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Effects of thickness stretching in FGM plates using a quasi-3D
higher order shear deformation theory
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Abstract. In this paper, a higher order shear and normal deformation theory is presented for
functionally graded material (FGM) plates. By dividing the transverse displacement into bending, shear
and thickness stretching parts, the number of unknowns and governing equations for the present theory
is reduced, significantly facilitating engineering analysis. Indeed, the number of unknown functions
involved in the present theory is only five, as opposed to six or even greater numbers in the case of
other shear and normal deformation theories. The present theory accounts for both shear deformation
and thickness stretching effects by a hyperbolic variation of ail displacements across the thickness and
satisfies the stress-free boundary conditions on the upper and lower surfaces of the plate without
requiring any shear correction factor. Equations of motion are derived from Hamilton’s principle.
Analytical solutions for the bending and free vibration analysis are obtained for simply supported
plates. The obtained results are compared with three-dimensional and quasi- three-dimensional
solutions and those predicted by other plate theories. It can be concluded that the present theory is not
only accurate but also simple in predicting the bending and free vibration responses of functionally
graded plates.

Keywords: Functionally Graded Material; power law index; Higher-order Shear Deformation Theory;
Navier solution

1. Introduction

The concept of functionally graded materials FGM was first introduced in 1984 by material
scientists in the Sendai area of Japan. FGM is a class of composite materials that has continuous
variation of material properties from one surface to another and thus eliminates the stress
concentration found in laminated composites. Typically, the FGM is made from a mixture of a
ceramic and a metal. FGMs are widely used in many structural applications such as mechanical,
aerospace, civil, and automotive. When the application of FGMs increases, more accurate theories
are required to predict their responses.

In the past three decades, researches on functionally graded material plates have received
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substantial attention, and an extensive spectrum of plate theories has been introduced based on the
classical plate theory and shear deformation plate theory. The classical plate theory (CPT) neglects
shear deformations and can lead to inaccurate results for moderately thick plates. This theory has
been implemented for buckling analysis of FGM plates by Feldman and Aboudi (1997), Abrate
(2008). First-order shear deformation theory (Reissner 1945, Mindlin 1951) considers the
transverse shear deformation effects, but needs a shear correction factor in order to satisfy the zero
transverse shear stress boundary conditions at the top and bottom of the plate. Many studies of the
mechanical behavior of plates have been carried out using FSDT (Moradi 2012, Menaa 2012,
Yaghoubi 2013 Gafour 2015, Baghdadi 2015, Rashidi 2012). To avoid the use of shear correction
factors, several higher-order shear deformation plate theories have been proposed such as the
theory propounded by Nelson and Lorch (1974) with nine unknowns, Lo et al. (1977) with eleven
unknowns, Bhi-maraddi and Stevens (1984) with five unknowns, Reddy (1984) with five
unknowns. Some higher order theories based on Carrera’s unified Formulation (CUF) such as
proposed in Refs (Neves 2012, Reddy 2000, Ait atman 2010, Abdelhak 2016, Ait yahi 2015,
Boumia 2014, Bouazza 2015, Bensatallah 2016, Bellifa 2015) have been used also to study FGM
structures. The majority of HSDTs used to investigate FGM plate mechanics have the same five
unknowns. The resulting equations of motion are much more complicated than those yielded with
FSDT. In addition, it should be noted that the above-mentioned two-dimensional plate theories
discard the thickness stretching effect as they consider a constant transverse displacement through
the thickness. This assumption is appropriate for thin or moderately thick FGM plates, but is
inadequate for thick FGM plates (Qian 2004). The importance of the thickness stretching effect in
FGM plates has been identified succinctly in the work of Carrera et al. (2011). This effect plays a
significant role in thick FGM plates and should be taken into consideration.

In general, higher order shear and normal deformation theories which consider thickness
stretching effect can be implemented using the unified formulation initially proposed by Carrera
(2005). More detailed information and applications of the unified formulation can be found in the
recent books by Carrera et al. (2011). Many higher order shear and normal deformation theories
have been proposed in the literature (Matsunaga 2009). These theories are cumbersome and
computation-ally expensive since they invariably generate a host of unknowns (e.g., theories by
Reddy (2011) with eleven unknowns; and Neves et al. (2012) with nine unknowns). Although
some well-known quasi-three-dimensional theories developed by Zenkour (2007) and recently by
Mantari and Guedes Soares (2012) have six unknowns, they are still more complicated than the
FSDT. Thus, there is a scope to develop an accurate higher order shear and normal deformation
theory, which is relatively simple to use and simultaneously retains important physical
characteristics. Indeed, Huu and Seung (2013) presented recently a quasi-3D sinusoidal shear
deformation theory with only five unknowns for bending behavior of FGM plates.

In this paper, an efficient and simple quasi-3D trigonometric shear and normal deformation
theory with only five unknowns is developed for FGM plates. Contrary to the four-variable refined
theories elaborated in (Hassaine Daouadji 2015, Tlidji 2014, Bennoun 2016, Hamidi 2015, Mahi
2016, Adim 2016, Benferhat 2016), where the stretching effect is neglected, in the current
investigation this so-called “stretching effect” is taken into consideration. Numerical examples are
presented to verify the accuracy of the present theory.

