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Abstract.  In this paper, the problem of interfacial stresses in damaged reinforced concrete beams strengthened 

with bonded prestressed functionally graded material plate and subjected to a uniformly distributed load, arbitrarily 

positioned single point load, or two symmetric point loads is developed using linear elastic theory. The adopted 

model takes into account the adherend shear deformations by assuming a linear shear stress through the depth of the 

damaged RC beam. This solution is intended for application to beams made of all kinds of materials bonded with a 

thin FGM plate. The results show that there exists a high concentration of both shear and normal stress at the ends of 

the functionally graded material plate, which might result in premature failure of the strengthening scheme at these 

locations. Finally, numerical comparisons between the existing solutions and the present new solution enable a clear 

appreciation of the effects of various parameters of the beams on the distributions of the interfacial stresses. 
 

Keywords:  damaged concrete beam; prestressed plate; functionally graded material plate; interfacial 

stresses; strengthening 

 
 
1. Introduction 
 

The present paper is devoted to understanding the mechanism of debonding failure mode and 

the development of sound design rules. This brittle mode of failure is a result of the high shear and 

vertical normal (peeling) stress concentrations arising at the edges of the bonded composite plate. 

Hence, this limited area in the close vicinity of the bonded strip edge, subjected to high peeling 

and interfacial shear stresses, proves to be among the most critical parts of the strengthened beams. 

Consequently, the determination of interfacial stresses has been researched for the last decade for  

beams bonded with either steel or advanced composite materials. In particular, several closed-form 

analytical solutions have been developed Tounsi (2008), Benyoucef (2006), Tahar (2017), Chedad 

(2017), Khalifa (2018), Roberts (1989), Smith and teng (2001), Shen (2001), Hassaine Daouadji 

(2016), Yang (2007) and Bouakaz (2014). All these solutions are for linear elastic materials and 
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employ the same key assumption that the adhesive is subject to normal and shear stresses that are 

constant across the thickness of the adhesive layer. It is this key assumption that enables relatively 

simple closed-form solutions to be obtained. In the existing solutions, two different approaches 

have been employed. Roberts (1989) and Tounsi (20018) used a staged analysis approach, Al-

Emrani (2006) , Abualnour (2018), Tahar (2016), Bessegheir (2017), Hassaine Daouadji (2015), 

Yeghnem (2017), Adim (2018), Tlidji (2014), Benferhat (2015), Hadji (2015), Khalifa (2016), 

Sallai (2015), Benhenni (2018), Bensatallah (2018), Benferhat (2018), Ashraful (2018), Elghazy 

(2017), Gonzalez (2017), Rabahi(2016), Muhammad (2017), Meyyada (2017), Guenaneche 

(2014), Weu-jie (2018), Tanarslan (2017), Liang (2018), Touati (2015), Orkun (2017), Ait yahia 

(2015), Zidani (2015), Bousahla (2016), Bellifa (2017), El Haina (2017), Bouderba (2016), 

Abdelaziz (2017), Yazid (2018), Boukhari (2016), Mensouria (2017), Youcef (2018), Bakhada 

(2018), Hadji (2016), Beldjillali (2016), Al Basyouni (2015) and Jian yang (2010) considered 

directly deformation compatibility conditions. Recently, Krour (2014), Khatir (2017), Tahar 

(2015), Rabia (2016), Belkacem (2016), Adim (2016), Abdelhak (2016), Lazreg (2016), Zine 

(2018), Attia (2018), Benchohra (2018), Hassaine Daouadji (2016) and El Mahi  (2014) are 

developed some other methods based also on the deformation compatibility approach to predict 

the interfacial stresses in FRP–RC hybrid beams. Most of the research efforts have focused on 

strengthening of undamaged reinforced concrete beams with externally bonded sheets, whereas the 

interfacial stresses in damaged RC beams strengthened by externally bonded prestressed GFRP 

strips has not been fully studied yet. In this paper, the present study is to analyze the interfacial 

stresses in damaged reinforced concrete beams strengthened with bonded prestressed functionally 

graded material plate. The simple approximate closed – form solutions discussed in this paper 

provide a useful but simple tool for understanding the interfacial behaviour of an externally 

bonded prestressed functionally graded material plate on the damaged concrete beam with the 

consideration of the various parameters. 

 

 

 
Fig. 1 Simply supported reinforced concrete beam strengthened with bonded prestressed FRP plate 
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2. Analytical approach 
 

2.1 Assumptions of the solution 
 

The following assumptions were made in the analytical study: 

− All materials considered are linear elastic. 

− The beam is simply supported and shallow, hence Euler Bernoulli theory. 

− No slip is allowed at the interface of the bond (i.e. there is a perfect bond at the 

adhesive - RC beam interface and at the adhesive - plate interface). 

− Bending deformations of the adhesive are neglected. 

− The adhesive layer is assumed to be thin so that stresses can be considered as constant 

through the layers thickness. 

− The bending stiffness of the RC beam to be strengthened is much greater than the 

stiffness of the FGM plate. 

