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Abstract.  This paper proposes an analytical method to investigate the free vibration behaviour of new functionally 
graded (FG) carbon nanotubes reinforced composite beams based on a higher-order shear deformation theory. 
Cosine functions represent the material gradation and material properties via the thickness. The kinematic relations of 
the beam are proposed according to trigonometric functions. The equilibrium equations are obtained using the virtual 
work principle and solved using Navier’s method. A comparative evaluation of results against predictions from 
literature demonstrates the accuracy of the proposed analytical model. Moreover, a detailed parametric analysis 
checks for the sensitivity of the vibration response of FG nanobeams to nonlocal length scale, strain gradient 
microstructure-scale, material distribution and geometry. 
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1. Introduction 
 

Nowadays, carbon nanotubes (CNTs) are being proposed as the most candidates for composite 
reinforcement material due to their remarkable mechanical, electrical, and thermal properties. 
These properties include a high tensile modulus, high strength, low density, good conductivity, and 
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the ability to sustain sizeable elastic strain (Jam and Kiani 2015, Esen and Özmen 2022a). 
Occasionally, distinct gradation functions may grade CNTs along a particular path rather than 
dispersing them evenly. They are known as functionally graded CNTs reinforced composites in 
this instance (FG-CNTRC). Thus, the FG-CNTRCs are the composites in which the pattern the 
CNTs are embedded in the polymer follows a specific gradation pattern. Because of the gradation 
of CNTs, the stiffness in the desired direction can be controlled as per the choice of the designer or 

engineer. This is similar to the case for the functionally graded materials in which the material 
property varies along the desired direction in a regular fashion (Bessaim et al. 2015, Houari et al. 
2018, Merzouki et al. 2022, Esen et al. 2021, 2022). Liew et al. (2015) performed a 
comprehensive study on the analysis of FG-CNTRC constructs subjected to various mechanical 
loads. The constructions were tested under a variety of conditions. Recently, Garg et al. (2021) 
conducted a comprehensive literature assessment discussing the predictions of material properties 
for single-walled CNTs. Keleshteri et al. (2019) investigated the nonlinear bending behavior of 

FG-CNTRC annular plates with an irregular thickness on elastic foundation plates employing the 
third-order shear deformation theory. Yas and Samadi (2012) investigated the free vibrations and 
buckling responses of FG-CNTRC Timoshenko beams with the generalized differential quadrature 
method (GDQM). Mirzaei and Kiani (2015, 2016), Kiani (2015), Kiani and Mirzaei (2019) 
employed Ritz method-based FSDT for studying the snap-through and free vibration behavior of 
sandwich beams containing FG-CNTRC face sheets subjected to thermal conditions. Khosravi et 
al. (2019a, b) carried out buckling and free vibration analysis of rotating FG-CNTRC beams under 
thermal conditions using differential quadrature method employed in the framework of FSDT. 

With the help of different beam theories, Babaei et al. (2021a, b) predicted the vibration behavior 
of FG-CNTRC beams resting on elastic foundations. With the help of scale-dependent models, the 
dynamics of finite element-based Timoshenko beam under the influence of the magnetic field and 
moving loads were studied by Esen (2020) and Alazwari et al. (2020). Zghal et al. (2020) utilised 
an isoparametric finite shell element to perform a nonlinear large deflection investigation on FG-
CNTRC plates and panels based on FSDT. 

Free vibration analysis of size dependent FG nanoplates was carried out by Esen and Ozmen 

(2022b). Ozmen et al. (2022) predicted the dynamic behavior of scale-based beams under 
magnetic and thermal fields. El-Ashmawy and Xu (2021) used a two-node finite element (FE) 
analysis based on TBT to integrate the function of CNTs distribution and orientation on FG 
nanocomposite beams. Lin and Xiang (2014a, b) used the polynomial Ritz method to investigate 
the free-vibration properties of FG-CNTRC beams with soft-clamped and hard-clamped boundary 
conditions based on first-order and third-order shear deformation theories. In order to study the 
free vibration analysis of FG-CNTRC structures of revolution, including spherical panels and 

doubly curved shells, Wang et al. (2018) proposed a unified semi-analytical technique based on the 
differential quadrature method and the Mindlin plate theory. By combining the FSDT and the finite 
element technique. The static and free vibration responses of FG-CNT plates were investigated by 
Zhu et al. (2012). The nonlinear stability of sandwich beams with FG-CNTRC face sheets under 
thermal loading and a two-parameter elastic foundation was studied by Kiani and Mirzaei (2019) 
based on the TBT. The free vibration and buckling of FG-CNTRC beams with various thicknesses 
resting on elastic foundations were also examined by Mohseni and Shakouri (2019). 
Talebizadehsardari et al. (2020) investigated the static bending behavior of the FG-CNTRC curved 

nanobeam based on TBT. A comparison study analyzing the applicability of various analytical 
shear deformation theories for the bending, free vibration, and buckling analysis of CNTRC beams 
was conducted by Wattanasakulpong and Ungbhakorn (2013) inside the framework of HSDTs. 
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Later, Mayandi and Jeyaraj (2015) studied the linear vibration behavior of FG-CNTRC beams 
using FSDT and third-order shear deformation theory (TSDT), and the bending and buckling 
behavior of FG-CNTRC beams under non-uniform thermal loading. Khelifa et al. (2018) utilised 
the sinusoidal shear deformation theory (SSDT) to analyse the buckling response of the FG-
CNTRC beam standing on an elastic foundation with consideration for the influence of stretching. 
Daikh et al. (2020) proposed a new hyperbolic shear deformation theory to study the static 

behaviour of supported cross-ply CNTs-reinforced composite laminated nanobeams under various 
loading profiles. Using an exponential shear deformation theory, Keshtegar et al. (2016) studied 
the dynamic stability characteristics of a hybrid nanocomposite polymer beam reinforced by 
CNTs. The authors derived the governing equations using DQM and Bolotin methods. Based on 
extended high-order panel theory, Salami (2018) studied the bending and free vibration responses 
of a sandwich beam with a soft core and FG-CNTRC face sheets. The thermo-elastic behavior of 
FG-CNTRC cross-ply laminated plates under temperature loading was recently analyzed by 