2. Problem formulation
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Fig. 1 Geometry of rectangular plate composed of FGM

2.1 The displacement field of the present theory is chosen based on the following
assumptions (Fig. 1)

- The transverse displacements are partitioned into bending, shear and stretching components;

- The in-plane displacement is partitioned into extension, bending and shear components;

- The bending parts of the in-plane displacements are similar to those given by CPT;

- The shear parts of the in-plane displacements give rise to the trigonometric variations of shear
strains and hence to shear stresses through the thickness of the plate in such a way that the shear
stresses vanish on the top and bottom surfaces of the plate.

Based on these assumptions, the following displacement field relations can be obtained

_ _ Ewb _ éws
u(Xv y,Z,t) - uO(X! yst) z aX f(Z) 5
_ ow, oW, (1)
» Yo ’t — Vo ) ’t - _f
v(X,Y,z,t) V(XY)Z5 (Z)S

W(X, Y, Z,1) =W, (X, Y, 1) + W (X, y, 1) + g(2)w, (X, y, 1)

Where u, and v, denote the displacements along the x and y coordinate directions of a point on
the mid-plane of the plate; w, and ws are the bending and shear components of the transverse
displacement, respectively; and the additional displacement w, accounts for the effect of normal
stress. In this study, the shape functions f{z) and g{z) are chosen based on the trigonometric
function &(z) proposed as (Hassaine Daouadji 2013)

f(2)=2-&2) with: £@) = %zh.tanh(%j—%z z.seC hz[%j @)
L df(@)
9(2) =1- =% ®)

The non-zero strains associated with the new displacement field in Eq. (1) are
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2.2 Governing equations

Hamilton’s principle is used herein to derive equations of motion. The principle can be stated in
an analytical form as follows

_|'OT(5U + SV —SK)dt =0 (5)

where oU is the variation of strain energy; 6V is the variation of potential energy; and JK is the
variation of kinetic energy. The variation of strain energy of the plate is calculated by

S e

M = [[(o,8e, +0,8, +0,8, +0,0, +0,5, +0,5,)dAdz (6
ha
2
2 2 2 2
csuzlj[NxauO MW s OV N g DWW g TV
2Ja ox ox? ox*? oy oy? oy? )
2 2
PNy au, +8v0 72M5ya W, 72ij8 W ey ow, +8WZ +Q, ow, +awz 1dA
oy oX oxoy oxXoy oX oX oy oy

where A is the top surface and the stress resultants N; M, and Q are defined by

N,, N,, N, 1
h/2
M2, M?, M} zjlh/Z(O'X,O'y,O'xy z dz (8a)
M:, M, M} f (2)
h/2
N, = [, (5,)9'(z)dz (80)

h/2

(Q.Q) =] (z..7,)9(2)dz (8c)

—h/2
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where
2 2 2
Nx = An aauxo + A12 éa\;? - Bll 58)\(/\2/b - Bl2 5abe Blsl aa)\(/\zls - Blsz % + X13Wz (9a)
au ov O*w, O*w, s O°W, s O°W,
Aiz &+ Azz 8; - BlZ axzb - Bzz 8y 3 Blz Ox 2 Bzz 8y + X23W (9b)
2 2
ny :Ase 8u0 +8V0 _ esm_ZBSGM (9¢c)
oy OX OXoy oxoy
ou ov, o°w, o%w, s 07w s O°W,
ME = Bll 8)(0 + BlZ 8; _Dllyzb_ 12?b D11 axz _D12 8y2 +Y13Wz (gd)
ou oV, o*w, o°w, s O°W, s 07w
MS = Blzgo"' Bzzgo_ 1287;)_ 22?b D12 6X2 - D22 2 +Y23Wz (96)
2 2
M2, = By OUo +% _2D66M_2D6§68 Ws (9f)
oy  Ox Oxoy OXOy
s < du < OV s 0w, s O°W s O°W, s 07w, s
Mx = Bllgo BlZ 6; - D11 axzb - D12 ay 2 H11 8X2 - H12 2 +Y13Wz (gg)
s s a s 8\/ s 62 s 82 s 82 S s 82 s s
My = BlZ ;XO Bzz a; - D12 a)\(l\zlb - D22 ayV\zlb - leT)\(Azl_ H22 ayV\zl +Y23Wz (gh)
2 2 i
M3 = BS Oy, Vo —ZDSGM—ZH%aW (9i)
oy  ox OXOy OXoOy
ou ov o%w, o%w, s 07w, s O°w, ;
Nz = Xlaa_xo"' X23EO_Y137:_Y23 8y 2 Y13 axz _Yza 2 +Z33Wz (91)
ow, aw
_ (9K)
Q=45 [ OX ox )
s [ OW, ow
Qy = A44[ =+ Zj on
oy oy
h/2 > >
(AJ' IJ’BIJ’BIJ’DIJ'DIJ’HIJ) Ih,z( z, f,z2°, 1z, f ):ijCIZ (9m)
/2 ’ I. ! ’
(X,,,YIJ Y Zi )= Ihlz(g ,9'2,9f,9"* IC;dz (9n)
The variation of potential energy of the applied loads can be expressed thus
&V =—[ a(Sw, + 3w, + g(2)dw, JdA (10)