The model’s Mazars (1984, 1996) is based on elasticity coupled with isotropic damage and 

ignores any manifestation of plasticity, as well as the closing of cracks. This concept directly 

describes the loss of rigidity and the softening behavior. The constraint is determined by the 

following relation:  

 σij = (1 – φ) Cijkl εkl,      0    1 (1a) 

Ẽ11  =  E11(1 – φ) (1b) 

Ẽ22  =  E22(1 – φ) (1c) 

where Ẽ11, Ẽ22, and E11, E22 are the elastic constants of damaged and undamaged state, respectively, 

and  is damaged variable. Hence, the material properties of the damaged plate can be represented 

by replacing the above elastic constants with the effective ones defined in Eq. (1b and 1c).  

Basic equation of elasticity:  Fig. 1 shows a schematic sketch of the steps involved in 

strengthening a beam with a bonded prestressed FGM plate. P0 is the initial prestressing force in 

the FGM plate. Pl is the residual prestressing force in the FGM plate upon removing the 

prestressing device. The loss of prestressing force in the FGM plate is thus: 

ΔP1 = P0 – P2 (2) 

And equilibrium requires that: P1 = – P2    (3) 

Where Ps is the compression force in the beam due to prestressing. 

A differential segment of a plated beam is shown in Fig. 2, where the interfacial shear and 

normal stresses are denoted by τ(x) and σ(x), respectively. Fig. 2 also shows the positive sign 

convention for the bending moment, shear force, axial force and applied loading. 

Shear stress in the adhesive layer is directly related to the difference in deformation between 

the FGM plate and lower flange of the steel beam: 

 

(4) 

Where Ga, ta, ul and us denote the shear modulus, the thickness of the adhesive layer, the 

displacement of the RC beam at the bottom of lower flange, and the displacement of the externally  
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Fig. 2 Forces in infinitesimal element of a soffit-plated beam 

 

 

bonded prestressed FGM plate at the boundary of the bond, respectively. Eq. (3) can be expressed 

in terms of the mechanical strain of the RC beam, ε2(x), and the prestressed FGM plate ε1(x) after 

differentiating the equation with respect to x. 

 
(5) 

  ,  
(6) 

Tensile strain at the bottom of the beam is induced by two basic stress components:  

− The tensile stress induced by the bending moment M1(x) in the beam, 

− The axial stress induced by the adhesive shear stress at the bond interface.  

Therefore, Eq. (6) can be written as: 

 
(7) 

The change in axial strain in the laminate due to the deformability of the RC beam can be 

related to the loss in the prestressing force as follows: 
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(8) 

Where and are the horizontal displacements of the concrete beam and the FGM plate respectively. 

And are respectively the bending moments applied to the concrete beam and the FGM plate; E1 is 

Young’s modulus of concrete; I1 the moment of inertia, And are the axial forces applied to the 

concrete and the FGM plate respectively, And are the width and thickness of the reinforcing plate. 

The Young’s modulus, which varies as a function of (z), is expressed as follows:  

The material properties of FGM plates are assumed to vary continuously through the thickness. 

The homogenization method is deployable for the computation of the Young’s modulus E(z) 

namely:  

 
(9) 

where Em is the Young’s modulus of the homogeneous plate; Ec denote Young’s modulus of the 

bottom (as metal) and top Ec (as ceramic) surfaces of the FGM plate, respectively; Em is Young’s 

modulus of the homogeneous plate; and p is a parameter that indicates the material variation 

through the plate thickness. For the power law distribution P-FGM, the Young’s modulus is given 

as Hassaine daouadji (2013):                 

Consider an imperfect FGM with a porosity volume fraction, α (α<<1), distributed evenly 

among the metal and ceramic, the modified rule of mixture proposed by Wattanasakul pong and 

Ungbhakorn (2014), the Young’s modulus E(z) equations of the imperfect FGM beam can be 

expressed as: 

 
(10) 

Ec and Em are the young modules of the upper and lower faces of the plate and p is the material 

property. Case of a sandwich: For a sandwich, plate one takes into account a heart in P-FGM. 

For elastic and isotropic FGM, constitutive relations can be written as:  

 

(11) 

where (x, y , xy , yz , xz) and (x , y , xy , yz , xz) are the stress and strain components, 

respectively , and Aij , Dij are the plate stiffness, defined by:  

,  
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À11 and D̀11 are defined as: 

 ,  
(12b) 

À11 : Is the first term of the inverse matrix [Àij] of the membrane matrix [Aij]. 

D̀11 : Is the first term of the inverse matrix [D̀ij] de la matrice de membrane [Dij].  
 

2.2 Shear stress distribution along the FGM–concrete interface 
 

The governing differential equation for the interfacial shear stress (Rabahi 2016) is expressed 

as: 

 

 

(13a) 

For simplicity, the general solutions presented below are limited to loading which is either 

concentrated or uniformly distributed over part or the whole span of the beam, or both. For such 

loading, d2VT(x)/dx2=0, and the general solution to Eq. (13a) is given by 

 

(13b) 

Where: 

 

(13c) 

And C1 and C2 are constant coefficients determined from the boundary conditions. In the 

present study, a simply supported beam was investigated which is subjected uniformly distributed 

load. The interfacial shear stress for this load case at any point is written as (Rabahi, 2016): 

, 

 

(13d) 

Where q is the uniformly distributed load and x, a, l and lp are defined in fig. 1. The constants 

of integration need to be determined by applying suitable boundary conditions: 

Owing to symmetry, all displacements at the middle of the composite beam are zero. 

