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Abstract.  Stress concentration is an interesting and essential field of study, as it is the prime cause of 
failure of structural parts under static load. In the current paper, stress and strain concentration factors in 
unidirectional functionally graded (UDFGM) plate with central circular cutout are predicted by carrying out 
a finite element study on ANSYS APDL platform. The present study aims to bridge the lacuna in the 
understandings of stress analysis in perforated functionally graded plates. It is found that the material 
variation parameter is an important criterion while designing a perforated UDFGM plate. By selecting a 
proper material variation parameter and direction of material gradation, the stress and strain concentrations 
can be significantly reduced. 
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1. Introduction 
 

Since the beginning of the century, there has been immense use of composite materials in 
various forms such as plates and shells. It has expanded considerably to present day in fields of 
automotive, construction, aerospace, energy, electronics, chemical engineering, optical materials 
and biomedical engineering. The composite materials have noteworthy advantages over traditional 
materials. In conventional multilayer structures, layered composite materials are being used to 
improve the performance (mechanical, thermal, acoustic etc.) of the structure. The major drawback 
is stress concentrations at the interfaces due to the change of mechanical and thermal properties. 
Constant efforts are being made to reduce this stress concentration, and it has bore the concept of 
Functionally Graded Materials (FGM). The key advantage of FGM is that it overcomes the 
internal boundary which exists in composites thus preventing the interfacial stress concentration. 
The initial FGMs were designed to serve as thermal barriers (Yamanouchi and Koizumi 1991). 
Due to the abrupt changes in the material properties of the laminated composite structures in the 
transverse direction and subsequently, possibility of local failure occurrence, functionally graded 
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materials are being used as alternative in some applications. Today, there have been more and 
more numerous modern engineering applications of FGM, like the spacecraft, rocking engine 
casings and packaging materials in the microelectronics industry, biomaterials (dental implants) 
and others (Watari 1997) (Oonishi et al. 1994). Many researchers have shown considerable interest 
in calculating the stress concentration factor (SCF) in perforated FGM plates (Saini and Kushwaha 
2014) (Sburlati 2013) (Enab, Stress concentration analysis in functionally graded plates with 
elliptic holes under biaxial loadings 2014). Stress concentrations around cutouts have great 
practical importance because they are normally the root cause of failures. Majority of the studies 
performed for the SCF have treated isotropic, orthotropic or composite plates. 

Shen and Noda (Shen and Noda 2007) presented a postbuckling analysis for a functionally 
graded cylindrical shell with piezoelectric actuators subjected to hydrostatic pressure combined 
with electric loads in thermal environments. Dag et al. (Dag et al. 2008) studied the mixed-mode 
stress intensity factors for an embedded crack in an orthotropic FGM coating. Zhang et al. (Zhang 
et al. 2008) conducted the cohesive modeling of dynamic crack growth in homogeneous and 
functionally graded materials. Shokrolahi-Zadeh and Shodja (Shokrolahi-Zadeh and Shodja 2008) 
used the concepts of the homogenization, together with spectral consistency conditions and 
Eshelby-Fourier tensor, to develop the spectral equivalent inclusion method for the study of 
inhomogeneities with coatings made of functionally graded material. Kim and Amit (Kim and 
Amit 2008) proposed a generalized interaction integral method for the evaluation of the T-stress in 
orthotropic functionally graded materials under thermal loading. Zhong and Cheng (Zhong and 
Cheng 2008) analyzed the crack problem in a functionally graded strip with arbitrary distributed 
material properties. Shao et al. (Shao et al. 2008) studied the non-axisymmetric thermal stress in 
functionally graded hollow cylinders. Li and Lee (Li and Lee 2008) made the fracture analysis of a 
weak-discontinuous interface in a symmetrical functionally graded composite strip loaded by 
anti-plane impact. Singh et al. (Singh et al. 2008) studied the vibration of a solid sphere or shell of 
functionally graded materials. Wang et al. (Wang et al. 2005) analyzed the thermal shock strengths 
of a plate of a functionally graded material when the plate is suddenly exposed to an 
environmental medium of different temperature. Ding and Li (Ding and Li 2008) dealt with the 
anti-plane problem of periodic interface cracks in a functionally graded coating-substrate structure. 

Based on the literature survey, it can be concluded that limited researches have been conducted 
to analyze the stress concentration in a functionally graded plate with central cutout. Moreover, 
almost all the available literature available depicts that the static analysis of FGM plates with 
cutouts have been carried out only for x-FGM or y-FGM. To the best of authors’ knowledge there 
is no comprehensive work available on stress and strain concentration factors for FGM plates 
varying radially and angularly. The present paper, aims to study the effect of material variation on 
stress and strain concentration in unidirectional perforated functionally graded plate. 
 
 
2. Materials and methods 
 

2.1 Geometry and loading 
 

SCF is the ratio of maximum stress in the cutout periphery to the nominal stress. In accordance 
with Yang et al. (Yang et al. 2008) stress concentration factor (ܭఙ) and strain concentration factor 
 ,are defined as (ఌܭ)
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The geometric configuration of the perforated infinite FGM plate along with the dimensions 
considered in the study is shown Fig. 1. Cartesian coordinate system is used with origin located at 
the center of the central cutout. In this study, W=100mm, H=100mm, D=20mm, ߪ௫=10Mpa are 
considered. 

Three different load conditions are studied in this paper namely uniaxial uniform pressure load 
(Fig. 2(a)) and biaxial uniform pressure load (Fig. 2(b)) and in-plane normal load on the cutout 
periphery (Fig. 2(c)). Also while simulating the biaxial load condition both like and unlike loads 
are treated i.e. in both ߪx= ߪy and ߪx = -	ߪy cases are studied.  
 