where q is the distributed transverse load. The variation of kinetic energy of the plate can be
written in the form
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h/2
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+ 37 (W, + W, )W, +w,5 (W, +Ws))+ KZWZ&NZ]dA

where the dot- superscript convention corresponds to differentiation with respect to the time
variable t; and (1, 1,,37,3,,3,,K3, K, ) aremass inertias, defined as follows

H 1 ’

(o 1 1) =["" (@ 2,2%) p(2).0z (13a)
(3:.9,.3.)=[""" (9(2). £ (2). 2. f (2)) p(2) .0z (13b)
(K. K,)=["" (9% (@), 2 () p(2).0z (13c)

Substituting the expressions for oU; oV, and oK from Egs. (6), (10), and (12) into Eq. (5) and
integrating by parts, and collecting the coefficients of dug, dvy; dwy, dws and dw,, the following
equations of motion of the plate are obtained

ON, ON, . oW, oW

SUp: —X4+—Y =ty — 1, —>—J, —= (14a)
OX oy OX OX
aN aN .. .

svy: D Ty gy, W W (14b)
OX oy oy oy

sz aZM)t: 62Mb .. . 2. 2 ...
swy: TME o0 My Oy gy +w) 4 3w, 1, Doy Ko ) [0 | OV,
OX oxoy oy ox oy OX oy

[52\;\75 o2W, J (140)
-J, 2 T 2
OX oy
SW,: aZM:+26 Mxy+3 My+6Q Ry —Lrq= 1, (W, +W,)+ IS, +J [8[1‘0 +8\'/'0J_J2(62Wb+82\7\7bJ
ox? oxoy  oy? ox oy ox oy x> oy’
20 2 (14d)
oW, 0w,
-K, +
[5X2 oy* J
oQ Q
w, . —*+ —-N, + I (W, + W)+ Kow 14e
x T oy 99 = J; (W, ) (14e)
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2.3 Constitutive equations

The material properties of FGM plates are assumed to vary continuously through the thickness.
Three homogenization methods are deployable for the computation of the Young’s modulus E(z)
namely

- The exponential distribution,

- The power law distribution,

- The Mori-Tanaka scheme.

For the exponential distribution, the Young’s modulus is given as (Zenkour 2007)

E(Z) — EOeP(0.5+z/h) (15)

where Eq is the Young’s modulus of the homogeneous plate; E,=E, and E.=Eqe” denote Young’s
modulus of the bottom (metal) and top (ceramic) surfaces of the FGM plate, respectively; E, is
Young’s modulus of the homogeneous plate; and p is a parameter that indicates the material
variation through the plate thickness. For the power law distribution, the Young’s modulus is
given as (Reddy 2000)

1 =z
E(z) =E, +(E _Em)(E+F)P (16)
For Mori-Tanaka scheme, the Young’s modulus is given as (Mori Tanaka 1973)
1 z
(+2)yr
E(2) = E, + (E. — En)( 2_h ) 0
1+(1_(E+E)P)( Ec —1) @a+v)
2 h E.. 3—-3v
0.5
04 [/ / ’ ——
' / 0.4 ,/
03 sl f % » / P
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Fig. 2 The exponential distribution of the Fig. 3 The distribution of the Young’s modulus
Young’s modulus E(z) along the thickness of an E(z) along the thickness of an FGM plate
E-FGM plate according to Mori-Tanaka scheme
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The linear constitutive relations of a FG plate can be written as
(o _Cl , C, Cp, 0 0 0 (e,
C, C,, C, 0 0 0 gy

O-y

o,| |[Cs Ch Cy 0 0 0 |ls

s, o o o c, o0 0|7, (18)
c.] |0 0 0 0 c. 0 ||r

ow] LO 0 0 0 0 Cullry

where (ox, oy, Gi, T2 T Ty) AN (ex, &, €, Wi Pxe Pxy) are the stress and strain components,
respectively. The computation of the elastic constants C;; depends on which assumption of ¢, we
consider. If £,=0, then Cj; are the plane stress reduced elastic constants, defined as

E(2)

Ci=C, = a_v?) (19a)
C:12 = ‘/Cll (19b)
E(z
Cuis =Coss =Cq6 = ﬁ (19c)
If &,#0 (thickness stretching), then Cj; are the three-dimensional elastic constants, given by
@—v)E(2)
11 22 33 1—2v)1+v) (20a)
E(z2)
C..=C =
12 13 23 1—2v)(1+v) (20b)
E(z
Cus =Css =Cq6 = ﬁ (20c)
WvE(z
Lamé's coefficientsare: ~ A(Z) = a_ 21/)( (ZI?+ 9 (21a)
E(2)
2)=G(z2) = ——2—
1(2) (2) 2@+ (21b)