 
(13e) 
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Which, substituted, τ (x = lp / 2) = 0 and together with Eq. (13d) 

 
(13f) 

For practical cases δlp / 2 > 10 and as a result tanh(
𝛿𝑙𝑝

2
)  ≈ 1, so the expression for C1 can be 

simplified to 

 
(13g) 

At the end of the laminate: 

P2 (x = 0) = P1(x = 0) = 0 and  M1 (x = 0) = 
𝑞𝑎

2
(𝑙 − 𝑎) (13h) 

Inserting in Eq. (13a) gives: 

 
(13i) 

By substituting Eq. (13d) into Eq. (13j), C2 can be determined as: 

 

(13j) 

Substitution of C1 and C2 into Eq. (13d) gives an expression for interfacial shear stress at any 

point:  

 

(13k) 

The distribution of the axial force in the laminate can be found by deriving Eq. (13k) once and 

substituting the left-hand side in Eq.(13a): 

 

(13l) 

Using the following equations ((13l) and (13m)) we obtain Eq. (13o) 

P2(x)= - P1(x) (13m) 
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2.3 Normal stress distribution along the FGM –concrete interface 
 

The following governing differential equation for the interfacial normal stress (Rabahi 2016): 

 
(14a) 

The general solution to this fourth–order differential equation is 

 

(14b) 

For large values of x, it is assumed that the normal stress approaches zero and, as a result, 

C5=C6=0. The general solution therefore becomes  

 

(14c) 

Where 

 
(14d) 

The above expressions for the constants C3 and C4 has been left in terms of the bending 

moment MT(0) and shear force VT(0) at the end of the soffit plate. With the constants C3 and C4 

determined, are determined by considering appropriate boundary conditions. The first boundary 

condition is the zero-bending moment at the ends of the soffit plate. The resulting expression 

yields the following relationship at the plate end, by differentiating Eq. (14c): 

 
(14e) 

However, the moment at the plate end M2(0) is zero. As a result, the above relationship can be 

expressed as: 

 
(14f) 
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soffit plate. The resulting expression yields the following relationship at the plate end, by 

differentiating Eq. (14c): 

 
(14g) 

As the applied shear force at the end of the plate is zero (i.e., V2(0) = 0). The second boundary 

condition can therefore be expressed as: 

 
(14h) 

0
)(

2
)(

)(

1111

212'

11

11

2'

114

4

=+







−−








++

IE

qK

dx

xd

IE

byt
DKx

IE

b
DK

dx

xd n
nnn

n 




    q
bIEDdx

xd

bIED

tIED
by

xCxCexCxCex xx

n

211

'

11211

'

11

211

'

11
21

6543

1)(
)2()sin()cos()sin()cos()(

+
−

+

−

−+++= − 
 

  q
bIEDdx

xd

bIED

tIED
by

xCxCex x

n

211

'

11211

'

11

211

'

11
21

43

1)(
)2()sin()cos()(

+
−

+

−

−+= − 
 

4

11

2'

11
4 








+=

IE

b
D

Kn









−=

=
)0()0(

1)0(
2

2

*

11
1

11

2

2

M
b

D
M

IEt

E

dx

xd

a

a

)0(
)0(

1

11

2

2

M
IEt

E

dx

xd

a

a=
=

)0(
22

)0()0(
1)0( *

11
2

11

2
2

2

*

11
1

11

3

3












−−








−=

=
D

t

IE

hb

t

E
V

b

D
V

IEt

E

dx

xd

a

a

a

a

)0()
22

()0(
)0( '

11
2

11

2
1

11

3

3




D
t

IE

hb

t

E
V

IEt

E

dx

xd

a

a

a

a −−=
=

90



 

 

 

 

 

 

Elastic analysis of interfacial stresses in prestressed PFGM-RC hybrid beams 

Further differentiation of Eq. (14c) leads to the following expressions for the second and third 

derivatives of the interfacial normal stress at the plate end 

 

(14i) 

 

(14k) 

Since the loading is limited to either uniformly distributed or point loads, the second and higher 

order derivatives of q become zero. Substituting the boundary conditions into the above two 

equations then leads to the determination of C3 and C4 as follows: 

 

(14l) 

 

(14m) 

 

 

3. Numerical verification and discussions: 
 
3.1 Material used 
 

To better understand the behavior of bonded beam repairs, which will help engineers in 

optimizing their design parameters, the effects of several parameters were investigated. The 

material used for the present studies is an RC beam bonded with an FGM plate. The beams are 

simply supported and subjected to a different type of loading (uniformly distributed load, a single 

point distributed load and a Two symmetric point load). A summary of the geometric and material 

properties is given in table 1. 

Comparison with experimental results:  To validate the present method, a rectangular section 

is used here. One of the tested beams bonded with steel plate by Jones (1988), beams F31, is 

analysed here using the present improved solution. The beam is simply supported and subjected to 

four-point bending, each at the third point. The geometry and materials properties of the specimen 

are summarized in the table 1. The interfacial shear stress distributions in the beam bonded with a 

soffit steel plate under the applied load 180 kN, are compared between the experimental results 

and those obtained by the present method (FGM plate  = 0 and  = 0,2). As it can be seen from 

figure 3, the predicted theoretical results are in reasonable agreement with the experimental results. 

