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Abstract. In this paper, the problem of interfacial stresses in damaged reinforced concrete beams strengthened
with bonded prestressed functionally graded material plate and subjected to a uniformly distributed load, arbitrarily
positioned single point load, or two symmetric point loads is developed using linear elastic theory. The adopted
model takes into account the adherend shear deformations by assuming a linear shear stress through the depth of the
damaged RC beam. This solution is intended for application to beams made of all kinds of materials bonded with a
thin FGM plate. The results show that there exists a high concentration of both shear and normal stress at the ends of
the functionally graded material plate, which might result in premature failure of the strengthening scheme at these
locations. Finally, numerical comparisons between the existing solutions and the present new solution enable a clear
appreciation of the effects of various parameters of the beams on the distributions of the interfacial stresses.

Keywords: damaged concrete beam; prestressed plate; functionally graded material plate; interfacial
stresses; strengthening

1. Introduction

The present paper is devoted to understanding the mechanism of debonding failure mode and
the development of sound design rules. This brittle mode of failure is a result of the high shear and
vertical normal (peeling) stress concentrations arising at the edges of the bonded composite plate.
Hence, this limited area in the close vicinity of the bonded strip edge, subjected to high peeling
and interfacial shear stresses, proves to be among the most critical parts of the strengthened beams.
Consequently, the determination of interfacial stresses has been researched for the last decade for
beams bonded with either steel or advanced composite materials. In particular, several closed-form
analytical solutions have been developed Tounsi (2008), Benyoucef (2006), Tahar (2017), Chedad
(2017), Khalifa (2018), Roberts (1989), Smith and teng (2001), Shen (2001), Hassaine Daouadji
(2016), Yang (2007) and Bouakaz (2014). All these solutions are for linear elastic materials and
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employ the same key assumption that the adhesive is subject to normal and shear stresses that are
constant across the thickness of the adhesive layer. It is this key assumption that enables relatively
simple closed-form solutions to be obtained. In the existing solutions, two different approaches
have been employed. Roberts (1989) and Tounsi (20018) used a staged analysis approach, Al-
Emrani (2006) , Abualnour (2018), Tahar (2016), Bessegheir (2017), Hassaine Daouadji (2015),
Yeghnem (2017), Adim (2018), Tlidji (2014), Benferhat (2015), Hadji (2015), Khalifa (2016),
Sallai (2015), Benhenni (2018), Bensatallah (2018), Benferhat (2018), Ashraful (2018), Elghazy
(2017), Gonzalez (2017), Rabahi(2016), Muhammad (2017), Meyyada (2017), Guenaneche
(2014), Weu-jie (2018), Tanarslan (2017), Liang (2018), Touati (2015), Orkun (2017), Ait yahia
(2015), Zidani (2015), Bousahla (2016), Bellifa (2017), ElI Haina (2017), Bouderba (2016),
Abdelaziz (2017), Yazid (2018), Boukhari (2016), Mensouria (2017), Youcef (2018), Bakhada
(2018), Hadji (2016), Beldjillali (2016), Al Basyouni (2015) and Jian yang (2010) considered
directly deformation compatibility conditions. Recently, Krour (2014), Khatir (2017), Tahar
(2015), Rabia (2016), Belkacem (2016), Adim (2016), Abdelhak (2016), Lazreg (2016), Zine
(2018), Attia (2018), Benchohra (2018), Hassaine Daouadji (2016) and ElI Mahi (2014) are
developed some other methods based also on the deformation compatibility approach to predict
the interfacial stresses in FRP—RC hybrid beams. Most of the research efforts have focused on
strengthening of undamaged reinforced concrete beams with externally bonded sheets, whereas the
interfacial stresses in damaged RC beams strengthened by externally bonded prestressed GFRP
strips has not been fully studied yet. In this paper, the present study is to analyze the interfacial
stresses in damaged reinforced concrete beams strengthened with bonded prestressed functionally
graded material plate. The simple approximate closed — form solutions discussed in this paper
provide a useful but simple tool for understanding the interfacial behaviour of an externally
bonded prestressed functionally graded material plate on the damaged concrete beam with the
consideration of the various parameters.
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Fig. 1 Simply supported reinforced concrete beam strengthened with bonded prestressed FRP plate

..