The module E(z), G(z) and the elastic coefficients C;; vary through the thickness according to
Egs. (15), (16) or (17). By substituting Eq. (4) into Eg. (18) and the subsequent results into Eq. (8),
the stress resultants are readily obtained as
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N={N,N,N_} M’={M> M2 M.} MS:{Mj,Mi,ij}, (23a)
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0 0 A 0 0 Bgg 0 0 D
B, BS, O Dy D O HSY HS O
B°=|By, B, O |, D°=|D D3 O |, H®=|H$ HS5 O (23d)
0 0 B 0 0 D& 0 0 5
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S =18%:Sy 1§, Y=V ¥y S As =" : 23e
{s5..85.) Ve 7y | o A (23¢)
L 1
L2 hi/2 z
= (= ] 2@ f@ 9'(2dz (23f)
—h/2
\ 1—v
R* g9'(2)
L v

where Aj;, Bjj, etc., are the plate stiffness, defined by

S S S _1_V

All Bll Dll Bll Dll Hll h/2 %

A, By Dy B D Hir= [100L22%1@.21@ @) 1 tdzr (4
_ —ZV

AGG BGS D66 BGSG DGSG H;G n'z

2v
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and: (AZZ' BZZ 1 D22 1 BZSZ’ DZSZ’ HZSZ): (A11' Bll’ Dll’ Blsl' Dlsli Hlsl) (24b)
h/2
AL =A% = [ r(2)(g(2))?dz, (24c)
—h/2

2.4 Equations of motion in terms of displacements

Introducing Eq. (23) into Eqg. (14), the equations of motion can be expressed in terms of
displacements (5u0; Ovg; Owp; ows and ow,) and the appropriate equations take the form

3

o%u o3v, o®w, 3w, s o°w,
A11 20 Ase Ase) 8; Bll? (Blz"'ZBes) % ayb _(Blz+2866) 8X8y
53W 8W oW, oW, (259)
- B s+ Xya e oty — 1, D g S
11 6X3 13 ax o*o 1 ax 1 ax
Uy g OWo (g op )W (g, ops s
A22 AGG AGG) axay 22 ay ( 12 + 66) ay ( 12 66) ax2ay
. N ) (25b)
- 55267"‘?{5+ x23—a""z g, — 1, Dy W
oy oy oy oy
83u, 83u, 83v, o%v o%w,
B, —= ox 3 + (B, + 2866) oxDy 2 + (B, + ZBGG) x20y + B, 6y30 — Dy, 6X4b
“w, o*w, s a“wS s s v O%wy s O%wy
- 2(D12 + 2D66) X 6yb D22 6y4b - D11 8X4 - 2(D12 + 2Dee) 6x28y2 - 22 6y4
87w, o%w, N N - ol, v, o%w, a2w, (25¢)
+ VY e + Yy, oy +q=1lo(W, +W,)+JI’W, +J, Bx +E — 1 Ve + oy?
2w 2w
—-J, 25 + 25
oX oy
. &%u < <. O%u <. O3 . O3 . 0w,
B; 8X30 + (B, +2Bgs) 6y0 + (B, + 2866)ﬁ+ B, 6'y30 — Dy, aX4b
4 4 4
_2(Dj, +2D5) 2 b3, OWe s OWe  oipys o) We
ox2oy? oy ox ox2dy (250)
S a W S a WS s 82WS S S 82WZ S S 82WZ
—H;, oy* + Ass Ox? A, >+ Y3+ AS) X2 + (Y5 + AL oy2 +q =
. . 2 2\ 2w 2
o (W + W) + JSW, "‘Jl[auo +8VO]_J2[8 V\zlb +8 V\zlbj_Kz[a V\le +a V\zlsj
oX oy OX oy OX oy
au ov o%w, o%w, w, o°w,
—X1367X0—X23 8; + VY 8X2b + Yo —— o2 —2 +(YlS+A55 23 4)ay7S
o2 e (25€)
+ Al 8X22 AZ ——5— — Z33W, +9gq = J; (W, + W) + KZw,

2.5 Analytical solutions
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Consider a simply supported rectangular plate with length a and width b under transverse load
g. Based on Navier solution method, the following expansions of displacements (Uo; Vo; Wp; Ws; W,)
are assumed as

o0

Umnei(ut
=1

Uy (X, Y) :2 cos(Ax) sin(wy)

n:

Vo(X,y) = iivmne‘“" sin(Ax) cos(y)

m=1 n=1

w, (X, y) = i:i:wbmne""t sin(Ax) sin(zy) (26)

m=1 n=1

W, (%, y) =3 S W, 6" sin(Ax) sin(uy)

m=1 n=1

w, (X, y) = iiwzmne‘"" sin(Ax) sin(xy)

m=1 n=1

where Unn, Vinn, Womn, Wemn @and Wy, unknown parameters must be determined, o is the Eigen

frequency associated with (m, n) the Eigen-mode, and A = % and = nT” :
The transverse load q is also expanded in the double-Fourier sine series as follows