Comparison with analytical solutions: As a part of a research project on strengthening existing 

RC bridges using by different class of composite  materials (Carbone Fiber Reinforced Polymer, 

Glass Fiber Reinforced Polymer, perfect Functionally Graded Materials, imperfect Functionally 

Graded Materials and Sandwich Functionally Graded Materials) a demonstration study was 

performed on an old railway RC bridge. The aim of this study was to investigate practical 
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Table 1 Geometric and material properties 

Component Width (mm) 
Depth 

(mm) 

Young’s modulus 

(MPa) 

Poisson’s 

ratio 

Shear modulus 

(MPa) 

RC beam b1 = 200 t1= 300 E1 = 30 000 0.18 - 

Adhesive layer RC beam ba = 200 ta = 4 Ea = 3000 0.35 - 

GFRP plate (bonded RC beam) b2 = 200 t2= 4 E2 = 50 000 0.28 G12 =5000 

CFRP plate (bonded RC beam) b2 = 200 t2= 4 E2 = 140 000 0.28 G12 =5000 

FGM (Al2O3) plate (bonded RC beam) b2 = 200 t2= 4 
Ec = 380 000 

Em= 70 000 
0.3 G12 =5000 

 

 
Fig. 3 Comparison of interfacial shear of the steel and FGM plated RC beam with the experimental results 

 

 

difficulties that might be encountered when the strengthening technique is applied to existing 

structures. The beam is simply supported and subjected to a different type of loading (uniformly 

distributed load, a single point distributed load and a Two symmetric point load). A summary of 

the geometric and material properties is given in table 1. The span of The RC beam is 3000 mm 

and the distance from the support to the end of the plate is 300 mm. The results presented on the 

table 2 (2a, 2b and 2c) and figure 4 show distribution of the interfacial shear stress and the 

longitudinal normal stress near the plate end for the example RC beam bonded with a CFRP, 

GFRP, Steel, FGM and sandwich plate (P = 0 and P = 80kN) for all three types of loading 

(uniformly distributed load, a single point distributed load and a Two symmetric point load). It can 

be seen from the comparison that the stress distributions predicted by the present method are in 

good agreement with those obtained by using other methods. 
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Elastic analysis of interfacial stresses in prestressed PFGM-RC hybrid beams 

It was recognized earlier in this study that if prestressed laminates are to be employed for 

strengthening this bridge, high shear and normal stresses at the end of the laminates might cause 

premature debonding failure of the laminates at these locations. One question was whether or not 

special anchorage device are needed to ensure sufficient anchorage strength. It was also 

recognized that there is some lack of knowledge regarding how material properties for the 

composite materials and the adhesives should be chosen in order to minimize the magnitude of 

shear and normal stresses at the ends of the laminates without reducing the efficiency of the 

strengthening technique. 
 

 

Table 2a Comparison of interfacial shear and normal stresses (MPa): Uniformly Distributed Load 

RC Beam bonded with a thin plate subjected to a uniformly distributed load 

Model 
RC beam with 

CFRP plate 

RC beam with 

GFRP plate 

RC beam with 

Steel plate 

RC beam with 

perfect FGM 

plate 

 =0 

RC beam with 

imperfect FGM 

plate 

 =0,2 

RC beam with 

Sandwich FGM 

plate 

 Shear Normal Shear Normal Shear Normal Shear Normal Shear Normal Shear Normal 

Present Model 1.812 1.0893 1.093 0.832 2.126 1.176 1.994 1.113 1.826 1.060 1.861 1.113 

Rabahi 2016 1.998 1.1887 1.211 0.912 2.340 1.281 2.196 1.213 2.013 1.156 2.052 1.214 

Tounsi 2008 1.791 1.078 1.080 0.823 2.102 1.164 1.971 1.102 1.805 1.049 1.840 1.101 

RC Beam bonded with a prestressed “P = 80 kN” thin plate subjected to a uniformly distributed load 

Model 
RC beam with 

CFRP plate 

RC beam with 

GFRP plate 

RC beam with 

Steel plate 

RC beam with 

perfect FGM 

plate 

 =0 

RC beam with 

imperfect FGM 

plate 

 =0,2 

RC beam with 

Sandwich FGM 

plate 

 Shear Normal Shear Normal Shear Normal Shear Normal Shear Normal Shear Normal 

Present Model -3.037 -1.665 -7.662 -5.549 -1.754 -0.840 -2.262 -1.114 -2.975 -1.560 -2.818 -1.533 

Rabahi 2016 -3.436 -1.878 -8.598 -6.183 -2.007 -0.965 -2.572 -1.267 -3.367 -1.760 -3.192 -1.731 

Tounsi 2008 -2.991 -1.641 -7.556 -5.477 -1.725 -0.826 -2.227 -1.096 -2.931 -1.537 -2.776 -1.510 

Damaged RC Beam (=0,1) bonded with a thin plate subjected to a uniformly distributed load 

Model 
RC beam with 

CFRP plate 

RC beam with 

GFRP plate 

RC beam with 

Steel plate 

RC beam with 

perfect FGM 

plate 

 =0 

RC beam with 

imperfect FGM 

plate 

 =0,2 

RC beam with 

Sandwich FGM 

plate 

 Shear Normal Shear Normal Shear Normal Shear Normal Shear Normal Shear Normal 

Present Model 1.916 1.156 1.162 0.889 2.239 1.244 2.104 1.179 1.930 1.125 1.967 1.180 