Elastic analysis of interfacial stresses in prestressed PFGM-RC hybrid beams 85

2. Analytical approach
2.1 Assumptions of the solution

The following assumptions were made in the analytical study:

—  All materials considered are linear elastic.

— The beam is simply supported and shallow, hence Euler Bernoulli theory.

— No slip is allowed at the interface of the bond (i.e. there is a perfect bond at the
adhesive - RC beam interface and at the adhesive - plate interface).

— Bending deformations of the adhesive are neglected.

— The adhesive layer is assumed to be thin so that stresses can be considered as constant
through the layers thickness.

— The bending stiffness of the RC beam to be strengthened is much greater than the
stiffness of the FGM plate.

The model’s Mazars (1984, 1996) is based on elasticity coupled with isotropic damage and
ignores any manifestation of plasticity, as well as the closing of cracks. This concept directly
describes the loss of rigidity and the softening behavior. The constraint is determined by the
following relation:

agij = (1 — ¢) Ciju &w, 0<p<l1 (1a)
Eun = Eu(l-9) (1b)
Eyn = Exn(l-9) (1c)

where Ei1, Ex, and Ei1, Ez, are the elastic constants of damaged and undamaged state, respectively,
and ¢ is damaged variable. Hence, the material properties of the damaged plate can be represented
by replacing the above elastic constants with the effective ones defined in Eq. (1b and 1c).

Basic equation of elasticity: Fig. 1 shows a schematic sketch of the steps involved in
strengthening a beam with a bonded prestressed FGM plate. Py is the initial prestressing force in
the FGM plate. Py is the residual prestressing force in the FGM plate upon removing the
prestressing device. The loss of prestressing force in the FGM plate is thus:

AP1=Po— Py 2

And equilibrium requires that: P = —P; (3)

Where Ps is the compression force in the beam due to prestressing.

A differential segment of a plated beam is shown in Fig. 2, where the interfacial shear and
normal stresses are denoted by t(x) and o(x), respectively. Fig. 2 also shows the positive sign
convention for the bending moment, shear force, axial force and applied loading.

Shear stress in the adhesive layer is directly related to the difference in deformation between
the FGM plate and lower flange of the steel beam:

700 = 0,0 - ,00] @

Where G,, ta, Ui and us denote the shear modulus, the thickness of the adhesive layer, the
displacement of the RC beam at the bottom of lower flange, and the displacement of the externally
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Fig. 2 Forces in infinitesimal element of a soffit-plated beam

bonded prestressed FGM plate at the boundary of the bond, respectively. Eq. (3) can be expressed
in terms of the mechanical strain of the RC beam, €2(x), and the prestressed FGM plate €1(x) after
differentiating the equation with respect to x.

dz(x) G, _

T Tt [£,(0) —&,(0)] ©)
o, du,
B | 209 s, 00 ©)

Tensile strain at the bottom of the beam is induced by two basic stress components:
— The tensile stress induced by the bending moment M1(x) in the beam,
— The axial stress induced by the adhesive shear stress at the bond interface.
Therefore, Eqg. (6) can be written as:
N, t dr,

du,(¥) _ v
= M —_—
£(9 dx  El 1+ EA i 4G, dx 0

The change in axial strain in the laminate due to the deformability of the RC beam can be
related to the loss in the prestressing force as follows:
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du, (x) : (Nz(x)"'Po) Y, 5, dr,
- _p,Yem, () - 22 %
o g i, Mo~ 16 ®)

SZ(X) =

Where and are the horizontal displacements of the concrete beam and the FGM plate respectively.
And are respectively the bending moments applied to the concrete beam and the FGM plate; E; is
Young’s modulus of concrete; I the moment of inertia, And are the axial forces applied to the
concrete and the FGM plate respectively, And are the width and thickness of the reinforcing plate.
The Young’s modulus, which varies as a function of (z), is expressed as follows:

The material properties of FGM plates are assumed to vary continuously through the thickness.
The homogenization method is deployable for the computation of the Young’s modulus E(z)
namely:

E()=E, +(E.-E)(+) ©

where Enis the Young’s modulus of the homogeneous plate; E. denote Young’s modulus of the
bottom (as metal) and top E. (as ceramic) surfaces of the FGM plate, respectively; Em is Young’s
modulus of the homogeneous plate; and p is a parameter that indicates the material variation
through the plate thickness. For the power law distribution P-FGM, the Young’s modulus is given
as Hassaine daouadji (2013):

Consider an imperfect FGM with a porosity volume fraction, a (a<<1), distributed evenly
among the metal and ceramic, the modified rule of mixture proposed by Wattanasakul pong and
Ungbhakorn (2014), the Young’s modulus E(z) equations of the imperfect FGM beam can be
expressed as:

E@) =B+ (B, ~ENC+2)P (B +E)S (10)

E. and E are the young modules of the upper and lower faces of the plate and p is the material
property. Case of a sandwich: For a sandwich, plate one takes into account a heart in P-FGM.
For elastic and isotropic FGM, constitutive relations can be written as:

E(z)2 VE(ZZ) 0 0 0

1-ve 1-v
) |E@ EQ@) o o =
o, 1-v? 1-v? E@ g,
ot 0 0 0 0 ¥ (11)

vz 21+v) vz
Ty, 0 0 0 E(Z) 0 7 x
Ty 2(1+ V) Vxy
0 0 0 E@)
L 2(L+v) |

where (ox, oy, Txy, Tyz , ™) and (ex, €, Yxy, Yyz » Yxz) are the stress and strain components,
respectively , and Ajj, Dj; are the plate stiffness, defined by:

h

2
A = [Qudz D, = [Qzadz (12a)
“h

N | T

N

2
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A and Dy are defined as:
: D
B AL/ :22_ A122 Pu= . (12b)

D11D22 - D122
A1 2 Is the first term of the inverse matrix [4;] of the membrane matrix [Aj].
D1 : Is the first term of the inverse matrix [D;] de la matrice de membrane [Dj].

A

2.2 Shear stress distribution along the FGM—concrete interface

The governing differential equation for the interfacial shear stress (Rabahi 2016) is expressed

as.
2
d T(ZX)_ l A]:]_+ b2 +(y1+y2)(y‘1+y2+ta) sz]:j_ T(X)
dX tif"_k t1 + 5t2 ElA!l E1|1D11+b2
G, 4G, 12G,
13a
+ tl (y1+y2) Dl’1 T(X)ZO ( )
a E.1.Dy, +b,
Lo, 5
* 4G, 126G,

For simplicity, the general solutions presented below are limited to loading which is either
concentrated or uniformly distributed over part or the whole span of the beam, or both. For such
loading, d®V+(x)/dx?=0, and the general solution to Eq. (13a) is given by

1
t, t 15t
7(x) = C, cosh(6x) + C sinh(5X)+Gj 46,126, (=22 pw(x) o
' 2 52 EI,D,+b, 7
Where:
52 — 1 AJI.1+ bz + (y1+ yz)(y1 + y2 +ta)b2Dl'1
Lo, 4o 5 E,A E,I,D,, +h, (13c)

G, 4G, 12G,

a

And C; and C, are constant coefficients determined from the boundary conditions. In the
present study, a simply supported beam was investigated which is subjected uniformly distributed

load. The interfacial shear stress for this load case at any point is written as (Rabahi, 2016):
1

t,, 4, 15

a

. G, 4G, 12G y,+Y Co
X) = C, cosh(&x) + C,, sinh(&x a L 2 1 72 p ——X—a
7(X) 1 (%) + 2 () + 52 (E1|1D11+b2 11)q(2 ) (13d)
0<x< L,D

Where q is the uniformly distributed load and x, a, | and I, are defined in fig. 1. The constants
of integration need to be determined by applying suitable boundary conditions:
Owing to symmetry, all displacements at the middle of the composite beam are zero.

u,(x=1,/2) =u,(x=1,/2) =0 (13¢)
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Which, substituted, « (x =1,/ 2) = 0 and together with Eq. (13d)

|
C,=-C, tanh(&z"] (13f)

For practical cases d/,/ 2 > 10 and as a result tanh(‘zﬁ) ~ 1, so the expression for C; can be
simplified to