Bachiri et al. (2021) using a novel HSDT. Based on the TSDT, Abdelrahman et al. (2022) executed 
a dynamic analysis of a FG-CNTRC nanobeam resting on an elastic base under a moving load. 
Using quasi-3D nonlocal strain gradient theory, Daikh et al. (2022) presented a comprehensive 
study on the free vibration, static stability, and bending of multilayer FG-CNTRC nanoplates. 
Later, Garg et al. (2020) used finite elements based on higher-order zigzag theory to analyze the 
bending and free vibration of FG-CNTR sandwich beams. The authors have assumed that the two 
face sheets are made of FG-CNTRC and that the core is composed of balsa wood.  

In this study, the free vibrations of composite beams reinforced with carbon nanotubes are 

analyzed using a novel method of material distribution. The present work investigates the free 
vibrations of (CNTs) reinforced composite beams by considering a new type of material 
distribution. In this, numerical results are presented and thoroughly explained by considering the 
impacts of thickness ratio, material distribution, and nonlocal and length scale characteristics on 
the vibrational behaviour of (CNTRC) beams. 

 
 

2. Modeling of CNTRC beams 
 

To start with, as is represented in Fig. 1, an uniform CNTRC beam of length L, and thickness h 
is taken into consideration. Therefore, each lamina of the beam is reinforced by SWCNTs 
according to different distributions of gradation function which is also represented in Fig. 1(b). 
The used CNTs distribution patterns are in function of the volume fraction of CNTs Vcnt as 

 

 

 

Fig. 1 Geometry and cross-sections of FG-CNTRC beam 
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𝑉𝑐𝑛𝑡 =

{
 
 
 

 
 
 

𝑉𝑐𝑛𝑡
∗      UD CNTRC

4
|𝑧|

ℎ
𝑉𝑐𝑛𝑡
∗     FG-X CNTRC

2(1−
2|𝑧|

ℎ
)𝑉𝑐𝑛𝑡

∗   FG-O CNTRC

(1 −
2𝑧

ℎ
)𝑉𝑐𝑛𝑡

∗    FG-V CNTRC

 

(1) 
 

(2) 
 

(3) 
 

(4) 
 

Moreover, the UD CNTRC indicate the uniform distribution, whereas, FG-V, FG-O and FG-X 
present the non-uniform functionally graded distributions. z(k) and are the vertical positions of the 
bottom of the beam. V*cnt Denote the given volume fraction of CNTs. For the trigonometric FGP-
A plate type A, Young’s modulus is given as 

𝑉𝑐𝑛𝑡 = (1− cos (𝑁
2𝜋𝑧

ℎ
))𝑉𝑐𝑛𝑡

∗                                                  (5) 

For the trigonometric FGP-B plate type B, Young’s modulus is given as 

Vcnt = (1+ cos (N
2πz

h
))Vcnt

*                                                  (6)  

Wcnt, ρcnt and ρm are the CNTs mass fraction, CNTs mass density and polymer matrix mass 
density, respectively. 

The effective Young’s modulus (E) and shear modulus (G) of a CNTRC sheet are given as 

𝐸11 = 𝜂1𝑉𝑐𝑛𝑡𝐸11
𝑐𝑛𝑡 + 𝑉𝑝𝐸

𝑝 (7a) 

𝜂2
𝐸22

=
𝑉𝑐𝑛𝑡
𝐸22
𝑐𝑛𝑡 +

𝑉𝑝

𝐸𝑝
 (7b) 

𝜂3
𝐺12

=
𝑉𝑐𝑛𝑡
𝐺12
𝑐𝑛𝑡 +

𝑉𝑝

𝐺𝑝
 (7c) 

Poisson’s ratio ν12 and density ρ of each sheet can be expressed as 

𝜈12 = 𝑉𝑐𝑛𝑡𝜈12
𝑐𝑛𝑡 + 𝑉𝑝𝜈

𝑝 (8) 

𝜌 = 𝑉𝑐𝑛𝑡𝜌
𝑐𝑛𝑡 + 𝑉𝑝𝜌

𝑝  (9) 

Where E11 and 𝐸22 are Young’s modulus across the plane directions (x,z), and G12 is the shear 
modulus of the plate composites. ρandνare the mass density and Poisons coefficient, respectively. 

The superscriptsp and cnt refer to the mechanical characteristics of the polymer and the SWCNTs, 

respectively. The CNT efficiency parameters 𝜂𝑖(𝑖 = 1,2,3) are: 
 
 
Table 1 The CNTs efficiency parameters 

𝑉𝑐𝑛𝑡
∗  𝜂1 𝜂2 𝜂3 

0.12 1.2833 1.0556 1.0556 

0.17 1.3414 1.7101 1.7101 

0.28 1.3238 1.7380 1.7380 
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The parameters ηi (𝑖 = 1,2,3) are the CNTs efficiency parameters. 
 
