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Abstract.  In this study, forced vibration analysis of a fiber reinforced composite cantilever beam is investigated 
under a harmonic load. In the beam model, the Timoshenko beam theory is used. The governing equations of problem 
are derived by using the Lagrange procedure. In the solution of the problem the Ritz method is used and algebraic 
polynomials are used with the trivial functions for the Ritz method. In the solution of the forced vibration problem, the 
Newmark average acceleration method is used in the time history. In the numerical examples, the effects of fibre 
orientation angles, the volume fraction and dynamic parameters on the forced vibration response of fiber reinforced 
composite beam are presented and discussed. 
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1. Introduction 

 
Fiber reinforced composite structures mainly preferred in the engineering projects due to their 

higher strength-weight ratios, more lightweight and ductile properties. The dynamic effects are very 
important for design of FRC structures because their slender geometry. 

Some investigations about dynamic analysis of FRC structures are as follows; Krawczuk et al. 
(1997) studied the vibration of cracked composite beams. Palanivel (2006) performed the free 
vibration analysis of laminated composite beams by using two high-order shear deformation theory 
and finite elements method. DeValve and Pitchumani (2014) investigated damping vibration 
analysis of rotating composite beams with embedded carbon nanotubes. Tornabene et al. (2014) 
investigated static and vibration analysis of laminated doubly-curved shells and panels embedded in 
elastic foundation by using the generalized differential quadrature. Pour et al. (2015) presented 
nonlinear vibration of single walled carbon nanotubes by using differential quadratic 
method. Mohanty et al. (2015) investigated dynamic responses of functionally graded pre-twisted 
beams by using Timoshenko beam theory and finite element method. Akbaş (2014a, c) presented 
wave propagation of cracked beams under impact loads. Akbaş (2014b, 2015b, 2018a, c, 2019a, c, 
2021) investigated dynamic analysis of functionally graded composite beams with different dynamic 
cases. Ebrahimi et al. (2016), Ebrahimi and Barati (2017) investigated dynamic responses of 
inhomogeneous and nano composite structures with magneto-electro effects. Fan and Wang (2015) 
examined nonlinear dynamics of laminated beams reinforced carbon nanotubes with matrix crack 
under thermal environment. Zenkour (2016) investigated torsional dynamics of carbon nanotubes 
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embedded in viscoelastic medium. Jena et al. (2016) analyzed dynamic behavior of cracked fiber 
reinforced composite beams. Ghayesh (2018) analyzed forced nonlinear vibration of axially 
functionally graded micro beams by using coupled stress theory. Akbaş (2015a, 2018b, 2019b) 
investigated forced vibration analysis of cracked beams. Yaylı (2019) presented free lateral vibration 
behavior of a functionally graded nanobeam in an elastic matrix with rotationally restrained 
ends. Draiche et al. (2019) presented static analysis of laminated reinforced composite plates based 
on first-order shear deformation theory by using the Navier method. Waddar et al. (2019) 
investigated buckling and dynamic response of cenosphere reinforced epoxy composite core 
sandwich beam with sisal fabric/epoxy composite facings under compressive load by experimentally. 

As seen from literature survey, the forced vibration studies of FRC beams have not been 
investigated broadly. In this study, forced vibration responses of a FRC beam are obtained with using 
Timoshenko beam theory and Ritz method. The governing equations of problem are obtained by 
using the Lagrange procedure. In the solution of the forced vibration problem, the Newmark average 
acceleration method is used in the time history. In the numerical results, the effects of fibre 
orientation angles, the volume fraction and dynamic parameters on the forced vibration response of 
the FRC beam are presented. 

 
 

2. Problem formulation 
 
A cantilever FRC beam under a dynamic point load 𝑄(𝑡) at free end is presented in Fig. 1. The 

geometry parameters of the FRC beam indicate as the length L, the height h and width b. The 
dynamic point load 𝑄(𝑡) is assumed to be sinusoidal harmonic in time domain as following 

 𝑄(𝑡) = 𝑄 sin(𝑡) , 0 ≤ 𝑡 ≪ ∞ (1)
 
In Eq. (1), 𝑄  and  indicate the amplitude and the frequency of the dynamic load. 
The axial strain (ε ) and shear strain (γ ) are given according to the Timoshenko beam theory 

as follows 𝜀 𝜕𝑢𝜕𝑧 − 𝑌 𝜕∅𝜕𝑧  (2a)