C,=-C, (139)
At the end of the laminate:
P, (x=0)=Py(x=0)=0 and M1(x=0)=%(l—a) (13h)
Inserting in Eq. (13a) gives:
dr(x=0) _G,| Ayp __ha :
ax ot { b, © ag,1, 0~ (131
By substituting Eq. (13d) into Eqg. (13j), C, can be determined as:
1
t. 18t (13)
2 éGta [ﬁn i 4Ea| ad a)} - 46513 = E |le+' 5, D J
a 2 171 171 ll+b2

Substitution of C; and C; into Eq. (13d) gives an expression for interfacial shear stress at any
point:
1
t, t 15t
+ +
G 4G, 12G, ( Vi +Y,
5? E,I,D,, +b

The distribution of the axial force in the laminate can be found by deriving Eqg. (13k) once and
substituting the left-hand side in Eq.(13a):

(13K)

a

—o . |
7() =-Ce ™™ + Dll)q(E —Xx-a)
2

1
t, t 15,

+ x N (131)

e Ca 46 126, Wity e CafAip  Aip M) h R(X)

z 5° EID,+b, t. (b, ° b ? LE, 2 AFE

Using the following equations ((13I) and (13m)) we obtain Eq. (130)
P2(X)= - P1(x) (13m)
h

M, () = 3 (x+2) = (c+a)” + P00 (13n)

1
t, t 1,
Pt
o AL ) . 4L G, 46, 126, y+y,
5, | b, 4E,1, 4E,1, 4E,1, G, 52 E,1,D;, +b,

DLe-e*) || (130)
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2.3 Normal stress distribution along the FGM —concrete interface

The following governing differential equation for the interfacial normal stress (Rabahi 2016):

d*c, (x) - b ~t, yb,)dr(x) 9K
— 4K | D+ =% X)—K. | D,2—-22 +—"=0
dx® n| P11 El, 0, (X) = K,| Dy 2 El,) dx El, (14a)

The general solution to this fourth—order differential equation is

y.b, — Di1E1|1tz q
- . . 172 X 1
o, (x) = e ™[C, cos(yx) + C, sin(»)]+ e™[C, cos(3x) + C, sin(7x)] — ( DLEL +2b2 ) ;E( ) DIEN 7D) q (14b)

For large values of x, it is assumed that the normal stress approaches zero and, as a result,
Cs=C¢=0. The general solution therefore becomes

D]‘.lEl I lt2

b, —
S N ¢ B R (14c)
D,,E,l, +b, dx D,,E,l, +b,

o, (x) =e7[C, cos(x) + C, sin(3x)] - (

Where

K . b
— D 2
y =4 2 ( .+ Elllj (l4d)

The above expressions for the constants Cs3 and C, has been left in terms of the bending
moment M+(0) and shear force V+(0) at the end of the soffit plate. With the constants Cs; and Ca
determined, are determined by considering appropriate boundary conditions. The first boundary
condition is the zero-bending moment at the ends of the soffit plate. The resulting expression
yields the following relationship at the plate end, by differentiating Eq. (14c):

d’c(x=0) E { 1 D;.
— = =M, (0) -+ M, (0) 14e
dx? t|El ° b, °* (14€)

However, the moment at the plate end M2(0) is zero. As a result, the above relationship can be
expressed as:

d’c(x=0) E
=—2_M,(0
dx? t.El (0 (147)

Boundary condition 2 concerns the shear force at the end of the soffit plate in the beam and the
soffit plate. The resulting expression yields the following relationship at the plate end, by
differentiating Eq. (14c):

d’c(x=0) _E, E

1 D1*1 a ), *
v Z[avl(o) _szVZ (0)}—Z(ﬁ—5 Dnjz'(O) (149)

As the applied shear force at the end of the plate is zero (i.e., V2(0) = 0). The second boundary
condition can therefore be expressed as:
E,, bh t

d*c(x=0) E ,
= \V(0)-—2(—2——2D)zr(0
dx® t.El 0 t, 2El, 2 12)7(0) (14h)