 

3. Equilibrium equations 
 
A quasi-2D parabolic shear deformation beam theory for FG nanobeam considering transverse 

shear deformations is adopted in this study. The displacement field of the proposed theory is 
chosen based on the following assumptions (Daikh et al. 2020): 

(1) The axial displacement consists of extension, bending and shear components; 
(2) The bending component of axial displacement is similar to that given by the Euler-Bernoulli 
beam theory; 
(3) The shear component of axial displacement gives rise to the parabolic variation of shear 
strain and hence to shear stress through the thickness of the beam in such a way that shear 
stress vanishes on the top and bottom surfaces. 
Based on the assumptions made above, the displacement field of the present theory can be 

obtained as 

𝑢(𝑥, 𝑧, 𝑡) = 𝑢0(𝑥, 𝑡) − 𝑧
𝜕𝑤

𝜕𝑥
+ 𝑓(𝑧)𝜙𝑥(𝑥, 𝑡) 

𝑤(𝑥, 𝑧, 𝑡) = 𝑤0(𝑥, 𝑡)                                                        (10) 

where 𝑢0 is the axial displacement; 𝑤0 is the transverse displacement of a mid-line point of the 

beam; 𝜙𝑥 is the rotation of a cross section of the beam at the neutral axis due to transverse shear 
deformation. 

In the current study, the shear deformation along the thickness direction can be expressed by a 
hyperbolic function in the form 

  𝑓(𝑧) = 5ℎ tan (
𝑧

ℎ
) − 4𝑧                                                      (11) 

The kinematic strain components associated with the displacements are stated as 

εxx = εxx
(0)
+ zεxx

(1)
+ f(z)εxx

(2)
 

γxz = g(z)γxz
(0)

                                                            (12) 

where 

 𝜀𝑥𝑥
(0)
=

𝜕𝑢0

𝜕𝑥
, 𝜀𝑥𝑥

(1)
=

𝜕2𝑤0

𝜕𝑥2
, 𝜀𝑥𝑥

(2)
=

𝜕𝜙𝑥

𝜕𝑥
, 𝛾𝑥𝑧

(0)
= 𝜙𝑥                                 (13a) 

The function 𝑔(𝑧) is given as follows: 

𝑔(𝑧) = 𝑓′(𝑧)                                                            (13b) 

To obtain the equations of motion, Hamilton’s principle is employed as the following 

 ∫ (𝛿𝑈 − 𝛿𝐾)𝑑𝑡
𝑡2
𝑡1

= 0                                                         (14) 

To start with,δUis the total strain energy, and δKis the kinetic energy. Therefore, the virtual 
strain energy of the beam can be expressed as 

𝛿𝑈 = ∫ ∫ (𝛿𝜀𝑇𝜎)
ℎ 2⁄

−ℎ 2⁄

𝐿

0
𝑑𝑥𝑑𝑧                                                  (15) 
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𝛿𝑈 = ∫ (𝑁𝑥
𝜕𝛿𝑢0
𝜕𝑥

−𝑀𝑥
𝜕𝛿𝜙0
𝜕𝑥

− 𝑃𝑥
𝜕2𝛿𝑤0
𝜕𝑥2

+𝑄𝑥𝑧𝛿𝜙𝑥)
𝐿

0

𝑑𝑥 

+[𝑁𝑥
(1) 𝜕𝛿𝑢0

𝜕𝑥
−𝑀𝑥

(1) 𝜕𝛿𝜙0

𝜕𝑥
−𝑃𝑥

(1) 𝜕2𝛿𝑤0

𝜕𝑥2
+ 𝑄𝑥𝑧

(1)
𝛿𝜙𝑥]

0

𝐿

                              (16) 

where 𝑁𝑥, 𝑀𝑥, 𝑃𝑥 and 𝑄𝑥𝑧 are, respectively, the axial force, bending moment, shear moment, and 
shear force. They are defined by 

(𝑁𝑥 ,𝑀𝑥 , 𝑃𝑥) = 𝑏∫ (1, 𝑧, 𝑓(𝑧)) 𝜎𝑥𝑑𝑧
ℎ 2⁄

−ℎ 2⁄
                                        (17a) 

 𝑄𝑥𝑧 = 𝑏∫ 𝑔(𝑧)𝜏𝑥𝑧𝑑𝑧
ℎ 2⁄

−ℎ 2⁄
                                                 (17b) 

The kinetic energy δK can be written as the following 

𝛿𝐾 = 𝑏∫ 𝜌(𝑧)(�̇�𝛿�̇� + �̇�𝛿�̇�)
𝐿

0
𝑑𝑥                                           (18a) 

𝛿𝐾 = 𝑏∫ 𝜌(𝑧)

[
 
 
 
 
 
 (𝐼0�̇�0𝛿�̇�0) − 𝐼1

𝜕�̇�0

𝜕𝑥
+ 𝐼2 (

𝜕�̇�0

𝜕𝑥

𝜕𝛿�̇�0

𝜕𝑥
)

+𝐼3 (
𝜕�̇�0

𝜕𝑥
𝛿�̇�0 − �̇�0𝛿�̇�0 + �̇�0

𝜕𝛿�̇�0

𝜕𝑥
− �̇�0𝛿�̇�0)

+𝐼4 (
𝜕𝛿�̇�0

𝜕𝑥
𝛿�̇�0 − 2

𝜕�̇�0

𝜕𝑥

𝜕𝛿�̇�0

𝜕𝑥
+
𝜕�̇�0

𝜕𝑥
𝛿�̇�0)