Rabahi 2016 2.116 1.263 1.290 1.290 2.469 1.357 2.321 1.287 2.131 1.229 2.172 1.290 

Tounsi 2008 1.896 1.896 1.149 0.880 2.216 1.233 2.082 1.168 1.910 1.115 1.946 1.169 

Damaged RC Beam (=0,1) bonded with a prestressed “P = 80 kN”  

thin plate subjected to a uniformly distributed load 

Model 
RC beam with 

CFRP plate 

RC beam with 

GFRP plate 

RC beam with 

Steel plate 

RC beam with 

perfect FGM 

plate 

 =0 

RC beam with 

imperfect FGM 

plate 

 =0,2 

RC beam with 

Sandwich FGM 

plate 

 Shear Normal Shear Normal Shear Normal Shear Normal Shear Normal Shear Normal 

Present Model -2.676 -1.457 -7.183 -5.209 -1.421 -0.661 -1.918 -0.928 -2.616 -1.359 -2.462 -1.327 

Rabahi 2016 -3.042 -1.653 -8.084 -5.822 -1.643 -0.770 -2.196 -1.065 -2.974 -1.543 -2.803 -1.509 

Tounsi 2008 -2.640 -1.437 -7.092 -5.147 -1.399 -0.650 -1.890 -0.914 -2.580 -1.341 -2.428 -1.309 
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Table 2b Comparison of interfacial shear and normal stresses (MPa): Single Point Distributed Load 

RC Beam bonded with a thin plate subjected to a Single Point Distributed Load 

Model 
RC beam with 

CFRP plate 

RC beam with 

GFRP plate 

RC beam with 

Steel plate 

RC beam with 

perfect FGM 

plate 

 =0 

RC beam with 

imperfect FGM 

plate 

 =0,2 

RC beam with 

Sandwich FGM 

plate 

 Shear Normal Shear Normal Shear Normal Shear Normal Shear Normal Shear Normal 

Present Model 2.074 1.246 1.236 0.942 2.445 1.352 2.289 1.277 2.090 1.213 2.131 1.274 

Rabahi 2016 2.278 1.355 1.367 1.030 2.679 1.468 2.511 1.387 2.296 1.319 2.341 1.386 

Tounsi 2008 2.051 1.234 1.222 0.932 2.418 1.339 2.264 1.265 2.067 1.201 2.108 1.262 

RC Beam bonded with a prestressed “P = 80 kN” thin plate subjected to a Single Point Distributed Load 

 
RC beam with 

CFRP plate 

RC beam with 

GFRP plate 

RC beam with 

Steel plate 

RC beam with 

perfect FGM 

plate 

 =0 

RC beam with 

imperfect FGM 

plate 

 =0,2 

RC beam with 

Sandwich FGM 

plate 

 Shear Normal Shear Normal Shear Normal Shear Normal Shear Normal Shear Normal 

Present Model -2.77 -1.508 -7.51 -5.440 -1.43 -0.664 -1.96 -0.950 -2.71 -1.407 -2.54 -1.371 

Rabahi 2016 -3.15 -1.711 -8.44 -6.065 -1.66 -0.778 -2.25 -1.093 -3.08 -1.597 -2.90 -1.560 

Tounsi 2008 -2.73 -1.485 -7.41 -5.369 -1.40 -0.651 -1.93 -0.934 -2.67 -1.385 -2.50 -1.350 

Damaged RC Beam (=0,1) bonded with a thin plate subjected to a Single Point Distributed Load 

Model 
RC beam with 

CFRP plate 

RC beam with 

GFRP plate 

RC beam with 

Steel plate 

RC beam with 

perfect FGM 

plate 

 =0 

RC beam with 

imperfect FGM 

plate 

 =0,2 

RC beam with 

Sandwich FGM 

plate 

 Shear Normal Shear Normal Shear Normal Shear Normal Shear Normal Shear Normal 

Present Model 2.195 1.324 1.316 1.007 2.578 1.432 2.417 1.355 2.211 1.289 2.255 1.353 

Rabahi 2016 2.415 1.442 1.457 1.103 2.830 1.556 2.656 1.472 2.433 1.403 2.480 1.473 

Tounsi 2008 2.172 1.312 1.302 0.997 2.553 1.419 2.393 1.343 2.189 1.278 2.232 1.341 

Damaged RC Beam (=0,1) bonded with a prestressed “P = 80 kN” 

  thin plate subjected to a Single Point Distributed Load 

 
RC beam with 

CFRP plate 

RC beam with 

GFRP plate 

RC beam with 

Steel plate 

RC beam with 

perfect FGM 

plate 

 =0 

RC beam with 

imperfect FGM 

plate 

 =0,2 

RC beam with 

Sandwich FGM 

plate 

 Shear Normal Shear Normal Shear Normal Shear Normal Shear Normal Shear Normal 

Present Model -2.39 -1.288 -7.03 -5.091 -1.08 -0.473 -1.60 -0.753 -2.33 -2.334 -2.17 -1.154 