Elastic analysis of interfacial stresses in prestressed PFGM-RC hybrid beams 91

Further differentiation of Eq. (14c) leads to the following expressions for the second and third
derivatives of the interfacial normal stress at the plate end

yb, - Di1E1 It

d?o(x=0) __C,- 2 d*z(x=0) B 1 ﬂ (141)
dx? ‘' DLEI +b, dx’® D,,El, +b, dx®
s ylb2 _ D1‘1E1I1tz .
d°o(x=0) _2/(C,+C)- 2 d(x=0 1 d3q (14Kk)

o DEL+b, ¢  D.EI+b, d¢

Since the loading is limited to either uniformly distributed or point loads, the second and higher
order derivatives of g become zero. Substituting the boundary conditions into the above two
equations then leads to the determination of C; and C, as follows:

E b.h t , y1b2 _ D11Ezll1t2
Cy=—Fr [V,(0)+ /M, (0)] - u ey 2 £(0)+—Pubili+b, (d%(x=0)  d*(x=0) (141
T2 EN, : 2y° 2y° dx* dx®

D,,E, It

b, — —11k1lat2
W2 (14m)
:—LM 0)— D,El, +b, d’z(x=0)
¢ 2%, El, ° 252 dx®

3. Numerical verification and discussions:
3.1 Material used

To better understand the behavior of bonded beam repairs, which will help engineers in
optimizing their design parameters, the effects of several parameters were investigated. The
material used for the present studies is an RC beam bonded with an FGM plate. The beams are
simply supported and subjected to a different type of loading (uniformly distributed load, a single
point distributed load and a Two symmetric point load). A summary of the geometric and material
properties is given in table 1.

Comparison with experimental results: To validate the present method, a rectangular section
is used here. One of the tested beams bonded with steel plate by Jones (1988), beams F31, is
analysed here using the present improved solution. The beam is simply supported and subjected to
four-point bending, each at the third point. The geometry and materials properties of the specimen
are summarized in the table 1. The interfacial shear stress distributions in the beam bonded with a
soffit steel plate under the applied load 180 kN, are compared between the experimental results
and those obtained by the present method (FGM plate oo = 0 and o = 0,2). As it can be seen from
figure 3, the predicted theoretical results are in reasonable agreement with the experimental results.

Comparison with analytical solutions: As a part of a research project on strengthening existing
RC bridges using by different class of composite materials (Carbone Fiber Reinforced Polymer,
Glass Fiber Reinforced Polymer, perfect Functionally Graded Materials, imperfect Functionally
Graded Materials and Sandwich Functionally Graded Materials) a demonstration study was
performed on an old railway RC bridge. The aim of this study was to investigate practical
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Table 1 Geometric and material properties

Depth  Young’s modulus Poisson’s  Shear modulus

Component Width (mm) (mm) (MPa) ratio (MPa)
RC beam b1=200  t1=300 E1=30000 0.18 -
Adhesive layer RC beam ba =200 ta=4 Ea = 3000 0.35
GFRP plate (bonded RC beam) b2 =200 =4 E2 =50 000 0.28 Gi12 =5000
CFRP plate (bonded RC beam) b2 =200 =4 E2 = 140 000 0.28 Gi12 =5000
Ec = 380 000

FGM (Al203) plate (bonded RC beam) b2 =200 =4 0.3 G12 =5000

Em= 70 000

3,5

Y ‘ —m— Analytical Present Model - Steel plate
«|P=180kN§ o Analytical Present Model - FGM plate o. =0
3,0 —A— Analytical Present Model - FGM plate o =0,2

—w— Analytical Present Model - Ssandwich plate
_—<4— Experimental Model -Jones et. al.

25

8 .I
o
= 2,0
(7]
(7]
(O]
= 1,5
o <
S
£ 1,0 4
4 4 4
0,5
| 9 . < <
"“ | .
0,0 MAsesstRnsssstensssnses
0 100 200 300 400 500 600 700 800