A%, ¥) =3 3" Qy, sin(Ax) sin(usy) @7

m=1 n=1

The coefficients Qy, are given below for some typical loads

4 pra b . .
= 28
Qu = [ J, a0 ) sin(x) sin(zey)dxdy (28)
an = QO
169
an = —02
mnosc
Q1 &, 3 A, s m, O m; My, 0 Uon 0 (29)
A, Qy Q3 Ay, Ay 0 my, my; m, O Vi 0
dy; By By By By |—@° My My Mgy My, My [ KW, 0 =1Q,
a14 a24 a34 a44 a45 m14 m24 m34 m44 m45 Wsmn an
Qs Q5 Ags Q45 Agp 0 0 my my Mg | )|W,,
Where
;= A&l/lz + Aeezuz Q3 = _/’L[Bll/l2 + (B, + 2866)/’[2]
a,, = Au(A + Ass)
A, = —ALBSA + (B + 2B56) £.2] (30)

a5 = X34 A,z = _N[Bzzﬂz + (B, + 2866)/12]



234 Belkacem Adim and Tahar Hassaine Daouadji

A,y = AgeA” + Aul? a,, = —pB3 7 + (B, +2B5) A°]
A5 = X a1t Agz = DAY + 2(Dy, + 2Dge) A% 24* + Dyt
A5 = Yy3A” + Ypars® Ay, = DAA" + 2(Dy, + 2Dge) A% 4 + D3y’
Ags = AssA” + Alut® +Zs, a5 = (Y13 + AS) A + (Y + AL 4

Ay, = H:I_Sl/’l’4 -+ Z(Hlsz -+ 2H686)/12ﬂ2 -+ stzle4 -+ A‘Sss/’l'z -+ Ajmuz

m, =1, m, =—Al, rnl4=—/l\]1 m,, =1, m,, =—zd,
m,, = —xa, Mgy = 1y + 1, (2 + %) mMys = Jg
2 2
My, =g+ 3 (4" + %) m,, = by + K, (22 + 24%) m,s = J, Mg = K,

3. Numerical results and discussions

In this study, various numerical examples are presented and discussed to verify the accuracy of
the present theory in predicting the natural frequency of simply supported plates. For verification
purpose; the obtained results are compared with exact solutions of 3D elasticity theory and those
predicted by quasi-3D (Zenkour 2007, Mantari 2012) theories and HSDT (Hassaine Daouadji
2013). The type of FGM plates are used in this study, and their corresponding material properties
are:

- Metal Aluminum Al: E, =70GPa; v=0.3, p, A6 =2702kg/m?*
- Ceramic : AluminaAl,0;: E_, =380GPa; v =0.3, o =3800kg/m?°.
- Ceramic : Zirconia ZrO,: E. = 200GPa; v =0.3, p  =5700kg/m?®

The description of various theories is given in Table 1. Quasi-3D (Zenkour 2007, Mantari
2012) theory is the HSDT (Hassaine Daouadji 2013) with a higher-order variation for the
transverse displacement (¢,0). The difference among quasi-3D theories comes from the use of
shear strain shape functions. For example, the quasi-3D theory is based on trigonometric functions
for both in-plane and transverse displacements, while the quasi-3D theory (Mantari 2012) is based
on cubic function for the in-plane displacement and parabolic function for the transverse
displacement. The results of the present model are also computed independently in this work using
Eq. (29). For bending analysis, a plate subjected to a sinusoidal load is considered, for
convenience, the following dimensionless forms are used

5 3 3
Z=2z/h, LT:1Olfch (092)' vzlolfch [aOZ),
a Jo a o

'S 5>
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Table 1 Displacement models

Model Theory & Unknown

z

Present Model Quasi -3D with trigonometric functions g, =0 5
HSDT (Hassaine

Daouadji 2013) Higher order Shear Deformation Theory £, = 4
Quasi-3D (Neves 2012) Quasi-3D theory with hyperbolic and parabolic functions &, =0 9
Quasi-3D (Neves 2013)  Quasi-3D theory with cubic and parabolic functions g, =0 9

Quasrf;lgo(?Z)enkour Quasi-3D theory with sinusoidal functions g, =0 6
Quasi-3D (Mantari 2012) Quasi-3D theory with sinusoidal functions g, =0 6

3.1 Numerical results for bending analysis

Numerical results for bending analysis, an exponentially graded plate subjected to sinusoidal
loads is considered. The effective Young’s modulus is calculated using the exponential
distribution (Zenkour 2007) in Eq. (15) and the power law distribution (Reddy 2000) in Eqg. (16).
Tables 2-9 contain dimensionless displacements and stresses for rectangular plates with various
values of aspect ratio b/a, thickness ratio a/h, and material parameter P. The obtained results are
compared with exact 3D solutions (Zenkour 2007) and those predicted by quasi-3D theories
(Zenkour 2007, Thai 2013, Mantari 2012), HSDT (Hassaine Daouadji 2013), and present model
(Quasi -3D with trigonometric functions). It is noted that the exact 3D solutions (Zenkour 2007)
are not available for a/h=10. It is observed that the present model and quasi-3D theories give
solutions close to each other, and their solutions are in an excellent agreement with the exact 3D
solutions. Inspection of Tables 2-9 demonstrates that the present computations are in very good
agreement with quasi-3-dimensional solutions available in the literature.