Rabahi 2016 -2.74 -1.474 -7.91 -5.695 -1.28 -0.572 -1.86 -0.880 -2.67 -1.369 -2.49 -1.326 

Tounsi 2008 -2.36 -1.270 -6.94 -5.030 -1.06 -0.463 -1.57 -0.740 -2.30 -1.178 -2.14 -1.137 

 

 

Parametric studies: Adhesive stresses without prestressing force (P0=0), a comparison of the 

edge interfacial shear and normal stress from the different closed-form solutions reviewed earlier 

is undertaken in this section figure 4. In the problem, the beam is simply supported and subjected 

to uniformly distributed load (q=50 kN/ml). The results of the peak interfacial shear and normal 

stress are given in Tables 2a, 2b and 2c. From the presented results, it can be seen that the present 

solution agrees closely with the other methods. In this section, numerical results of the present 

solution are presented to study the effect of the prestressing force P0 on the distribution of 
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Elastic analysis of interfacial stresses in prestressed PFGM-RC hybrid beams 

interfacial stress in a steel beam strengthened with bonded prestressed FGM plate. Three value of 

P0 are considered in this study (P0 = 0; 10; 20; 40, 80, and 100 kN).  
 

 

Table 2c Comparison of interfacial shear and normal stresses (MPa): Two Symmetric Point Load 

RC Beam bonded with a thin plate subjected to a Two Symmetric Point Load 

Model 
RC beam with 

CFRP plate 

RC beam with 

GFRP plate 

RC beam with 

Steel plate 

RC beam with 

perfect FGM 

plate 

 =0 

RC beam with 

imperfect FGM 

plate 

 =0,2 

RC beam with 

Sandwich FGM 

plate 

 Shear Normal Shear Normal Shear Normal Shear Normal Shear Normal Shear Normal 

Present 

Model 
2.718 1.590 1.733 1.290 3.126 1.680 2.956 1.601 2.737 1.543 2.783 1.619 

Rabahi 

2016 
3.044 1.764 1.942 1.431 3.498 1.862 3.309 1.774 3.064 1.710 3.116 1.797 

Tounsi 

2008 
2.682 1.570 1.709 1.274 3.084 1.659 2.917 1.581 2.700 1.524 2.746 1.599 

RC Beam bonded with a prestressed “P = 80 kN” thin plate subjected to a Two Symmetric Point Load 

 

RC beam with 

CFRP plate 

RC beam with 

GFRP plate 

RC beam with 

Steel plate 

RC beam with 

perfect FGM 

plate 

 =0 

RC beam with 

imperfect FGM 

plate 

 =0,2 

RC beam with 

Sandwich FGM 

plate 

Shear Normal Shear Normal Shear Normal Shear Normal Shear Normal Shear Normal 

Present 

Model 
-2.13 -1.165 -7.022 -5.092 -0.75 -0.337 -1.30 -0.626 -2.06 -1.077 -1.89 -1.026 

Rabahi 

2016 
-2.38 -2.389 -7.868 -5.664 -0.84 -0.384 -1.45 -0.705 -2.31 -1.206 -2.12 -1.149 

Tounsi 

2008 
-2.10 -1.149 -6.927 -5.026 -0.74 -0.331 -1.28 -0.617 -2.03 -1.063 -1.87 -1.012 

Damaged RC Beam (=0,1) bonded with a thin plate subjected to a Two Symmetric Point Load 

Model 

RC beam with 

CFRP plate 

RC beam with 

GFRP plate 

RC beam with 

Steel plate 

RC beam with 

perfect FGM 

plate 

 =0 

RC beam with 

imperfect FGM 

plate 

 =0,2 

RC beam with 

Sandwich FGM 

plate 

Shear Normal Shear Normal Shear Normal Shear Normal Shear Normal Shear Normal 

Present 

Model 
2.861 1.678 1.836 1.371 3.279 1.768 3.105 1.687 2.880 1.629 2.928 1.709 

Rabahi 

2016 
3.211 1.866 2.0621 1.525 3.677 1.963 3.484 1.874 3.232 3.232 3.285 1.900 

Tounsi 

2008 
2.826 1.659 1.813 1.356 3.239 1.748 3.067 1.668 2.844 1.610 2.892 1.689 

Damaged RC Beam (=0,1) bonded with a prestressed “P = 80 kN” 

thin plate subjected to a Two Symmetric Point Load 

 

RC beam with 

CFRP plate 

RC beam with 

GFRP plate 

RC beam with 

Steel plate 

RC beam with 

perfect FGM 

plate 

 =0 

RC beam with 

imperfect FGM 

plate 

 =0,2 

RC beam with 

Sandwich FGM 

plate 

Shear Normal Shear Normal Shear Normal Shear Normal Shear Normal Shear Normal 

Present 

Model 
-1.73 -0.934 -6.510 -4.727 -0.38 -0.138 -0.91 -0.420 -1.66 -0.856 -1.50 -0.799 

Rabahi 

2016 
-1.94 -1.050 -7.312 -5.273 -0.43 -0.164 -1.03 -0.478 -1.87 -0.963 -1.68 -0.899 

Tounsi 

2008 
-1.70 -0.922 -6.429 -4.672 -0.37 -0.135 -0.90 -0.414 -1.64 -0.845 -1.48 -0.788 
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Fig. 4 Comparison of shear interfacial stress in RC beam bonded with prestressed FGM plate P0 = 0 

 

  

Fig. 5 Adhesive shear stress along the bond line for 

FGM strengthened 

Fig. 6 Adhesive peel-off stress along the bond line 

for the Perfect FGM strengthened RC beam with 

different prestressing force P 
 

 

Figs. 5 and 6 plot the interfacial shear and normal stress for the steel beam strengthened with 

bonded prestressed FGM plate for the mid-point load case, from these results, one can observe: 

- Maximum stress occurs at the ends of adhesively bonded plates, and the normal, or 

peeling, stress disappears at around 20 mm from the end of the plates. 