X (mm)
Fig. 3 Comparison of interfacial shear of the steel and FGM plated RC beam with the experimental results

difficulties that might be encountered when the strengthening technique is applied to existing
structures. The beam is simply supported and subjected to a different type of loading (uniformly
distributed load, a single point distributed load and a Two symmetric point load). A summary of
the geometric and material properties is given in table 1. The span of The RC beam is 3000 mm
and the distance from the support to the end of the plate is 300 mm. The results presented on the
table 2 (2a, 2b and 2c) and figure 4 show distribution of the interfacial shear stress and the
longitudinal normal stress near the plate end for the example RC beam bonded with a CFRP,
GFRP, Steel, FGM and sandwich plate (P = 0 and P = 80kN) for all three types of loading
(uniformly distributed load, a single point distributed load and a Two symmetric point load). It can
be seen from the comparison that the stress distributions predicted by the present method are in
good agreement with those obtained by using other methods.
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It was recognized earlier in this study that if prestressed laminates are to be employed for
strengthening this bridge, high shear and normal stresses at the end of the laminates might cause
premature debonding failure of the laminates at these locations. One question was whether or not
special anchorage device are needed to ensure sufficient anchorage strength. It was also
recognized that there is some lack of knowledge regarding how material properties for the
composite materials and the adhesives should be chosen in order to minimize the magnitude of

shear and normal stresses at the ends of the laminates without reducing the efficiency of the
strengthening technique.

Table 2a Comparison of interfacial shear and normal stresses (MPa): Uniformly Distributed Load

RC Beam bonded with a thin plate subjected to a uniformly distributed load

RC beam with RC beam with RC beam with
Model RC beam with  RC beam with  RC beam with  perfect FGM  imperfect FGM Sandwich FGM
CFRP plate GFRP plate Steel plate plate plate

=0 0202 plate
Shear Normal Shear Normal Shear Normal Shear Normal Shear Normal Shear Normal
Present Model 1.812 1.0893 1.093 0.832 2126 1176 1.994 1113 1.826 1.060 1.861 1.113
Rabahi 2016 1.998 1.1887 1.211 0.912 2340 1281 2196 1.213 2.013 1156 2.052 1.214
Tounsi 2008 1.791 1.078 1.080 0.823 2102 1.164 1971 1.102 1805 1049 1840 1.101
RC Beam bonded with a prestressed “P = 80 kN” thin plate subjected to a uniformly distributed load

RC beam with  RC beam with RC beam with
Model RC beam with RC beam with RC beam with  perfect FGM  imperfect FGM Sandwich FGM
CFRP plate GFRP plate Steel plate plate plate

=0 @202 plate
Shear Normal Shear Normal Shear Normal Shear Normal Shear Normal Shear Normal
Present Model -3.037 -1.665 -7.662 -5.549 -1.754 -0.840 -2.262 -1.114 -2.975 -1.560 -2.818 -1.533
Rabahi 2016 -3.436 -1.878 -8.598 -6.183 -2.007 -0.965 -2.572 -1.267 -3.367 -1.760 -3.192 -1.731
Tounsi 2008 -2.991 -1.641 -7.556 -5.477 -1.725 -0.826 -2.227 -1.096 -2.931 -1.537 -2.776 -1.510

Damaged RC Beam (9=0,1) bonded with a thin plate subjected to a uniformly distributed load

RC beam with  RC beam with RC beam with
Model RC beam with RC beam with RC beam with  perfect FGM  imperfect FGM Sandwich EGM
CFRP plate GFRP plate Steel plate plate plate

o =0 0,2 plate
Shear Normal Shear Normal Shear Normal Shear Normal Shear Normal Shear Normal
Present Model 1.916 1.156 1.162 0.889 2.239 1.244 2104 1179 1.930 1.125 1.967 1.180
Rabahi 2016 2.116 1.263 1.290 1.290 2469 1357 2321 1.287 2131 1229 2172 1.290
Tounsi 2008 1.896 1.896 1.149 0.880 2.216 1.233 2.082 1.168 1910 1.115 1946 1.169
Damaged RC Beam (¢=0,1) bonded with a prestressed “P =80 kN”
thin plate subjected to a uniformly distributed load

RC beam with  RC beam with RC beam with
Model RC beam with RC beam with RC beam with  perfect FGM  imperfect FGM Sandwich FGM
CFRP plate GFRP plate Steel plate plate plate

=0 0=0,2 plate
Shear Normal Shear Normal Shear Normal Shear Normal Shear Normal Shear Normal
Present Model -2.676 -1.457 -7.183 -5.209 -1.421 -0.661 -1.918 -0.928 -2.616 -1.359 -2.462 -1.327
Rabahi 2016 -3.042 -1.653 -8.084 -5.822 -1.643 -0.770 -2.196 -1.065 -2.974 -1.543 -2.803 -1.509
Tounsi 2008 -2.640 -1.437 -7.092 -5.147 -1.399 -0.650 -1.890 -0.914 -2580 -1.341 -2.428 -1.309
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Table 2b Comparison of interfacial shear and normal stresses (MPa): Single Point Distributed Load

