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Abstract.    The nonlinear thermal buckling load parameter of the laminated composite panel structure is 
investigated numerically using the higher-order theory including the stretching effect through the thickness and 
presented in this research article. The large geometrical distortion of the curved panel structure due to the elevated 
thermal loading is modeled via Green-Lagrange strain field including all of the higher-order terms to achieve the 
required generality. The desired solutions are obtained numerically using the finite element steps in conjunction with 
the direct iterative method. The concurrence of the present nonlinear panel model has been established via adequate 
comparison study with available published data. Finally, the effect of different influential parameters which affect the 
nonlinear buckling strength of laminated composite structure are examined through numerous numerical examples 
and discussed in details. 
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1. Introduction 
 

The development and subsequent advancement in the field of composite materials 
impersonated quite literally because of their unique lightweight and higher strength and stiffness 
properties including greater fatigue strength. This, in turn, increases the accessibility of the layered 
composite structure in the modern engineering (aeronautical, aerospace, automobile, sports and 
naval) industries where they are subjected to hostile environment under severe axial mechanical 
load while in service. The shear deformable laminated structures tend to buckle under couple 
thermomechanical loading. However, the buckling does not mean the final failure of the structure 
as the structure is capable of taking an extra amount of load after the geometrical distortion 
induced due to buckling known as its post-buckling strength. Hence, it is important from the 
designer’s point of view to know the actual critical buckling load parameter and the corresponding 
post-buckling strength of layered structural component for their optimal design for subsequent 
application. As buckling is the geometrical instability of the structure due to the in-plane 
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(mechanical, thermal and thermomechanical) loadings and can be modeled via the strain-
displacement field. In general, the geometrical distortion associated with buckling is nonlinear in 
nature. Hence, the different kinds of strain fields (von-Karman and Green–Lagrange) in 
combination with various mid-kinematic theories are adopted by the designers for the exact 
modeling of the geometrical imperfection of the structural component. 

Few articles are discussed in the following lines to establish the research gap from the earlier to 
the current day. Nath and Sandeep (1993) provided analytical solutions for the critical buckling 
and post-buckling responses of the laminated shallow spherical shell panel under uniformly 
distributed mechanical loading using Chebyshev series. The thermal critical buckling and the post-
buckling loads of laminated composite plate are evaluated numerically using a four-node 
rectangular C1 continuous finite element (FE) by Singh and Rao (1993). Further, Reddy’s higher-
order shear deformation plate theory (HSDPT) in association with the perturbation technique is 
adopted by Shen (2000, 2001) for the evaluation of the buckling and post-buckling responses of 
the laminated plate structure under the uniform temperature and temperature dependant properties 
including the foundation effect (Nikrad et al. 2015). The post-buckling responses of laminated 
structure are investigated from time to time using the HSDPT, the first-order shear deformation 
plate theory (FSDPT) or the third-order shear deformation theory (TSDT) including von-Karman 
nonlinear strain field under the temperature or the combined thermomechanical loading (Shukla 
and Nath 2002, Thankam et al. 2003 and Girish and Ramachandra 2005, Asadi et al. 2015a, b, c, 
2017a, b). Further, the modified feasible direction technique (MFD) adopted by Topal (2009) for 
the prediction of the optimized frequency and buckling load parameter of the laminated cylindrical 
shell panel using the FSDPT kinematics and the finite element method (FEM). Vosoughi et al. 
(2011) reported the thermal post-buckling strength of the composite skew plate structure using the 
FSDPT mid-plane theory and Green’s strain field including von-Karman assumptions. Panda and 
Singh (2013) examined the thermal post-buckling responses of the shallow spherical panel 
structure numerically using the nonlinear FEM. They have adopted the HSDPT and Green-
Lagrange strain field for the modeling of the layered structure. Similarly, the buckling and post-
buckling responses of the laminated composite and the skew sandwich plate structure are 
investigated by Upadhyay and Shukla (2013) using von-Karman type nonlinear strain kinematics 
in the framework of the HSDPT. Also, the HSDPT kinematics in association with Green-Lagrange 
strain field has been implemented for the modeling and analysis of nonlinear modal values of the 
laminated curved panel structure by Singh and Panda (2014). Subsequently, the buckling and the 
post-buckling strength of the laminated composite structure are modeled using the various 
kinematic theories (FSDPT, HSDPT, layerwise theory and classical laminate theory) and the 
nonlinear strain kinematics (von-Karman and Green-Lagrange) for the inclusion of excess 
geometrical distortion (Duran et al. 2015, Nikrad and Asadi 2015, Baseri et al. 2016, Cetkovic 
2016, Kandasamy et al. 2016, Katariya and Panda 2016, Namdar and Darendeliler 2017) with and 
without thermal environment. In general, most of the research articles are employed the FEM 
techniques for the evaluation of the geometrical instability either using their own computer code or 
the commercial FE tool (ANSYS/ABAQUS) under the influence of the elevated thermal 
environment. 