 𝛾 = 𝜕𝑢𝜕𝑦 + 𝜕𝑣𝜕𝑧  (2b)

 
 

Fig. 1 A cantilever FRC beam under a dynamic point load at free end 
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where, 𝑢 , 𝑣  and ∅ are axial displacement, vertical displacement and rotation, respectively. The 
constitute relation is presented as follows 

 𝜎𝜎 = 𝑄 𝑄𝑄 𝑄 𝜖𝛾  (3)

 
where 𝑄   are the transformed components of the reduced constitutive tensor. The transformed 
components of the reduced constitutive tensor for orthotropic material are as follows 

 𝑄 = 𝑄 𝑙 + 2(𝑄 + 2𝑄 )𝑙 𝑛 + 𝑄 𝑛  (4a)
 𝑄 = (𝑄 + 𝑄 − 4𝑄 )𝑠𝑖𝑛 𝑐𝑜𝑠 + 𝑄 (𝑙 + 𝑛 ) (4b)
 𝑄 = (𝑄 − 𝑄 − 2𝑄 )𝑛𝑙 + (𝑄 − 𝑄 + 2𝑄 )𝑛 𝑙 (4c)
 𝑄 = 𝑄 𝑛 + 2(𝑄 + 2𝑄 )𝑛 𝑙 + 𝑄 𝑙  (4d)
 𝑄 = (𝑄 − 𝑄 − 2𝑄 )𝑛 𝑙 + (𝑄 − 𝑄 + 2𝑄 )𝑛𝑙  (4e)
 𝑄 = (𝑄 + 𝑄 − 2𝑄 − 2𝑄 )𝑛 𝑙 + 𝑄 (𝑛 + 𝑙 ) (4f)
 

where l = cos 𝜃 and n = sin𝜃, 𝜃 indicates the fiber orientation angle and the expressions of 𝑄  
are as follows 𝑄 = 𝐸1 − 𝜈 𝜈 , 𝑄 = 𝐸1 − 𝜈 𝜈  (5a)

 𝑄 = 𝜈 𝐸1 − 𝜈 𝜈 = 𝜈 𝐸1 − 𝜈 𝜈  (5b)

 𝑄 = 𝜈 𝐸1 − 𝜈 𝜈 = 𝜈 𝐸1 − 𝜈 𝜈  (5c)

 𝑄 = 𝐺  (5d)
 

where E1 is the Young’s modulus in the X direction, E2 is the Young’s modulus in the Y direction, 𝜈  and 𝜈  are Poisson’s ratios and 𝐺  is the shear modulus in XY plane. The gross mechanical 
properties of the composite materials are calculated by using the following expression (Vinson and 
Sierakowski 2002) 𝐸 = 𝐸 𝑉 + 𝐸 1 − 𝑉 , (6a)

 𝐸 = 𝐸 𝐸 + 𝐸 + 𝐸 − 𝐸 𝑉𝐸 + 𝐸 − 𝐸 − 𝐸 𝑉  (6b)
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𝜈 = 𝜈 𝑉 + 𝜈 1 − 𝑉 , (6c)
 𝐺 = 𝐺 𝐺 + 𝐺 + 𝐺 − 𝐺 𝑉𝐺 + 𝐺 − 𝐺 − 𝐺 𝑉  (6d)

 𝜌 = 𝜌 𝑉 + 𝜌 1 − 𝑉 , (6e)
 

where f indicates the fibre and m indicates the matrix. Vf is the volume fraction of fiber. E, G, ν and 𝜌 are the Young’s modulus, the shear modulus, Poisson’s ratio and mass density, respectively. 
The strain energy (Ui), the kinetic energy (K), the dissipation function and potential energy of the 

external loads (Ue) are presented as follows 
 𝑈 = 12 𝐴 𝜕𝑢𝜕𝑧 − 2𝐴 𝜕𝑢𝜕𝑧 𝜕∅𝜕𝑧 + 𝐴 𝜕∅𝜕𝑧 𝑑𝑍

+ 12 𝐾 𝐵 𝜕𝑣𝜕𝑧 − 2 𝜕𝑣𝜕𝑧 ∅ + ∅ 𝑑𝑍 
(7a)