- It is seen that increasing the value of prestressing force P leads to high stress 

concentrations. 
 

Effect of plate stiffness on interfacial stress: Tables 2a, 2b and 2c gives interfacial normal and 

shear stresses for the RC beam bonded with a CFRP, GFRP, steel and FGM plate, respectively, 

which demonstrates the effect of plate material properties on interfacial stresses. The length of the 

plate is Lp=2400mm, and the thickness of the plate and the adhesive layer are both 4 mm. The 

results show that, as the plate material becomes softer (from FGM to steel, to CFRP and then 

GFRP), the interfacial stresses become smaller, as expected. This is because, under the same load, 

the tensile force developed in the plate is smaller, which leads to reduced interfacial stresses. The 

position of the peak interfacial shear stress moves closer to the free edge as the plate becomes less 

stiff. The effect of plate stiffness on interfacial stress table 2 gives interfacial normal and shear 

stresses for the RC beam bonded with an FGM plate, respectively, which demonstrates the effect 
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Elastic analysis of interfacial stresses in prestressed PFGM-RC hybrid beams 

of plate material properties on interfacial stresses. The results show that, as the plate material 

becomes softer (from FGM- Al2O3 and then Sandwich with homogeneous face sheet and FGM 

core), the interfacial stresses become smaller, as expected. This is because, under the same load, 

the tensile force developed in the plate is smaller, which leads to reduced interfacial stresses. The 

position of the peak interfacial shear stress moves closer to the free edge as the plate becomes less 

stiff. 
 

 

Table 3 Effect of the laminate thickness of damaged RC beam bonded with a prestressed (P = 80 kN) thin 

FGM plate subjected to a uniformly distributed load 

Perfect 

P-FGM 

Effect of damage 
t2 = 2 t2 = 4 t2 = 6 

Shear Stress Normal Stress Shear Stress Normal Stress Shear Stress Normal Stress 

 =0 -4,974 -4,404 -2,262 -1,114 -0,920 -0,229 

 =0,1 -4,568 -4,045 -1,918 -0,929 -0,607 -0,097 

 =0,3 -3,616 -3,198 -1,115 -0,489 0,117 0,217 

Imperfect 

P-FGM 

 =0,1 

Effect of damage 
t2 = 2 t2 = 4 t2 = 6 

Shear Stress Normal Stress Shear Stress Normal Stress Shear Stress Normal Stress 

 =0 -5,3931 -2,4271 -2.593 -1.319 -1,211 -0,585 

 =0,1 -4,976 -2,238 -2.245 1.127 -0,891 -0,387 

 =0,3 -4,001 -1,794 -1.423 -0.670 -0,150 0.082 

Imperfect 

P-FGM 

 =0,2 

Effect of damage 
t2 = 2 t2 = 4 t2 = 6 

Shear Stress Normal Stress Shear Stress Normal Stress Shear Stress Normal Stress 

 =0 -5,861 -5,418 -2,976 -1,560 -1,552 -0,506 

 =0,1 -5,432 -5,026 -2,616 -1,360 -1,224 -0,364 

 =0,3 -4,429 -4,099 -1,774 -0,884 -0,461 -0,027 

 

Table 4. Effect of adhesive layer thickness of damaged RC beam bonded with a prestressed (P = 80 kN) thin 

FGM plate subjected to a uniformly distributed load 

Perfect 

P-FGM 

Effect of damage  
ta = 1 ta = 2 ta = 4 

Shear Stress Normal Stress Shear Stress Normal Stress Shear Stress Normal Stress 

 =0 -2,392 -1,404 -2,262 -1,114 -2,049 -0,846 

 =0,1 -2,023 -1,164 -1,918 -0,929 -1,746 -0,709 

 =0,3 -1,171 -0,604 -1,115 -0,489 -1,020 -0,377 

Imperfect 

P-FGM 

 =0,1 

Effect of damage 
ta = 1 ta = 2 ta = 4 

Shear Stress Normal Stress Shear Stress Normal Stress Shear Stress Normal Stress 

 =0 -2.742 -1.661 -2.593 -1.319 -2.357 -1.004 

 =0,1 -2.363 -1.411 -2.245 1.127 -2.049 -0.862 

 =0,3 -1.489 -0.828 -1.423 -0.670 -1.309 -0.519 

Imperfect 

P-FGM 

 =0,2 

Effect of damage 
ta = 1 ta = 2 ta = 4 

Shear Stress Normal Stress Shear Stress Normal Stress Shear Stress Normal Stress 

 =0 -3,140 -1,964 -2,976 -1,560 -2,708 -1,189 

 =0,1 -2,750 -1,704 -2,616 -1,360 -2,393 -1,043 

 =0,3 -1,852 -1,094 -1,774 -0,884 -1,639 -0,686 
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Table 5 Effect of length of unstrengthened region “a” of damaged RC beam bonded with a prestressed (P = 