From the review, it is understood that a considerable amount of research have already been 
published on the linear/nonlinear buckling strength of the layered structure under the influence of 
the mechanical and/or thermal loading with and without temperature dependent composite 
properties. Additionally, we also note that most of the composite models are based on von-Karman 
type of geometrical nonlinearity in the framework of the HSDPT/FSDPT mid-plane kinematics for 
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the inclusion of excess thermal distortion. However, studies related to the geometrically nonlinear 
buckling behavior of laminated structures incorporating the extension/stretching terms alongside 
full nonlinearity in Green-Lagrange sense and including all the nonlinear higher-order terms in the 
formulation is not yet reported. Based on the available research gap, the laminated structural 
model has been developed using a higher-order kinematics and Green-Lagrange strain field 
including all of the nonlinear higher-order terms. The structural equilibrium equation is obtained 
by minimizing the total potential energy functional in conjunction with the isoparametric finite 
element steps. The desired post-buckling strength are obtained numerically with the help a direct 
iterative method. Further, the model stability including the accuracy has been demonstrated by 
solving the different numerical examples. Finally, the effect of various geometrical parameters 
which influence the thermal post-buckling load is obtained computationally using the proposed 
numerical model and discussed in details. 
 
 

2. Mathematical modeling 
 

2.1 Geometry and displacement field 
 
In the present study, the nonlinear buckling strength of the laminated composite flat and 

cylindrical shell panel composed of ‘N’ numbers of orthotropic layers of uniform thickness ‘h’ 
refer to Fig. 1. The shell panel dimensions utilized for the current analysis are length ‘a’, width ‘b’, 
and total thickness ‘h’. Additionally, ‘Rx’ and ‘Ry’ are the principal radii of the curvatures of the 
panel in their respective directions. It is assumed that the panel is stress-free at the constant 
temperature T0 and the temperature rise, ΔT = T ˗ T0, is uniform within the plate. The displacement 
field of laminated composite shell panel is considered based on the HSDPT mid-plane kinematics 
including the extension/stretching terms as in Katariya and Panda (2016) 
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(1)

 

where, ‘t’ is the time, u, v and w are the displacement of any point within the panel along x, y and z 
directions, respectively. u0, v0 and w0 are the mid-plane displacement of any point within the panel 
along x, y and z directions, respectively. Similarly, θx, θy and θz are the rotation of normal to the 
mid-plane and extension terms, respectively along the corresponding directions. The functions u*

0, 
 
 

Fig. 1 Configuration of laminated composite shell panel 
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v*
0, θ

*
x and θ*

y are higher order terms of Taylor series expansion in the mid-plane of the shell panel. 
 
2.2 Strain-displacement field 
 
In order to consider the full geometric distortion, the nonlinear strain-displacement relation for 

the laminated composite shell panel is expressed based on Green-Lagrange type of nonlinearity as 
in Reddy (2004) 
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The strain terms can be represented in terms of mid-plane strain terms by incorporating Eq. (1) 
in Eq. (2) as 
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where, [Tl] and [Tnl] are the thickness co-ordinate matrix associated with the linear and nonlinear 
mid-plane strains and the details can be seen in Singh and Panda (2014). The terms }{ l  and }{ nl
are the mid-plane linear and nonlinear strain vectors and can be seen in Eq. (3). 

 
2.3 Constitutive relation 
 
The desired thermo-elastic constitutive relation of any arbitrary kth layer of the orthotropic 

composite lamina is oriented at an arbitrary angle ϴ about any arbitrary axes are given by Jones 
(1999) 
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k T    is the transformed thermal expansion coefficient vector for 
the kth layer and the uniform temperature rise is denoted as ΔT. 

Now, the thermal in-plane forces can be obtained by integrating the Eq. (4) over the thickness 
of the panel and can be expressed in the following mathematical form 
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where,      , andt t tN M P   are the resultant compressive in-plane membrane force vectors, 
moments and the higher order terms, respectively. 