+𝐼5 (
𝜕�̇�0

𝜕𝑥

𝜕𝛿�̇�0

𝜕𝑥
− �̇�0

𝜕𝛿�̇�0

𝜕𝑥
−
𝜕�̇�0

𝜕𝑥
𝛿�̇�0 + �̇�0𝛿�̇�0)]

 
 
 
 
 
 

𝐿

0
𝑑𝑥                   (18b) 

The mass moments of inertia 𝐼𝑖  (𝑖 = 0,1,2,⋯5) can be defined as 

(𝐼0, 𝐼1, 𝐼2, 𝐼3, 𝐼4, 𝐼5) = ∫ 𝜌(𝑧)(1,𝑧, 𝑧2, 𝑓(𝑧), 𝑧 𝑓(𝑧), 𝑓2(𝑧))
ℎ/2

−ℎ/2
𝑑𝑧                        (19) 

Moreover, by substituting the equations ofδU and δK into Eq.(14), and by applying the 
integration-by-parts and collecting the coefficients of 𝛿𝑢0, 𝛿𝑤0 and δϕ0, it leads to the following 
equations of motion. 

𝛿 𝑢0:   
𝜕𝑁𝑥

𝜕𝑥
= 𝐼0�̈�0 − 𝐼1

𝜕�̈�0

𝜕𝑥
+ 𝐼3 (

𝜕�̈�0

𝜕𝑥
− �̈�0)                                     (20a) 

𝛿 𝑤0 : 
𝜕2𝑀𝑥
𝜕𝑥2

−
𝜕2𝑃𝑥
𝜕𝑥2

+
𝜕𝑄𝑥
𝜕𝑥

= 𝐼0�̈�0 + 𝐼1
𝜕�̈�0
𝜕𝑥

− 𝐼2∇
2�̈�0 

+𝐼3
𝜕�̈�0

𝜕𝑥
+ 𝐼4 (

𝜕�̈�0

𝜕𝑥
− 2

𝜕2�̈�

𝜕𝑥2
)+ 𝐼5 (

𝜕2�̈�

𝜕𝑥2
−
𝜕�̈�0

𝜕𝑥
)                                 (20b)                              

𝛿 𝜙0:   
𝜕𝑃𝑥

𝜕𝑥
−𝑄𝑥 = 𝐼3�̈�0 − 𝐼4

𝜕�̈�0

𝜕𝑥
+ 𝐼5 (

𝜕�̈�0

𝜕𝑥
− �̈�0)                              (20c)                                      

The associated boundary conditions at 𝑥 = 0 and 𝑥 = 𝐿 are given as follows: 

𝑁𝑥 = 0 or 𝑢 = 0 

𝑀𝑥 = 0 or 𝑤 = 0 
𝜕𝑀𝑥

𝜕𝑥
−
𝜕 𝑃𝑥

𝜕𝑥
+ 𝑄𝑥 = 0 or 𝑤 = 0 or 𝑤 = 0 

As it is observed, the Eq. (20) are the function of stress resultants. However, the normal and 
shear stresses by utilizing the constitutive relations can be expressed as 

{
𝜎𝑥𝑥
𝜎𝑥𝑧

} = [
𝑄11 0
0 𝑄55

] {
𝜀𝑥𝑥
𝛾𝑥𝑧
}                                                  (21) 
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Where 𝜎𝑥𝑥 and 𝜎𝑥𝑧 are the axial and transverse shear stresses. 𝑄𝑖𝑗 are the stiffness coefficients 

correlated with the engineering constants as follows 

𝑄11 =
𝐸11(𝑧)

1−𝜈2(𝑧)
 and 𝑄55 = 𝐺12(𝑧)                                                (22)                                                   

Substituting Eqs. (12) and (13) into Eq. (21), and using (17), one the obtains stress resultants 

𝑁𝑥𝑥 = 𝐴11𝜀𝑥
0 + 𝐵11𝜀𝑥

1 + 𝐶11𝜀𝑥
2 

𝑀𝑥𝑥 = 𝐵11𝜀𝑥
0 + 𝐷11𝜀𝑥

1 + 𝐹11𝜀𝑥
2 

𝑃𝑥𝑥 = 𝐶11𝜀𝑥
0 +𝐹11𝜀𝑥

1 +𝐻11𝜀𝑥
2 

𝑄𝑥𝑧 = 𝐴55𝛾𝑥𝑧                                                             (23)                                                            

where the cross-sectional rigidities are expressed as 

    (𝐴11, 𝐵11, 𝐷11 , 𝐶11 , 𝐹11, 𝐻11) = ∫ 𝑄11(1, 𝑧, 𝑧
2, 𝑓(𝑧), 𝑧 𝑓(𝑧), 𝑓(𝑧)2)𝑑𝑧

ℎ 2⁄

−ℎ 2⁄
               (24)  

 𝐴55 = ∫ 𝑄55𝑔(𝑧)
2𝑑𝑧

ℎ 2⁄

−ℎ 2⁄
                                                          (25)    

The force and moment resultants can be defined in displacement fields as follows 

𝑁𝑥𝑥 = 𝐴11
𝜕𝑢0

𝜕𝑥
−𝐵11

𝜕2𝑤0

𝜕𝑥2
+ 𝐶11 (

𝜕2𝑤0

𝜕𝑥2
−
𝜕 𝜙0

𝜕𝑥
) 