 𝐾 = 12 𝐼 𝜕𝑢𝜕𝑡 − 2𝐼 𝜕𝑢𝜕𝑡 𝜕∅𝜕𝑡 + 𝐼 𝜕∅𝜕𝑡 + 𝐼 𝜕𝑣𝜕𝑡 𝑑𝑍 (7b)
 

where 
 (𝐴 , 𝐴 , 𝐴 ) = 𝑄 (1, 𝑌, 𝑌 )𝑑𝐴 , 𝐵 = 𝑄 𝑑𝐴 ,

(𝐼 , 𝐼 , 𝐼 ) = 𝜌(𝑌)(1, 𝑌, 𝑌 )𝑑𝐴 
(8)

 
The Lagrangian functional of the problem is presented as follows; 
 𝐼 = 𝐾 − (𝑈 + 𝑈 ) (9)
 
In the solution of the problem in Ritz method, approximate solution is given as a series of i terms 

of the following form 𝑢 (𝑧, 𝑡) = a (𝑡)𝛼 (𝑧) (10a)

 𝑣 (𝑧, 𝑡) = b (𝑡)𝛽 (𝑧) (10b)

 ∅(𝑧, 𝑡) = c (𝑡)𝛾 (𝑧) (10c)

 
where ai, bi and ci are the unknown coefficients, 𝛼 (𝑧, 𝑡) , 𝛽 (𝑧, 𝑡) , 𝛾 (𝑧, 𝑡)  are the coordinate 
functions depend on the boundary conditions over the interval [0, L]. The coordinate functions for 

60



 
 
 
 
 
 

Forced vibration analysis of a fiber reinforced composite beam 

the cantilever beam are given as algebraic polynomials 
 𝛼 (𝑧) = 𝑧  (11a)
 𝛽 (𝑧) = 𝑧( ) (11b)
 𝛾 (𝑧) = 𝑧  (11c)
 

where i indicates the number of polynomials involved in the admissible functions. 
After substituting Eq. (10) into energy Eq. (7), and then using the Lagrange’s equation gives the 

following equation 𝜕𝐼𝜕𝑞 − 𝜕𝜕𝑡 𝜕𝐼𝜕𝑞 = 0 (12)

 
where qi is the unknown coefficients which are ai, bi and ci. After implementing the Lagrange 
procedure, the motion equation of the problem is obtained as follows 

 K q(t) + M q(t) = F(t)  (13)
 

where 𝐾 , 𝑀  and F(t)  are the stiffness matrix, the mass matrix and load vector, respectively. 
The detail of these expressions are given as follows 

 𝐾 = 𝐾 𝐾 𝐾𝐾 𝐾 𝐾𝐾 𝐾 𝐾  (14)

 
Where 
 𝐾 = 𝐴 𝜕𝛼𝜕𝑧 𝜕𝛼𝜕𝑧 𝑑𝑧, 𝐾 = 0,

𝐾 = − 𝐴 𝜕𝛼𝜕𝑧 𝜕𝛾𝜕𝑧 𝑑𝑧,       𝐾 = 0, 
𝐾 = 𝐴 𝜕𝛼𝜕𝑧 𝜕𝛼𝜕𝑧 𝑑𝑧,           𝐾 =  𝐾 𝐵 𝜕𝛽𝜕𝑧 𝜕𝛽𝜕𝑧 𝑑𝑧, 
𝐾 = − 𝐾 𝐵 𝜕𝛽𝜕𝑧 𝛾 𝑑𝑧,     𝐾 = − 𝐴 𝜕𝛾𝜕𝑧 𝜕𝛼𝜕𝑧 𝑑𝑧, 
𝐾 = − 𝐾 𝐵 𝛾 𝜕𝛽𝜕𝑧 𝑑𝑧, 
𝐾 = 𝐴 𝜕𝛾𝜕𝑧 𝜕𝛾𝜕𝑧 + 𝐾 𝐵 𝛾 𝛾 𝑑𝑧, 

(15)
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𝑀 = 𝑀 𝑀 𝑀𝑀 𝑀 𝑀𝑀 𝑀 𝑀  (16)

 

Where 
 𝑀 = I 𝛼 𝛼 dz, 𝑀 = 0

𝑀 = − I 𝛼 𝛾 dz,        𝑀 = 0, 
𝑀 = I 𝛽 𝛽 dz,            𝑀 = 𝑀 = 0 
𝑀 = − I 𝛾 𝛼 dz 
𝑀 = I 𝛾 𝛾 dz 

(17)

 F(t) = 𝑄𝛽  (18)
 
The governing equation of motions Eq. (13) is solved numerically by using implicit Newmark 

average acceleration method in the time domain. 
 