2.2 Finite element model of UDFGM plate 
 

Commercial finite element software package- ANSYS v14.5 (academic version) has been used 
in this study to carry out the simulations. The ANSYS parametric design language (APDL) has 
been used by author(s) (Kalita, Shinde & Thomas, Non-dimensional Stress Analysis of an 
Orthotropic Plate 2015) (Kalita & Halder, Static Analysis of transversely loaded isotropic and 
orthotropic plates with central cutout 2014) (Kumar, Agrawal, Ghadai & Kalita 2016) in past to 
accurately deal with stress study problems. A 2D model of the plate was modelled using 
isoparametric quadrilateral Plane 183 elements. Plane 183 element has 8 nodes-4 corner and 4 mid 
nodes with 2 translational degrees of freedom in the nodal X- and Y-directions. The developed 
models ensure that sufficient control can be maintained over the mesh. 

Since the plate is symmetrical in nature, only one quadrant of the plate is modelled and meshed. 
Mapped meshing is used to get finer mesh near the discontinuity. This finer mesh near the cutout is 
well equipped in capturing the SCF in this region. The boundary conditions of the quarter model 
were imposed by constraining the x-displacement (ux) at X=0 and the y-displacement (uy) at Y=0 
to account for the planes of symmetry of the full model. 

ANSYS does not contain any specified module to incorporate functional grading of material 
properties. A number of researchers in their work have carried out step wise distribution of 
material properties instead of continuous variation in property (Enab, Stress concentration analysis 
in functionally graded plates with elliptic holes under biaxial loadings 2014). This is because the 
manufacturing technologies of FGM are still in nascent stage and world is yet to see a perfect 
continuously graded FGM. Real life FGM show step wise material variation. In this work, the FE 
model is divided into a number of layers and material property is assigned to individual layers in 
incremental manner. The logic behind doing so is that by assuming a large number a layers and 
varying the material properties incrementally a real curve of unidirectional functionally graded 
material can be obtained. 

Let’s consider a UDFGM plate made of two materials – Material 1: Pure titanium (E=107 GPa, 
ν=0.34) and Material 2: Titanium monobromide (E=375 GPa, ν=0.14). Across the X-direction 
variation in volume fraction is given as (Nemat-Alla, 2003) (Enab, A comparative study of the 
performance of metallic and FGM tibia tray components in total knee replacement joints, 2012), 
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Where, suffix 1 and 2 denote material 1 and 2 respectively, W represents width of plate and x is  
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material 1 and 2 composition is linear. The porosity p of the FGM may be represented for 
horizontal distribution model by 

݌ ൌ Aቀ
ݔ
ܹ
ቁ
௡
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ݔ
ܹ
ቁ
௭
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Where 
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A, n and z are arbitrary parameters that control the porosity and in accordance with (Enab, Stress 
concentration analysis in functionally graded plates with elliptic holes under biaxial loadings 
2014) taken as 0.1, 1 and 1 respectively.  
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Here ܧ଴ is the elastic modulus at zero porosity,ܧଵ,	ߥଵ and ܧଶ, ߥଶ are the Young’s modulus 
and Poisson’s ratio for Material 1 and Material 2 respectively.  
 
Similarly the unidirectional variation in Y-, radial and angular direction can be obtained by 

replacing the ቀ
௫

ௐ
ቁ in above equations by, 

 ቀ௬
ு
ቁ for y-FGM. 
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The variation in material properties along the layers is controlled by variation of parameter m 
as formulated above. In actual manufacturing process the parameter m controls the compositions 
of constituent materials with respect to geometric position. It is worth mentioning here that in this 
particular study four different types of unidirectional FGM variations are studied- along 
X-direction, along Y-direction, along radial direction and angular variation. To study the effect of 
composition variation parameter on the SCF, m is considered from 0.1-1.0 with incremental steps 
of 0.1. Fig. 3 shows the variation of modulus of elasticity with respect to geometric position within 
the perforated plate. As seen from the Fig. 3, at m=1 the variation in Young’s modulus is linear 
with larger Young’s modulus material near the cutout and minimum Young’s modulus at the outer 
edge. Fig. 4 shows an example (at m=1) of how the modulus of elasticity variation contour plots 
would look like. The four images show the variation of modulus of elasticity in X-, Y-, radial- and 
angular direction respectively. 
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vicinity of the cutout being much stiffer than the rest of the plate (again, due to being made of 
material with higher E) will undergo very small deformation. Thus for the r-FGM plates both ܭఙ 
and ܭఌ is least. In case of θ-FGM (Fig.4d) the material at the cutout boundary vary continuously, 
thus due to the presence of material variation at interfaces along the cutout boundary, localized 
stresses are produced. This leads to high	ܭఙ. Also from Fig. 13 it is observed that ܭఌ is highest in 
θ-FGM plates. 
 
 
5. Conclusions 
 

For designing engineering structures with a circular cutout, a reliable estimation of SCFs is 
must. The paper successfully highlights the effect of material composition parameter in FGM 
plates.  From the numerical simulations, the following inferences can be drawn, 
 

• Material composition parameter (m) has a significant effect on stress and strain concentration 
factor.  

• Maximum stress concentration ܭఙ will always occur when the FGM is loaded perpendicular 
to the direction of material gradation. Thus, ܭఙ is maximum in y-FGMs when FGMs are loaded 
uni-directionally in X-direction and for biaxially loaded FGMs maximum ܭఙ is seen in x-FGM 
and y-FGM. 

• In general, ܭఌ decreases with increase in material composition parameter (m) for x-FGM, 
y-FGM and r-FGM. 

• Strain concentration, ܭఌ is always more in θ-FGM as compared to other UDFGMs. 
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