 
2.4 Strain energy of the laminate 
 
The strain energy (US.E.) of the laminated composite shell panel can be expressed as 
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By substituting the total strain and the stress tensors from the Eqs. (3) and (4) into the energy 

Eq. (6) and the final form of the energy functional of the panel configuration under uniform 
temperature loading expressed as 
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2.5 Work done by the uniform temperature field 
 
The total work done (WΔT) by the in-plane thermal membrane force due to the influence of the 

uniform temperature rise (ΔT) of the curved laminated structural panel is computed using the 
Green-Lagrange type of strain field and expressed as 

353



 
 
 
 
 
 

Pankaj V. Katariya, Subrata K. Panda and Trupti R. Mahapatra 

       

       
          

2 2 2

, , ,

2 2 2

, , ,

, , , , , ,

1

2

2

x x x tx

T y y y tyv

x y x y x y txy

u v w N

W u v w N dV

u u v v w w N



 



       
 
        
      



 

(8)

 
where,     , andtx ty txyN N N   are the in-plane thermal force resultants per unit length. 

The above work done expression as provided in Eq. (8) is linearized employing the procedure 
as given in Cook et al. (2000) and conceded as 
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where, {εG} and {DG}represents the geometric strain and the material property matrix, respectively 
due to the in-plane thermal loading. 

 
2.6 Finite element formulation 
 
FEM is widely appreciated numerical tool for the structural analysis of various geometrical and 

material complexities. In the present work, a nine-noded isoparametric element with ten DOFs per 
node is adopted for the discretization purpose. The displacement field of the present model 
expressed in terms of desired field variables. The displacement vector {δ} at any point on the mid-
surface is given by 
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where 
 

        1

2

TT

T G G Gi ii iA
W B D B dA    (12)

 
The linear and nonlinear mid-plane strain vectors are rewritten in form of the nodal 

displacement vectors and mathematically expressed as 
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          ,l nl GB A     (13)
 

where, [B] linear strain-displacement matrix including the nodal shape functions and operator 
matrix. Whereas [A] is the function of displacements associated with the nonlinear strain. 
Additionally, [G] is the product form of differential operator and shape function in the nonlinear 
strain terms as same as the linear case. The details regarding the individual matrices can be seen in 
Singh and Panda (2014). 

 
2.7 System of governing equation 
 
The final form of the governing equation for the laminated shell panel is obtained by 

minimizing the energy expression and can be written as 
 

0  (14)
 

where, Π = (US.E. ‒ WΔT). 
Using Eqs. (7)-(14) the final governing equation of the system can be expressed as Panda and 

Singh (2013) 

         0l nl cr GK K T K    (15)
 
Here, the force vector at right-hand side is zero and the effect of the temperature is considered 

in the geometric matrix [KG]. The lowest eigenvalue, Tcr is the critical buckling temperature load. 
The {δ} is the global displacement vector, [Kl] and [Knl] are the linear and the nonlinear global 
stiffness matrices, respectively. Further, the direct iterative procedure has been adopted for the 
solution of the Eq. (15) and the details regarding the implementation of nonlinear solution steps 
can be seen from the source (Panda and Singh 2013). 
 
 
3. Results and discussion 
 

After the development of the current higher-order nonlinear model and the corresponding 
computer code is further employed for the computation of results. The accuracy including the 
stability of the developed model established through the proper convergence and comparison. For 
the analysis purpose, the material properties are taken as same as Vosoughi et al. (2011) and 
provided i.e., E1/E2 = 40; G12/E2 = 0.6; G13 = G12; G23/E2 = 0.5; υ12 = 0.25; α2/α1 = 10, (where, ‘E’, 
‘G’, ‘υ’, and ‘α’ are Young’s modulus, shear modulus, Poisson’s ratio, and coefficient of thermal 
expansion). For the computational purpose, the simply support end conditions are taken 
throughout the analysis, if not stated otherwise and represented as 

 

0**
000  yzy vwv     at   x = 0,   a 

 
0**

000  xzX uwu     at   y = 0,   b 
 
Now, the convergence behaviour of the current numerical solutions are checked and compared 

with available published results. For the convergence, a square simply supported laminated 
composite plate responses are obtained using the present nonlinear model and presented in Fig. 2 
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Fig. 2 Convergence study of the temperature ratio (T/Tcr) to different mesh division of a simply-
supported square symmetric angle-ply [±45°]S laminated composite flat panel (b/h = 30) 

 
 

Table 1 Comparison study of the temperature ratio (T/Tcr) of a simply-supported square symmetric angle-ply 
([±45°]S) laminated composite flat panel (b/h = 30) 