𝑀𝑥𝑥 = 𝐵11
𝜕𝑢0
𝜕𝑥

− 𝐷11
𝜕2𝑤0
𝜕𝑥2

+𝐹11 (
𝜕2𝑤0
𝜕𝑥2

−
𝜕 𝜙0
𝜕𝑥

) 

𝑃𝑥𝑥 = 𝐶11
𝜕𝑢0
𝜕𝑥

− 𝐹11
𝜕2𝑤0
𝜕𝑥2

+𝐻11 (
𝜕2𝑤0
𝜕𝑥2

−
𝜕 𝜙0
𝜕𝑥

) 

      𝑄𝑥𝑧 = 𝐴55 (
𝜕 𝑤0

𝜕𝑥
− 𝜙0)                                                       (26)    

 
 

4. Nonlocal strain gradient theory  
 
By the coupling physical impact of the strain gradient stress and nonlocal elastic stress fields, 

Lim et al. (2015) proposed a function of stresses as 

 𝜎𝑖𝑗 = 𝜎𝑖𝑗
(0)
−
𝜕𝜎𝑖𝑗

(1)

𝜕𝑥
                                                            (27)                                                            

Where σij
(0)

 and σij
(1)

 are the classical stress corresponds to strain 𝜀𝑘𝑙  and the higher-order stress 

σij
(1)

 corresponds to strain gradient 𝜀𝑘𝑙,𝑥 respectively, and can be expressed as  

𝜎𝑖𝑗
(0)
= ∫ 𝐶𝑖𝑗𝑘𝑙

𝐿

0
𝛼0(𝑥, 𝑥

′, 𝑒0𝑎)𝜀𝑘𝑙,𝑥(𝑥
′)𝑑𝑥                                       (28a)                                          

𝜎𝑖𝑗
(1)
= 𝑙2 ∫ 𝐶𝑖𝑗𝑘𝑙

𝐿

0
𝛼1(𝑥, 𝑥

′, 𝑒1𝑎)𝜀𝑘𝑙,𝑥(𝑥
′)𝑑𝑥                                    (28b)                                       

Cijkl  denote an elastic constant and 𝑙  is the material length scale parameter introduced to 

consider the importance of the strain gradient stress field. Moreover,  e0a and e1a are the nonlocal 
parameters introduced to treat the importance of the nonlocal elastic stress field. 
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The nonlocal kernel functions α0(x,x
', e0a) and α1(x, x

', e1a) satisfy the developed conditions 

by Eringen (1983), The general constitutive relation become as 

[1 − (𝑒1𝑎)
2𝛻2] [1 − (𝑒0𝑎)

2𝛻2]𝜎𝑖𝑗 = 𝐶𝑖𝑗𝑘𝑙[1 − (𝑒1𝑎)
2𝛻2]𝜀𝑘𝑙 − 𝐶𝑖𝑗𝑘𝑙 𝑙

2[1 − (𝑒0𝑎)
2𝛻2]𝛻2𝜀𝑘𝑙 (29)           

∇2 is the Laplacian operator.  

In the current work, we suppose the coefficient 𝑒 = 𝑒0 = 𝑒1. The total nonlocal strain gradient 
constitutive relation can be stated as 

  [1-μ∇2]σij = Cijkl[1-λ∇2]εkl                                                    (30)                                             

where 𝜇 = (𝑒𝑎)2and λ = l2. 

 (1 − (𝑒0𝑎)
2𝛻2)𝜎𝑖𝑗 = 𝐶𝑖𝑗𝑘𝑙(1 − 𝑙

2𝛻2)𝜀𝑘𝑙                                         (31) 

Therefore, the constitutive relations can be expressed as 

σxx-μ
∂2σxx

∂x2
= Q11 (εxx-λ

∂2εxx

∂x2
)                                              (32) 

σxz-μ
∂2σxz

∂x2
= Q55 (γxz-λ

∂2γxz

∂x2
)                                              (33) 

To obtain the equations of motion in the form of displacements, the stress resultants presented 

in Eq. (26) are substituted into Eq. (20) 

𝑁𝑥𝑥 −𝜇
𝜕2𝑁𝑥𝑥

𝜕𝑥2
= (1 − 𝜆

𝜕2

𝜕𝑥2
) [𝐴11

𝜕𝑢0

𝜕𝑥
−𝐵11

𝜕2𝑤0

𝜕𝑥2
+ 𝐶11 (

𝜕2𝑤0

𝜕𝑥2
−
𝜕 𝜙0

𝜕𝑥
)]                 (34a)                      

𝑀𝑥𝑥 − 𝜇
𝜕2𝑀𝑥𝑥

𝜕𝑥2
= (1 − 𝜆

𝜕2

𝜕𝑥2
) [𝐵11

𝜕𝑢0

𝜕𝑥
− 𝐷11

𝜕2𝑤0

𝜕𝑥2
+𝐹11 (

𝜕2𝑤0

𝜕𝑥2
−
𝜕 𝜙0

𝜕𝑥
)]                (34b)                      

𝑃𝑥𝑥 − 𝜇
𝜕2𝑃𝑥𝑥

𝜕𝑥2
= (1− 𝜆

𝜕2

𝜕𝑥2
) [𝐶11

𝜕𝑢0

𝜕𝑥
− 𝐹11

𝜕2𝑤0

𝜕𝑥2
+𝐻11 (

𝜕2𝑤0

𝜕𝑥2
−
𝜕 𝜙0

𝜕𝑥
)]                (34c)                           