Figs. 4-11 illustrates the distribution of displacements, deflection and stresses across the
thickness of thick plates. The results presented demonstrate that the same accuracy is achievable
with the present theory using a lower number of unknowns than other theories, and clearly
highlights how the present theory is simpler and more easily deployed in FGM structural
mechanics simulations. Again, an excellent agreement between the results is seen. Thus, the
proposed quasi-3D trigonometric higher order shear and normal deformation theory is not only
accurate but also simple in predicting the behavior of FGM plates.

Table 2 Dimensionless transverse deflection W of plates (a/h=2)

b/a Theory P
0.1 0.3 0.5 0.7 1.0 15
Present Model 14422 13038 1.1777 1.0629 0.9098 0.6993
3D (Zenkour 2007) 1.4430 13116  1.1913 1.0812 0.9334 0.7275

3 Quasi-3D (Zenkour 2006) 1.4421  1.3037 1.1776 1.0628 0.9104 0.6993
Quasi-3D (Mantari 2012) 14419 13035 1.1774 1.0626 0.9096 0.6991

HSDT(HaZSSal'Q)e Daovadji 5341 13874 12541 11330 09719  0.7506

2 Present Model 11942 10796 0.9751 0.8800 0.7532 0.5786
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Table 2 Continued

bla Theory 0.1 0.3 05 0.7 10 15
3D (Zenkour 2007) 11945 10859 09864  0.8952  0.7727  0.6017
Quasi-3D (Zenkour 2006)  1.1941 1.0795 09750  0.8799  0.7538  0.5786
2 Quasi-3D (Mantari 2012) ~ 1.1938 1.0793 009748  0.8797 07530 05785
HSDT (Has(s)al'g)e Daouadji 4 5777 11554 10442 09431 08086  0.6238
Present Model 05780 05225 04719 04258  0.3642  0.279
3D (Zenkour 2007) 05769 05247 04766 04324 03727  0.2890
1 Quasi-3D (Zenkour 2006) 0.5779 05224 0.4718 0.4257 0.3649 0.2794
Quasi-3D (Mantari 2012)  0.5776 0.5222 0.4716 04255 03640  0.2792
HSDT (Hazsgal'sn)e Daovadji 6353 5752 05195 04688 04011  0.3079
Table 3 Dimensionless transverse deflection W of plates (a/h=4)
b/a Theor P
y 0.1 03 05 0.7 10 15
Present Model 10124 009155 0.8272 07470  0.6404  0.4941
3D (Zenkour 2007) 10134 09190 08335 07561 06533 05121
3 Quasi-3D (Zenkour 2006) 1.0094 0.9127 0.8248 0.7449 0.6385 0.4927
Quasi-3D (Mantari 2012) ~ 1.0124 09155 0.8272  0.7470  0.6404  0.4941
HSDT (Hassaine Daouadji 2013) 1.0325 0.9345  0.8459 0.7659 0.6601 0.5154
Present Model 0.8145 0.7365 0.6655 06009 05151  0.3973
3D (Zenkour 2007) 0.8153 07395 0.6707  0.6085 05257  0.4120
Quasi-3D (Mantari 2012)  0.8120 07343 06635 05992 05136  0.3962
HSDT (Hassaine Daouadji 2013) 0.8325 0.7534 0.6819 06173 05319  0.4150
Present Model 0.3486 0.3152  0.2848 0.2571 0.2203 0.1697
3D (Zenkour 2007) 0.3490 0.3167 0.2875 02608 02253  0.1805
1 Quasi-3D (Zenkour 2006)  0.3475 0.3142 02839 02563  0.2196  0.1692
Quasi-3D (Mantari 2012) ~ 0.3486 0.3152 0.2848  0.2571  0.2203  0.1697
HSDT (Hassaine Daouadji 2013) 0.3602 0.3259 0.2949  0.2668  0.2295  0.1785
Table 4 Dimensionless transverse deflection W of plates (a/h=10)
b/a Theor P
y 01 03 05 0.7 10 15
Present Model 0.8877 0.8027 07255 0.6554 05622  0.4346
3 Quasi-3D (Mantari 2012)  0.8877 0.8027 0.7255  0.6554 05622  0.4346
HSDT (Hazsgal'g‘)e Daouadji ) g909 08066 0.7307 06622 05720  0.4489
Present Model 0.7037 0.6364 0.5752 0.5196 0.4457 0.3445
) Quasi-3D (Mantari 2012)  0.7037 0.6364 05752 05196  0.4457  0.3445
HSDT (Hassaine Daouadji 7065 06397 05795 05252 04536  0.3560