Wmax/h 
Present Vosoughi et al. (2011) Thankam et al. (2003) Singh and Rao (1993) 

T/Tcr 

0.2 1.0088 1.0506 1.051 1.051 

0.4 1.1344 1.2027 1.204 1.203 

0.6 1.3728 1.457 1.459 1.459 

 
 

for the different mesh divisions. From the responses, it is understood that the present results are 
converging well with the change in mesh sizes. The responses are computed by setting other 
related parameter i.e., three amplitude ratios (Wmax/h = 0.2, 0.4 and 0.6), symmetric angle-ply 
[±45°]S lamination and the side-to-thickness ratio, b/h = 30 (where, Wmax is the maximum central 
deflection of the panel structure). From the figure, it is understood that the responses are 
converging well with mesh refinement and 36 elements are sufficient to compute the responses, 
and the same is used throughout for the further analysis purpose. 

Now, the present developed numerical model is validated by comparing the obtained results 
with the available published literature and presented in Table 1. For the computation purpose, the 
geometrical and material parameters are taken to be same as Vosoughi et al. (2011), and the 
responses are obtained for square symmetric angle-ply [±45°]S laminated composite flat panel. It is 
observed that the present results are as good as the reference values and the maximum difference is 
within 14%. It is important to mention that the difference arises between the present and reference 
results are due to the fact that the present model is developed using Green–Lagrange type of 
nonlinearity in the framework of the HSDT. In addition, the presently developed model includes 
all the nonlinear higher-order terms in the mathematical model that accounts for the original 
flexure of the shell panel structures more accurately. 
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3.1 Numerical examples 
 
In this section, some new results are computed for the different geometrical parameters using 

the earlier defined support conditions and material properties to show the robustness of the present 
developed mathematical model. In this article, two different shell geometries viz. flat and 
cylindrical panels are analysed. The responses are computed for symmetric angle-ply ([±45°]S) 
laminated composite shell panel and the effect of side-to-thickness ratios, curvature ratios (R/a = 2, 
5, 20, 50, and 100), aspect ratios (a/b = 1, 1.5, 2, and 5) and amplitude ratios (Wmax/h = 0.2, 0.4, 
1.0, 1.5, and 2.0) has been investigated to put forward few useful inferences. 

 
3.1.1 Effect of side-to-thickness ratio 
It is well known that the side-to-thickness ratio (b/h) increases than the structure become thin 

and it can be buckled easily. In order to investigate the effect, the nonlinear thermal buckling load 
responses of the square simply-supported angle-ply [±45°]S laminated composite flat and 
cylindrical panels are obtained using the various geometrical parameters. The responses are 
obtained using b/h = 5, 10, 20, 30, 50, and 100, R/a = 20, Wmax/h = 1.0 and presented in Fig. 3. 
From the responses, it is observed that the nonlinear thermal buckling load decrease with 
increasing side-to-thickness ratio (b/h) which is a general case. This is because of the change in the 
stiffness of the structure, which affects the responses greatly. It is also noted that the differences in 
the buckling responses for different shell geometries (cylindrical and flat) are insignificant. 

 
3.1.2 Effect of aspect ratio 
It is well known that the aspect ratio of any structure is an important parameter to maintain the 

stable configuration. In addition, the structural stiffness is also significantly affected due to this. In 
this example, the effects of aspect ratio on the nonlinear thermal buckling load responses of the 
simply-supported angle-ply [±45°] S laminated composite flat and cylindrical panels has been 
investigated. For the computation purpose, the geometrical parameters are considered as a/b = 1, 
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Fig. 3 Effect of side-to-thickness ratio (a/h) on nonlinear thermal buckling load of a square simply-

supported symmetric angle-ply ([±45°]S) laminated composite flat and cylindrical shell panel 
(Wmax/h = 1.0; R/a = 20) 
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1.5, 2, and 5, R/a = 20, b/h = 100, Wmax/h = 1.0 and the responses are presented in Fig. 4. From the 
responses, it is observed that the nonlinear thermal buckling load decrease with an increase in the 
aspect ratio (a/b) which is expected and the reason behind this is the stiffness of the structure 
changes. However, it is worthy to note that the cylindrical panels show higher buckling load 
parameter in comparison to the flat panels irrespective of the aspect ratio values considered. 