RC Beam bonded with a thin plate subjected to a Single Point Distributed Load
RC beam with  RC beam with

Model RC beam with  RC beam with RC beam with  perfect FGM  imperfect FGM SF;;: dtxﬁ:rﬁ I\é"g&
CFRP plate GFRP plate Steel plate plate plate |
=0 =0, plate

Shear Normal Shear Normal Shear Normal Shear Normal Shear Normal Shear Normal
Present Model 2.074 1246 1236 0942 2445 1352 2289 1277 2090 1.213 2131 1.274
Rabahi 2016 2.278 1.355 1.367 1.030 2.679 1.468 2511 1387 2296 1319 2341 1.386
Tounsi 2008 2.051 1.234 1222 00932 2418 1.339 2264 1265 2067 1.201 2108 1.262

RC Beam bonded with a prestressed “P = 80 kN” thin plate subjected to a Single Point Distributed Load
RC beam with  RC beam with

RC beam with  RC beam with RC beam with  perfect FGM  imperfect FGM SF;S dl\)/\?ii? ;VcI;TA
CFRP plate GFRP plate Steel plate plate plate
_ _ plate
o =0 a =0,2

Shear Normal Shear Normal Shear Normal Shear Normal Shear Normal Shear Normal
Present Model -2.77 -1.508 -7.51 -5440 -143 -0.664 -196 -0.950 -2.71 -1.407 -254 -1371
Rabahi 2016 -3.15 -1.711 -8.44 -6.065 -1.66 -0.778 -2.25 -1.093 -3.08 -1597 -2.90 -1.560
Tounsi 2008 -2.73 -1.485 -7.41 -5369 -140 -0.651 -1.93 -0.934 -267 -1.385 -250 -1.350

Damaged RC Beam (¢=0,1) bonded with a thin plate subjected to a Single Point Distributed Load
RC beam with  RC beam with

Model RC beam with  RC beam with RC beam with  perfect FGM  imperfect FGM SF;E dt\;\?iirn l\évétlt]/l
CFRP plate GFRP plate Steel plate plate plate |
=0 =02 plate

Shear Normal Shear Normal Shear Normal Shear Normal Shear Normal Shear Normal
Present Model 2.195 1324 1316 1007 2578 1432 2417 1355 2211 1289 2255 1.353
Rabahi 2016 2.415 1442 1457 1103 2.830 1.556 2.656 1472 2433 1403 2480 1.473
Tounsi 2008 2.172 1312 1302 0997 2553 1419 2393 1.343 2189 1.278 2232 1.341

Damaged RC Beam (¢=0,1) bonded with a prestressed “P =80 kN”
thin plate subjected to a Single Point Distributed Load
RC beam with  RC beam with

RC beam with  RC beam with RC beam with  perfect FGM  imperfect FGM SF;E dl\)/\?ia(l:r:l] ;Vg:\]/l
CFRP plate GFRP plate Steel plate plate plate
_ _ plate
o =0 o =0,2

Shear Normal Shear Normal Shear Normal Shear Normal Shear Normal Shear Normal
Present Model -2.39 -1.288 -7.03 -5.091 -1.08 -0.473 -160 -0.753 -2.33 -2.334 -2.17 -1.154
Rabahi 2016 -2.74 -1.474 -7.91 -5.695 -1.28 -0572 -186 -0.880 -2.67 -1369 -249 -1.326
Tounsi 2008 -2.36 -1.270 -6.94 -5.030 -1.06 -0.463 -157 -0.740 -230 -1.178 -2.14 -1.137

Parametric studies: Adhesive stresses without prestressing force (Po=0), a comparison of the
edge interfacial shear and normal stress from the different closed-form solutions reviewed earlier
is undertaken in this section figure 4. In the problem, the beam is simply supported and subjected
to uniformly distributed load (q=50 kN/ml). The results of the peak interfacial shear and normal
stress are given in Tables 2a, 2b and 2c. From the presented results, it can be seen that the present
solution agrees closely with the other methods. In this section, numerical results of the present
solution are presented to study the effect of the prestressing force Py on the distribution of
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interfacial stress in a steel beam strengthened with bonded prestressed FGM plate. Three value of
PO are considered in this study (Po = 0; 10; 20; 40, 80, and 100 kN).