2013)
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Table 4 Continued

P
0.1 0.3 0.5 0.7 1.0 1.5

Present Model 0.2799 0.2531 0.2287  0.2066 0.1772 0.1370

Quasi-3D (Mantari 2012) 0.2799 0.2531 0.2287  0.2066 0.1772 0.1370

HSDT(HaZSSi'Q)e Daouadji (5615 2550 02309 02093 01807  0.1417

b/a Theory

Table 5 Dimensionless in-plane normal stress &, (h/2) of plates (a/h=2)

P
Th
b/a eory 01 03 05 0.7 1.0 15
Present Model 02909 03114 03333 03567 03947  0.4668
3D (Zenkour 2007) 03081 03252 03436 03633 03953  0.4562

3 Quasi-3D (Zenkour 2006) 0.3042 0.3261 0.3493 0.3741 0.4143 0.4904
Quasi-3D (Mantari 2012) 0.2920 0.3127 0.3347 0.3582 0.3963 0.4688

HSDT (Hassaine Daouadji 2013) 0.2366  0.2538  0.2719 0.2912 0.3225 0.3811
Present Model 0.3040 0.3259 0.3492 0.3740 0.4142 0.4901

3D (Zenkour 2007) 0.3200 0.3385 0.3583 0.3796 0.4142 0.4799

2 Quasi-3D (Zenkour 2006) 0.3146  0.3376  0.3620 0.3880 0.4300 0.5092
Quasi-3D (Mantari 2012) 0.3049 0.3269  0.3503 0.3752 0.4155 0.4918

HSDT (Hassaine Daouadji 2013) 0.2537  0.2722  0.2918 0.3126 0.3462 0.4094
Present Model 0.2924 0.3146 0.3382 0.3632 0.4034 0.4783

3D (Zenkour 2007) 0.3103 0.3292 0.3495 0.3713 0.4067 0.4741

1 Quasi-3D (Zenkour 2006) 0.2955 0.3181 0.3421 0.3675 0.4085 0.4851
Quasi-3D (Mantari 2012) 0.2927 0.3149 0.3385 0.3636 0.4039 0.4790

HSDT (Hassaine Daouadji 2013) 0.2520 0.2708  0.2908 0.3120 0.3463 0.4106

Table 6 Dimensionless in-plane normal stress &, (h/2) of plates (a/h=4)

P
b/a Theory 01 0.3 05 0.7 1.0 15
Present Model 02267 02408 02560 02725 02997 03532
3D (Zenkour 2007) 02319 02469 02629 02800 03077  0.3602

3 Quasi-3D (Zenkour 2006) 0.2493  0.2656 0.2831  0.3017 0.3323 0.3911
Quasi-3D (Mantari 2012) 0.2286  0.2429 0.2583 0.2749 0.3024 0.3563

HSDT (Hassaine Daouadji 5165 9319 02472 02642 02916  0.3434

2013)
Present Model 02391 02545 02710 02888  0.3181  0.3749
3D (Zenkour 2007) 02431 02591 02762 02943 03238  0.3797

2 Quasi-3D (Zenkour 2006) 0.2588  0.2761 0.2946  0.3143 0.3464 0.4079
Quasi-3D (Mantari 2012) 0.2407  0.2563 0.2730  0.2909 0.3204 0.3776

HSDT(H""ZS(S)‘;'Q)Q Daovadji 5594 02454 02624 02804 03097  0.3647

1 Present Model 0.2235  0.2388 0.2551 0.2726 0.3010 0.3551
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Table 6 Continued

b/a Theory

0.1 0.3 0.5 0.7 1.0 1.5

3D (Zenkour 2007) 0.2247  0.2399 0.2562 0.2736 0.3018 0.3588
Quasi-3D (Zenkour 2006) 0.2346  0.2510 0.2684 0.2870 0.3171 0.3739
1 Quasi-3D (Mantari 2012) 0.2244  0.2398 0.2563 0.2738 0.3024 0.3567

HSDT(HaZSSi'Q)e Daovadji 5163 02316 02477 02649 02927  0.3451

Table 7 Dimensionless in-plane normal stress &, (h/2) of plates (a/h=10)

P

bia Theory 01 03 05 0.7 1.0 15

Present Model 0.2094 0.2218 0.2352 0.2497 0.2740 0.3224
Quasi-3D (Mantari 2012) 0.2115 0.2240  0.2377 0.2524 0.2770 0.3258

3 : )

HSDT (Hazsgal'g)e Daovadii (9104 02248 02402 02565 02829  0.3328

Present Model 02218 02354 02501 02660 02923  0.3439

,  Quasi-3D (Mantari2012) 02236 02375 02523 02684 02950 03470
HSDT (Hassaine Daouadji

2o15) 02225 02378 02541 02713 02993  0.3521

Present Model 02060 02195 02340 02495 02749 03235

. Quesi3D (Mantari2012) 02071 02208 02354 02510 02765 03253

HSDT (Hassaine Daouadji

2013) 0.2062 0.2204  0.2355 0.2515 0.2774 0.3264

Table 8 Dimensionless in-plane normal stress &, (h/2) of plates (a/h=10)