80 kN) thin FGM plate subjected to a uniformly distributed load 

Perfect  

 P-FGM  

Effect of 

damage 

a = 50 a = 100 a= 150 a =200 a = 300 

Shear 

Stress 

Normal 

Stress 

Shear 

Stress 

NormalStr

ess 

Shear 

Stress 

Normal 

Stress 

Shear 

Stress 

Normal 

Stress 

Shear 

Stress 

Normal 

Stress 

 =0 -3,546 -1,832 -3,269 -1,677 -3,002 -1,527 -2,745 -1,384 -2,262 -1,114 

 =0,1 -3,264 -1,685 -2,974 -1,522 -2,694 -1,365 -2,424 -1,213 -1,918 -0,929 

 =0,3 -2,610 -1,341 -2,287 -1,157 -1,976 -0,980 -1,677 -0,810 -1,115 -0,489 

Imperfect 

P-FGM  

 =0,1 

Effect of 

damage 

a = 50 a = 100 a= 150 a =200 a = 300 

Shear 

Stress 

Normal 

Stress 

Shear 

Stress 

Normal 

Stress 

Shear 

Stress 

Normal 

Stress 

Shear 

Stress 

Normal 

Stress 

Shear 

Stress 

Normal 

Stress 

 =0 -3,837 -2,026 -3,569 -1,874 -3,311 -1,727 -3,063 -1,585 -2,596 -1,320 

 =0,1 -3,547 -1,872 -3,266 -1,711 -2,995 -1,556 -2,735 -1,407 -2,245 -1,127 

 =0,3 -2,873 -1,512 -2,559 -1,330 -2,258 -1,155 -1,968 -0,987 -1,423 -0,671 

Imperfect 

P-FGM  

 =0,2 

Effect of 

damage 

a = 50 a = 100 a= 150 a =200 a = 300 

Shear 

Stress 

Normal 

Stress 

Shear 

Stress 

Normal 

Stress 

Shear 

Stress 

Normal 

Stress 

Shear 

Stress 

Normal 

Stress 

Shear 

Stress 

Normal 

Stress 

 =0 -4,170 -2,254 -3,912 -2,104 -3,664 -1,960 -3,425 -1,821 -2,976 -1,560 

 =0,1 -3,871 -2,092 -3,600 -1,934 -3,339 -1,782 -3,088 -1,635 -2,616 -1,360 

 =0,3 -1,712 0,069 -2,871 -1,533 -2,580 -1,361 -2,300 -1,196 -1,774 -0,884 

 

 

Effect of the laminate thickness: The thickness of the laminate plate is an important design 

variable in practice. Peak shear and peeling stress for various numbers of laminate layers appear in 

table 3. The results reveal that the number of the laminate layers significantly lowers edge peeling 

and shear stress. This is due to the simple fact that the initial strain will be lower for thicker 

laminates. 

Effect of adhesive layer thickness: table 4 show the effects of the thickness of the adhesive 

layer on the interfacial stresses. Increasing the thickness of the adhesive layer leads to a significant 

reduction in the peak interfacial stresses. Thus, using thick adhesive layer, especially in the 

vicinity of the edge, is recommended. In addition, it can be shown that these stresses decrease 

during time, until they become almost constant after a very long time. 

Effect of length of unstrengthened region “a”: The influence of the length of the ordinary-

beam region (the region between the support and the end of the composite strip on the edge 

stresses) appears in table 5. It is seen that, as the plate terminates further away from the supports, 

the interfacial stresses increase significantly. This result reveals that in any case of strengthening, 

including cases where retrofitting is required in a limited zone of maximum bending moments at 

midspan, it is recommended to extend the strengthening strip as possible to the lines.   
 

 

4. Conclusion  
 

This paper has presented an interfacial stress analysis for damaged reinforced concrete beams 

strengthened with bonded prestressed functionally graded material plate under and subjected to a 

uniformly distributed load, arbitrarily positioned single point load, or two symmetric point loads. 

Such interfacial stresses provide the basis for understanding debonding failures in such RC beams 
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and for the development of suitable design rules. It is shown that the in homogeneities play an 

important role in interfacial stresses. The obtained solution could serve as a basis for establishing 

simplified FGM theories or as a benchmark result to assess other approximate methodologies. The 

results show that the damage has a significant effect on the interfacial stresses in FGM–damaged 

RC beam, especially, when the length of damaged region is equal or superior to the plate length. 

Consequently, it is recommended to use a strengthening plate having length, superior to the 

damaged zone. The simplified solution to the interfacial shear stress in the prestressed FRP-plated 

damaged RC beams can be further exploited to develop a design method to predict the first 

debonding crack load. To this end, appropriate calibrations with adequate experimental results and 

field test data should be carried out using the reliability analysis. This is a part of our future work. 

We can conclude that this research is helpful for the understanding on mechanical behavior of the 

interface and design of the FGM–RC hybrid structures. The new solution is general in nature and 

may be applicable to all kinds of materials. 
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