𝑄𝑥𝑧 − 𝜇
𝜕2𝑄𝑥𝑧

𝜕𝑥2
= (1 − 𝜆

𝜕2

𝜕𝑥2
) [𝐴55 (

𝜕 𝑤0

𝜕𝑥
− 𝜙0)]                              (34d)                                            

Based on the nonlocal strain gradient theory, the equilibrium equations for FG-CNTRC 
nanobeam can be written as 

(1 − 𝜇
𝜕2

𝜕𝑥2
)(𝐴11

𝜕2𝑢0

𝜕𝑥2
− 𝐵11

𝜕3𝑤0

𝜕𝑥3
+ 𝐶11 (

𝜕3𝑤0

𝜕𝑥3
−
𝜕2𝜙0

𝜕𝑥2
))  

= (1 − 𝜆
𝜕2

𝜕𝑥2
) (𝐼0�̈�0 − 𝐼1

𝜕�̈�0

𝜕𝑥
+ 𝐼3 (

𝜕�̈�0

𝜕𝑥
− �̈�0))  

(35a) 

(1 − 𝜇
𝜕2

𝜕𝑥2
)(𝐶11

𝜕2𝑢0

𝜕𝑥2
− 𝐹11

𝜕3𝑤0

𝜕𝑥3
+𝐻11 (

𝜕3𝑤0

𝜕𝑥3
−
𝜕2𝜙0

𝜕𝑥2
))  

= (1 − 𝜆
𝜕2

𝜕𝑥2
) (𝐼3�̈�0 − 𝐼4

𝜕�̈�0

𝜕𝑥
+ 𝐼5 (

𝜕�̈�0

𝜕𝑥
− �̈�0))  

(35b) 

(1 − 𝜇
𝜕2

𝜕𝑥2
)(
𝐶11

𝜕3𝑢0

𝜕𝑥3
−𝐹11

𝜕4𝑤0

𝜕𝑥4
+ 𝐻11 (

𝜕4𝑤0

𝜕𝑥4
−
𝜕3𝜙0

𝜕𝑥3
) −𝐵11

𝜕3𝑢0

𝜕𝑥3

+𝐷11
𝜕4𝑤0

𝜕𝑥4
−𝐹11 (

𝜕4𝑤0

𝜕𝑥4
−
𝜕3𝜙0

𝜕𝑥3
) − 𝐴55 (

𝜕2𝑤0

𝜕𝑥2
−
𝜕𝜙0

𝜕𝑥
)
)    
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= (1 − 𝜆
𝜕2

𝜕𝑥2
)(𝐼0�̈�0 + 𝐼1

𝜕�̈�0

𝜕𝑥
− 𝐼2

𝜕2𝑤0

𝜕𝑥2
− 𝐼3

𝜕�̈�0

𝜕𝑥
− 𝐼4 (

𝜕�̈�0

𝜕𝑥
− 2

𝜕2�̈�0

𝜕𝑥2
) − 𝐼5 (

𝜕2�̈�0

𝜕𝑥2
−
𝜕�̈�0

𝜕𝑥
))  (35c) 

 

 

5. Exact solutions for FG-CNTRC nanobeams 
 

Functions of the displacements field that satisfy the simply-simply cross-ply beams boundary 
conditions are developed as Fourier series as 

𝑢0(𝑥, 𝑡) = 𝑈𝑚𝑒
𝑖𝜔𝑡 cos(𝛽𝑥) 

𝑤0(𝑥, 𝑡) = 𝑊𝑚𝑒
𝑖𝜔𝑡 sin(𝛽𝑥) 

𝜙0(𝑥, 𝑡) = 𝑋𝑚𝑒
𝑖𝜔𝑡 cos(𝛽𝑥)                                                  (36)                                                                   

In which 𝑖 = √−1, 𝑈𝑚 , 𝑊𝑚  and 𝑋𝑚 are arbitrary parameters and β = mπ L⁄ . Substituting Eq. 
(35) into Eq. (36) give 

((1 + 𝜆𝛽2) [

𝑠11 𝑠12 𝑠13
𝑠12 𝑠22 𝑠23
𝑠13 𝑠23 𝑠33

] − (1 + 𝜇𝛽2)𝜔2 [

𝑚11 𝑚12 𝑚13

𝑚12 𝑚22 𝑚23

𝑚13 𝑚23 𝑚33

]) = {
0
0
0
}                 (37)                             

where the matrix elements of Eq. (37) can be written as 

𝑠11 = −𝐴11𝛽
2, 𝑠12 = 𝐶11𝛽

2, 𝑠13 = 𝐶11𝛽
2 

𝑠22 = 𝐷11𝛽
2, 𝑠23 = −𝐹11𝛽

3, 𝑠33 = −𝐻11𝛽
3 − 𝐴55𝛽

3                           (38) 

And  

𝑚11 = −𝐼0,  𝑚12 = 𝐼3, 𝑚13 = 𝐼1𝛽 − 𝐼3𝛽, 𝑚22 = 𝐼5, 

𝑚23 = 𝐼4𝛽 − 𝐼5𝛽, 𝑚33 = 𝐼0 + 2𝐼2𝛽
2 + 𝐼5𝛽

2                                   (39)                                             
 

 

6. Numerical results  
 
In the current research, numerical results are presented to illustrate the stresses and deflections 

of CNTRC beams using a new hyperbolic higher-order shear deformation beam theory. Also, the 
boundary conditions considered are simply supported. The materials chosen as reinforcement in 
this study are Poly methyl methacrylate (PMMA) (matrix)and the armchair (10,10) SWCNTs. 