P

b/a Theory 01 03 05 0.7 1.0 15

Present Model 0.5270 0.5629 0.6011 0.6418 0.7077 0.8326
Quasi-3D (Mantari 2012) 0.5291 0.5652 0.6036 0.6445 0.7107 0.8361

3 ; )

HSDT (Hazsgi'sf‘)e Daouadji 5985 5e51 06037 06447 07112 0.8365

Present Model 0.4335 0.4628 0.4941 0.5274 0.5815 0.6841

,  Quasi-3D (Mantari2012) 04354 04649 04963 05298 05841 06871
HSDT (Hassaine Daouadji

o015 04350 04649 04966 05303 05850  0.6881

Present Model 02060 02195 02340 02495 02749  0.3235

. Quasi3D (Mantari 2012) 02071 02208 02354 02510 02765 03253

HSDT (Hassaine Daouadji

2013) 0.2062 0.2204  0.2355 0.2515 0.2774 0.3264

Table 9 Dimensionless in-plane normal stress &, (0) of plates (a/h=10)

p
b/a Theory 01 03 05 07 1.0 15
Present Model 04283 04276 04261 04239 04193  0.4082
3 Quasi-3D (Mantari 2012) 04295 04287 04272 04251  0.4204  0.4093

HSDT (Hassaine Daouadji 2013)  0.4282 0.4275 0.4260 0.4238 0.4192  0.4081
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Table 9 Continued

239

p
b/a Theory
0.1 0.3 0.5 0.7 1.0 1.5
Present Model 0.3807  0.3800 0.3787  0.3768 0.3727  0.3628
2 Quasi-3D (Mantari 2012) 0.3817  0.3811 0.3798  0.3778 0.3737  0.3638
HSDT (Hassaine Daouadji 2013)  0.3806 ~ 0.3800 0.3786  0.3767 0.3726  0.3627
Present Model 0.2379  0.2375 0.2366  0.2354  0.2328  0.2267
1 Quasi-3D (Mantari 2012) 0.2385  0.2381 0.2373  0.2361 0.2335  0.2273
HSDT (Hassaine Daouadji 2013) 0.2378  0.2374 0.2366  0.2354  0.2328  0.2266
Table 10 Dimensionless fundamental frequency @ of square plates
Theor P=0 P=1 a/h=5
y a/h=+10 a/h=10 a/h=5 a/h=10 a/h=20 P=2 P=2 p=2
Present Model 0.4660  0.0578 0.2192 0.0597 0.0153 0.2201 0.2214 0.2225
3D (Zenkour 2007) 0.4658  0.0578 0.2192 0.0596 0.0153 0.2197 0.2211 0.2225
HSDT (Hazséal'sn)e Daovadji 4 4695 0.0577 02169 0.0592 0.0152 02178 0.2193 0.2206
Quasi-3D (Mantari 2012) - - 0.2193 0.0596 0.0153 0.2198 0.2212 0.2225
Quasi-3D (Neves 2012) - - 0.2193 0.0596 0.0153 0.2201 0.2216 0.2230
Quasi-3D (Neves 2013) - - 0.2193 - - 0.2200 0.2215 0.2230
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The accuracy of the present model proposed quasi-3D trigonometric higher order shear and
normal deformation theory is also verified with free vibration analysis of a simply supported FGM
plate. The effective Young’s modulus is estimated using the power law distribution with Mori-
Tanaka scheme (1973) in Eq. (17). Table 10 contains the dimensionless fundamental frequencies
of square Al/ZrO, plate.

This approach has also been used by many other investigators and is applicable in zones of
graded microstructure which possess a well-defined continuous matrix and a discontinuous
particulate phase. It models with sufficient robustness the interaction of the elastic fields among
neighboring inclusions. The non-dimensional fundamental frequency « is given in Table 10 for
different values of thickness ratio and power law index. It is evident that the present model is in an
excellent agreement with the 3D solutions (Mantari 2012) and quasi-3D solutions (Neves 2012).
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4. Conclusions

We have considered a quasi-3D trigonometric higher order shear and normal deformation
theory for the thickness stretching effect has been derived for bending and vibration analyses for
simply supported functionally graded rectangular plates. The effective material properties at points
in the plate are assumed to vary in the thickness direction only according to a simple exponential
law. The theory accounts for the stretching and shear deformation effects without requiring a shear
correction factor. By dividing the transverse displacement into bending, shear and stretching
components, the number of unknowns and governing equations of the present theory is reduced to
five and is therefore less than alternate theories available in the scientific literature. From the
present analytical, it is evident that the thickness stretching effect is more pronounced for thick
plates and it needs to be taken into consideration in more physically realistic simulations. The
results predicted by the proposed theory are in an excellent agreement with 3D solutions and the
thickness stretching effect is more pronounced for thick plates and it needs to be taken in
consideration in the modeling. Numerical results show that the proposed quasi-3D trigonometric
higher order shear and normal deformation theory is not only accurate but also provides an elegant
and easily implementable approach for simulating bending and vibration behaviors of FGM plates.
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