4453 1.6050 1.7293 1.8221 1.8540 

 

 

Table 6 Non-dimensional natural frequencies of simply supported 1-8-1 Al2O3/Al 

sandwich plate with FGM core 

𝑎/ℎ 𝑝 Li et al. (2008) Shashank and Pradyumna (2018) Present 

10 

0.5 1.2975 1.3009 1.2946 

1 1.3485 1.3510 1.3454 

5 1.4931 1.4945 1.4905 

10 1.5498 1.5517 1.5476 

100 

0.5 1.3393 1.3558 1.3393 

1 1.3867 1.4048 1.3867 

5 1.5314 1.5504 1.5314 

10 1.5911 1.6018 1.5910 

 

 

Table 7 Non-dimensional natural frequencies of simply supported 1-3-1 Al2O3/Al sandwich plates with 

FGM core and homogenous facesheets (Type B) 

𝑎/ℎ Theory 
𝑝 

0.5 1 2 5 10 

5 
Present 1.2677 1.2038 1.1475 1.1070 1.0940 

Shashank and Pradyumna (2018) 1.2727 1.2095 1.1551 1.1176 1.1032 

10 
Present 1.3624 1.2984 1.2473 1.2228 1.2216 

Shashank and Pradyumna (2018) 1.3644 1.3007 1.2504 1.2271 1.2254 

100 
Present 1.4002 1.3365 1.2884 1.2726 1.2777 

Shashank and Pradyumna (2018) 1.4009 1.3374 1.2894 1.2737 1.2698 

 

 

dimensional natural frequencies of simply supported 1-3-1 Al2O3/Al FGM sandwich plate for five 

different values of volume fraction index p of 0.5, 1, 2, 5 and 10 and 𝑎/ℎ ratios of 5, 10 and 100. 

It is observed from Table 8 that for a particular 𝑎/ℎ ratio, non-dimensional natural frequencies 

are found to be decreasing when the value of p is increased from 0.5 to 10. This behavior is 

expected, as with increase in p from 0.5 to 10, the FGM core becomes metal rich resulting in the 

reduction of stiffness leading to decrease of frequency. Also, for a particular value of volume 
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fraction index (p) the non-dimensional natural frequencies are found to be increasing when 𝑎/ℎ 

ratio changes from 5 to 100. 

 

 

4. Conclusions 
 
In this present study, a refined shear deformation plate theory is employed to investigate the 

bending and free vibration problems of two types of FGM sandwich plates. Numerical examples 

were performed on simply supported sandwich plates, made of functionally graded materials in the 

core or in the skins, for various material power-law exponents and side to-thickness and skin-core-

skin thickness ratios. Obtained results were presented in figures and tables and compared with 

references and these demonstrate the accuracy of present approach. It can be said that the present 

refined plate theory is much simpler, straightforward and can be easily applied for wide range of 

problems for static and free vibration analyses of FGM sandwich plates and the same is 

recommended for analyses of FGM sandwich plates. 
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