Material properties of the matrix are 𝜈𝑝 = 0.3, 𝜌𝑝 = 1190 Kg m3⁄  and 𝐸𝑝 = 2.5 GPa , and for 

the reinforcement 𝜈𝑐𝑛𝑡 = 0.19 , 𝜌𝑐𝑛𝑡 = 1400 Kg m3⁄ , 𝐸11
𝑐𝑛𝑡 = 600 GPa , 𝐸22

𝑐𝑛𝑡 = 10 GPa and 

𝐺12
𝑐𝑛𝑡 = 17.2 GPa. 

Numerical results are presented in terms of non-dimensional parameters as 

For vibration analysis    𝜔 = 𝜔𝐿√
𝐼00

𝐴110
                                              (40) 

where A110 and I00 are A11 and I0 of beam made of pure matrix material, respectively. 
Due to the existing limitation of similar work results for multilayered CNTRC nanobeams, the 

validation processes of the present model for its efficiency and precision are divided into two 
stages: (1) a comparison study to validate the accuracy of the proposed hyperbolic shape function  

169



 

 

 

 

 

 

Miloud Ladmek et al. 

Table 2 Comparison of dimensionless frequency of simply supported various kinds of CNTs distribution 

(L/h=15, Vcnt
* = 0.12) 

Theory UD FG-O FG-X FG-V 

FSDT(a) (a) [27] 0.9976 0.7628 1.1485 0.8592 

TSDT(a)  [27] 0.9745 0.7453 1.1152 0.8441 

ESDT(a)  [27] 0.9756 0.7440 1.1180 0.8448 

HSDT(a)  [27] 0.9745 0.7454 1.1151 0.8441 

TrSDT(a)  [27] 0.9749 0.7446 1.1163 0.8443 

Present 0.9749 0.7446 1.1162 0.8443 

 (a) Wattanasakulpong and Ungbhakorn (2013) 

 
Table 3 Effect of CNTs volume fraction and thickness ratio on the dimensionless frequencies (L/h=10) 

𝑉𝑐𝑛𝑡
∗   a/h UD FG-X FG-O FG-V FG(A) FG(B) 

12% 

5 1.6497 1.7332 1.4270 1.5678 1.3429 1.7376 

10 1.2594 1.3916 1.0066 1.1272 0.9224 1.4092 

20 0.7809 0.9128 0.5827 0.6649 0.5242 0.9352 

30 0.5490 0.6545 0.4014 0.4606 0.3594 0.6737 

17% 

5 2.1023 2.2000 1.8189 1.9848 1.7073 2.2041 

10 1.5700 1.6711 1.2447 1.3921 1.1357 1.7607 

20 0.9530 1.1171 0.7062 0.8057 0.6332 1.1452 

30 0.6656 0.7951 0.4839 0.5552 0.4320 0.8186 

28% 

5 2.3427 2.3858 2.1215 2.2456 2.0159 2.3806 

10 1.8279 1.9636 1.5036 1.6464 1.3815 1.9786 

20 1.1608 1.3363 0.8731 0.9875 0.7838 1.3648 

30 0.8227 0.9726 0.6020 0.6874 0.5371 0.9990 

 
 

model and (2) parametric study to investigate the effects of several parameters independently. 
To examine the effectiveness of the proposed theory on the vibration behaviour of FG beams, 

Table 2 presents a comparative analysis by considering the existing CNTs patterns in the literature 
(UD, FG-X, FG-O, FG-V). The proposed results are concluded with results obtained by 
Wattanasakulpong and Ungbhakorn (2013) using the first-order shear deformation theory FSDT, 

Exponential shear deformation theory (ESDT), Third order shear deformation theory (TSDT), 
Hyperbolic shear deformation theory (HSDT), and Trigonometric shear deformation theory 
(TrSDT). Consequently, our results are identical to those generated by using the TrSDT. 

Table 3 presents the effect of CNTs volume fraction and thickness ratio on the dimensionless 
frequencies. It is seen that the dimensionless frequencies increase by the increasing of CNTs 
volume fraction and decreasing the thickness ratio, regardless of the CNTs distribution pattern. 

Table 4 presents the effect of nonlocal and length scale parameters on the dimensionless 

frequencies. It is seen that the dimensionless frequencies increase by the increasing 𝜆  and 

decreasing of 𝜇, regardless of the CNTs distribution pattern. 
From Fig. 2, it is observed that the proposed functionally graded materials (FG(A) and FG(B)) 

have an excellent and smooth variation of the distribution of the constituents, unlike the FG-X and 
the FG-V which have an abrupt change of distribution at the mid-plane position. 
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Table 4 Effect of nonlocal and length scale parameters on the dimensionless frequencies (L/h=10) 

𝜇 𝜆  UD FG-X FG-O FG-V FG(A) FG(B) 