Table 2c Comparison of interfacial shear and normal stresses (MPa): Two Symmetric Point Load
RC Beam bonded with a thin plate subjected to a Two Symmetric Point Load

RC beam with RC beam with RC beam with
Model RC beam with RC beam with RC beam with perfect FGM  imperfect FGM Sandwich FGM
CFRP plate GFRP plate Steel plate plate plate
_ _ plate
a =0 a =0,2
Shear Normal Shear Normal Shear Normal Shear Normal Shear Normal Shear Normal
T\;I%Sdeglt 2.718 1.590 1.733 1.290 3.126 1680 2956 1.601 2.737 1543 2783 1.619
R;gfg' 3.044 1764 1942 1431 3498 1.862 3309 1774 3064 1710 3.116 1.797
T;S‘gg' 2682 1570 1709 1274 3.084 1659 2917 1581 2700 1524 2746 1599
RC Beam bonded with a prestressed “P = 80 kN” thin plate subjected to a Two Symmetric Point Load
RC beam with  RC beam with RC beam with
RC beam with RC beam with RC beam with perfect FGM  imperfect FGM Sandwich EGM
CFRP plate GFRP plate Steel plate plate plate
_ _ plate
o =0 a =0,2
Shear Normal Shear Normal Shear Normal Shear Normal Shear Normal Shear Normal
T\;fgglt 213 -1.165 -7.022 -5092 -075 -0.337 -1.30 -0.626 -2.06 -1.077 -1.89 -1.026
Rz‘""gfg' 238 -2.389 -7.868 -5.664 -0.84 -0.384 -145 -0.705 -2.31 -1206 -212 -1.149
T;S’gg' 210 -1.149 -6.927 -5026 -0.74 -0.331 -128 -0.617 -2.03 -1.063 -187 -1.012
Damaged RC Beam (9=0,1) bonded with a thin plate subjected to a Two Symmetric Point Load
RC beam with  RC beam with RC beam with
RC beam with RC beam with RC beam with perfect FGM  imperfect FGM Sandwich EGM
Model CFRP plate GFRP plate Steel plate plate plate
_ _ plate
a =0 a =0,2
Shear Normal Shear Normal Shear Normal Shear Normal Shear Normal Shear Normal
F;\;l%s;;t 2861 1678 1836 1371 3279 1768 3.105 1.687 2880 1.629 2928 1.709
R;gfg' 3.211 1866 2.0621 1525 3.677 1963 3.484 1874 3.232 3.232 3.285 1.900
T;S’(;‘g' 2826 1659 1813 1356 3239 1748 3.067 1668 2844 1610 2892 1.689
Damaged RC Beam (¢=0,1) bonded with a prestressed “P =80 kN”
thin plate subjected to a Two Symmetric Point Load
RC beam with RC beam with RC beam with
RC beam with RC beam with RC beam with perfect FGM  imperfect FGM Sandwich FGM
CFRP plate GFRP plate Steel plate plate plate
- _ plate
o =0 a =0,2
Shear Normal Shear Normal Shear Normal Shear Normal Shear Normal Shear Normal
'T\;I%Sg:f -1.73  -0.934 -6510 -4.727 -0.38 -0.138 -0.91 -0420 -166 -0.856 -150 -0.799
R;gfg' -1.94 -1.050 -7.312 -5.273 -043 -0.164 -1.03 -0478 -1.87 -0963 -1.68 -0.899
Tounsi 420 0922 6429 -4672 -037 -0135 -090 -0.414 -164 -0.845 -148 -0.788

2008
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Fig. 4 Comparison of shear interfacial stress in RC beam bonded with prestressed FGM plate PO =0
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Fig. 6 Adhesive peel-off stress along the bond line
for the Perfect FGM strengthened RC beam with
different prestressing force P

Fig. 5 Adhesive shear stress along the bond line for
FGM strengthened

Figs. 5 and 6 plot the interfacial s