 
3.1.3 Effect of curvature ratio 
Now, the effect of the curvature ratio (R/a) on the nonlinear thermal buckling load behaviour of 

the square simply supported angle-ply [±45°] S laminated composite cylindrical panel is studied. 
The responses are computed for the five curvature ratios, R/a = 2, 5, 20, 50, and 100 including b/h 
= 100 and Wmax/h = 1.0. The responses are plotted in Fig. 5. From the responses, it is observed that 
the nonlinear thermal buckling load decrease with an increase in the curvature ratio (R/a). This is 
because of the reduction in the overall structural stiffness of the panel structure, which decreases 
as the curvature ratio increases and as the curvature ratio increases the curved panel approaches to 
flat one, and the curved panels have higher membrane energy than the flat panels. 

 
3.1.4 Effect of amplitude ratio 
Various geometrical parameters have been considered to show the effect of the amplitude ratio 

(Wmax/h) on the nonlinear thermal buckling load of the square simply-supported angle-ply [±45°]S 

laminated composite flat and cylindrical panels. The responses are computed using Wmax/h = 0.2, 
0.4, 1.0, 1.5, and 2.0, R/a = 20, b/h = 100 and presented in Fig. 6. From the responses, it is 
observed that the nonlinear thermal buckling load increases with an increase in the amplitude ratio 
(Wmax/h). However, flat panels exhibit lower thermal buckling load parameters as compared to the 
cylindrical panels over the entire range of amplitude ratio values under consideration. 

The nonlinear thermal buckling load parameter of the laminated composite shell panel structure 
is analysed in the present article. As a first step, a general mathematical model is developed based 
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Fig. 4 Effect of aspect ratio (R/a) on nonlinear thermal buckling load of a simply-supported symmetric 

angle-ply ([±45°]S) laminated composite flat and cylindrical shell panel (Wmax/h = 1.0; b/h = 100; 
R/a = 20) 
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Fig. 5 Effect of curvature ratio (R/a) on nonlinear thermal buckling load of a square simply-supported 
symmetric angle-ply ([±45°]S) laminated composite cylindrical shell panel (Wmax/h = 1.0; b/h = 100)
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Fig. 6 Effect of amplitude ratio (W/h) on nonlinear thermal buckling load of a square simply-supported 
symmetric angle-ply ([±45°]S) laminated composite flat and cylindrical shell panel (b/h = 100; 
R/a = 20) 

 
 

on the higher-order kinematics for laminated flat/curved shell panel by considering the 
nonlinearity associated with geometry in Green–Lagrange sense. In addition to that, all the higher-
order terms associated with the present nonlinear mathematical model are included in the 
formulation to obtain the exact behaviour of the structure. The differential governing equation of 
the laminated composite shell panel has been obtained using the finite element steps for the 
discretization purpose in conjunction with the direct iterative method. For the computational 
purpose, a generalized homemade computer code is developed in MATLAB environment based on 
the present mathematical model. Finally, few sets of numerical examples have been solved to bring 
out the effect of various geometrical parameters on the nonlinear thermal buckling load of the 
laminated composite shell panel structures and discussed in detail. The results indicate that, the 
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nonlinear thermal buckling load decrease with an increase in the side-to-thickness ratios, the 
aspect ratios as well as the curvature ratios whereas the nonlinear thermal buckling load increase 
with an increase in the amplitude ratios. This is because of the change in the stiffness of the 
structure, which affects the responses greatly. 

 
 

4. Conclusions 
 

The nonlinear thermal buckling load parameter of the laminated composite shell panel structure 
is analysed in the present article. As a first step, a general mathematical model is developed based 
on the higher-order kinematics for laminated flat/curved shell panel by considering the 
nonlinearity associated with geometry in Green–Lagrange sense. In addition to that, all the higher-
order terms associated with the present nonlinear mathematical model are included in the 
formulation to obtain the exact behaviour of the structure. The differential governing equation of 
the laminated composite shell panel has been obtained using the finite element steps for the 
discretization purpose in conjunction with the direct iterative method. For the computational 
purpose, a generalized homemade computer code is developed in MATLAB environment based on 
the present mathematical model. Finally, few sets of numerical examples have been solved to bring 
out the effect of various geometrical parameters on the nonlinear thermal buckling load of the 
laminated composite shell panel structures and discussed in detail. The results indicate that, the 
nonlinear thermal buckling load decrease with an increase in the side-to-thickness ratios, the 
aspect ratios as well as the curvature ratios whereas the nonlinear thermal buckling load increase 
with an increase in the amplitude ratios. This is because of the change in the stiffness of the 
structure, which affects the responses greatly. 
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