0 

0 1.2594 1.3916 1.0066 1.1272 0.9224 1.4092 

0,5 1.2901 1.4255 1.0311 1.1547 0.9449 1.4435 

1 1.3200 1.4587 1.0551 1.1816 0.9669 1.4771 

1,5 1.3494 1.4911 1.0785 1.2078 0.9884 1.5099 

2 1.3781 1.5228 1.1015 1.2335 1.0094 1.5420 

0,5 

0 1.2294 1.3585 0.9826 1.1004 0.9005 1.3756 

0,5 1.2594 1.3916 1.0066 1.1272 0.9224 1.4092 

1 1.2886 1.4239 1.0300 1.1534 0.9439 1.4419 

1,5 1.3172 1.4556 1.0529 1.1791 0.9649 1.4740 

2 1.3453 1.4865 1.0753 1.2041 0.9854 1.5053 

1 

0 1.2015 1.3276 0.9603 1.0754 0.8800 1.3444 

0,5 1.2307 1.3600 0.9837 1.1016 0.9015 1.3772 

1 1.2594 1.3916 1.0066 1.1272 0.9224 1.4092 

1,5 1.2873 1.4225 1.0290 1.1523 0.9429 1.4405 

2 1.3147 1.4528 1.0508 1.1768 0.9630 1.4711 

1,5 

0 1.1754 1.2988 0.9395 1.0521 0.8609 1.3152 

0,5 1.2040 1.3304 0.9624 1.0777 0.8819 1.3472 

1 1.2320 1.3614 0.9847 1.1027 0.9024 1.3786 

1,5 1.2594 1.3916 1.0066 1.1272 0.9224 1.4092 

2 1.2861 1.4212 1.0280 1.1512 0.9421 1.4391 

2 

0 1.1509 1.2717 0.9199 1.0301 0.8430 1.2878 

0,5 1.1789 1.3027 0.9423 1.0553 0.8635 1.3192 

1 1.2063 1.3330 0.9642 1.0798 0.8836 1.3499 

1,5 1.2331 1.3626 0.9856 1.1038 0.9032 1.3798 

2 1.2594 1.3916 1.0066 1.1272 0.9224 1.4092 

 

 

Fig. 2 Various functionally graded CNTs distribution patterns 

 

 

In Fig. 3, the increase of the geometric parameter 𝐿 ℎ⁄  decreases the dimensionless frequency 
𝜔, wherever the CNTs distribution pattern is. The FG CNTRC (B) has the highest values of  
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Fig. 3 Effect of thickness ratio on the dimensionless frequency (Vcnt

* = 0.12,μ = 0, λ = 0) 

 

 

Fig. 4 Effect of nonlocal and lenght-scale parameters on the dimensionless frequency of CNTRC(A) beam 

 
 

dimensionless frequency 𝜔, while the lowest values are the CNTRC (A). 
In Figs. 4 and 5, we present the action of the nonlocal and the length-scale parameters on the 

FG CNTRC (A) and FG CNTRC (B), respectively. The augmentation of nonlocal parameters leads 

to an increment in the dimensionless frequenciesω, wherever the distribution pattern is. Unlike the 
effect of nonlocal parameters, the augmentation of length-scale parameters leads to a decrement in 

dimensionless frequencies ω. 

Figs. 6 and 7 plotted the effect of the mode shape m and the volume fraction of the CNTs 𝑉𝑐𝑛𝑡
∗  

on the dimensionless frequency ω. Therefore, It is clear that the increment of the modes m and n, 

also leads to the increment of the dimensionless frequency ω. On the other hand, the highest  
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Free vibration of functionally graded carbon nanotubes reinforced composite nanobeams 

 

Fig. 5 Effect of nonlocal and lenght-scale parameters on the dimensionless frequency of CNTRC(B) beam 

 

 

Fig. 6 Effect of mode number on the dimensionless frequency of CNTRC(A) beam 

 
 

frequencies are for the beam that has a volume fraction 𝑉𝑐𝑛𝑡
∗ = 0.28, whereas the lowest values are 

the volume fraction 𝑉𝑐𝑛𝑡
∗ = 0.12. 

 
 

7. Conclusions 
 

The current work presents the free vibration problem of simply supported CNTRC beams 
reinforced by different patterns of CNT distributions in the polymeric matrix. Cosine functions 
describe the material gradation and material properties through the thickness. Based on the higher-

order nonlocal strain gradient theory, the equilibrium equations are obtained using the virtual work  
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Fig. 7 Effect of mode number on the dimensionless frequency of CNTRC(B) beam 

 

 
principle and solved using Navier’s procedure. The accuracy of the mathematical models is 
numerically verified by comparison with some available results. The numerical examples show 
that: 

• The proposed form of CNT FG-(B) has the highest rigidity, therefore, the highest frequencies. 
The lowest rigidity and frequencies are for the FG-(A) CNT-reinforced composite beams. 
• The action of the nonlocal and the length-scale parameters on the FG CNTRC (A) and FG 
CNTRC (B), respectively, the augmentation of nonlocal parameter leads to an increment in the 

dimensionless frequencies 𝜔, wherever the distribution pattern is. Unlike the effect of nonlocal 
parameters, the augmentation of length-scale parameters leads to a decrement in dimensionless 

frequencies 𝜔. 

• The effect of the mode shape m, n, and the volume fraction of the CNTs 𝑉𝑐𝑛𝑡
∗  on the 

dimensionless frequency 𝜔. Consequently, It is clear that the increment of the modes m and n, 
also leads to the increment of the dimensionless frequency. However, the highest frequencies 

are for the beam with a volume fraction 𝑉𝑐𝑛𝑡
∗ = 0.28; the lowest values are the volume fraction 

𝑉𝑐𝑛𝑡
∗ = 0.12. 

The effect of CNTs volume fraction and thickness ratio on the dimensionless frequencies, it is 
seen that the dimensionless frequencies increase with the increment of CNTs volume fraction and 
decrement of the thickness ratio, regardless of the CNTs distribution pattern. The effect of nonlocal 

and length scale parameters on the dimensionless frequencies 𝜔  is seen as the dimensionless 

frequencies increase through the increment of 𝜆 and decrement of 𝜇 , regardless of the CNTs 
distribution pattern. 
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