 

3. Numerical results 
 
In this section, dynamical displacements of the FRC cantilever beam are presented and discussed. 

In the numerical examples, the materials of the beams are selected as made of graphite fibre-
reinforced polyamide composite and its material parameters are as follows (Krawczuk et al. 1997); 
Em = 2.756 GPa, Ef = 275.6 GPa, Gm = 1.036 GPa, Gf = 114.8 GPa, νm = 0.33, νf = 0.2, ρm = 1600 
kg/m3, ρf = 1900 kg/m3. The geometry properties of the beam are selected as 𝑏 = 0.1 m, h = 0.1 m 
and L = 1.2 m. In the numerical results, number of the series term is taken as 10. The amplitude of 
the dynamic load is selected as Q0 = 1 kN. 

In order to investigate the effects of the fiber orientation angles (𝜃 ), the lateral dynamical 
displacements of the FRC beams are presented for different values of 𝜃 in Figs. 2 and 3 in the time 
history. In these figures, the maximum dynamical displacements (vmax) are calculated at the free end 
of the beam. In Fig. 2, the time history of FRC cantilever beam is presented in the dynamical 
displacements for 𝑉 = 0.3 ,  = 10 𝑟𝑑/𝑠 . In Fig. 3, the relationship between of the maximum 
displacements and the frequency of the dynamic load (𝑤) of FRC cantilever beam is presented for 
different values the fiber orientation angles for 𝑉 = 0.3 for t = 0.5 s. 

It is seen from Figs. 2 and 3 that increasing the fiber orientation angles, the dynamical lateral 
displacements of the FRC beam increase considerably. The bending rigidity decreases with 
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increasing the fiber orientation angles according to Eq. (4), so the displacements increase. Also, as 
seen from Fig. 3, the displacements increase and the resonance frequencies decrease with increasing 
in the fiber orientation angles. In Fig. 3, the resonance frequencies can be observed in the asymptote 
lines. The fiber orientation angles play important role on the dynamic responses of FRC beams. 

In Figs. 4 and 5, effects of the volume fraction of fiber (Vf) on the dynamic responses of FRC 
cantilever beam are displayed for different values of Vf . In Fig. 4, the time history of FRC cantilever 
beam is presented in the dynamical displacements for 𝜃 = 30° ,  = 10 𝑟𝑑/𝑠 . In Fig. 5, the 
relationship between of the maximum displacements and the frequency of the dynamic load (𝑤) of 
FRC cantilever beam is presented for different values the Vf for 𝜃 = 30° for t = 0.5 s. 

It is observed from Fig. 4 that increasing volume fraction of fiber yields to decrease dynamical 
displacements significantly. The reason of this situation that with increasing the volume fraction of 
fiber Vf, the rigidity of the FRC beam increases, so displacements decreases naturally. In addition, 

 
 

Fig. 2 Time history of the FRC cantilever beam for different values the fiber orientation angles 
 
 

Fig. 3 The relationship between of the maximum displacements and the frequency of the dynamic 
load (𝑤) of FRC cantilever beam for different values the fiber orientation angles 

 
 

Fig. 4 Time history of the FRC cantilever beam for different values the volume fraction of fiber (Vf )
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Fig. 5 The relationship between of the maximum displacements and the frequency of the dynamic 
load (𝑤) of FRC cantilever beam for different values the volume fraction of fiber (Vf ) 

 
 

the resonance frequencies of the FRC beam increase with increasing of the volume fraction of fiber. 
Because of increasing the volume fraction of fiber, the FRC beam gets more strength and so, the 
resonance frequencies increase. It shows that the volume fraction of fiber is very effective on the 
dynamic responses of FRC beams. 

 
 

4. Conclusions 
 
Dynamic responses of FRC cantilever beam under a dynamically harmonic load are studied in 

the framework of the Timoshenko beam theory. Ritz method and Newmark integration method are 
exploited to solve the equation of motion incrementally. Effects of fibre orientation angles, the 
volume fraction and dynamic parameters on the Dynamically displacements of the FRC beam 
investigated. The most findings of this article can be summarized as: 

The fiber orientation angles has significant effects on dynamic response and amplitude of 
oscillation. The displacement of FRC beam is increased dramatically as the fiber orientation angle 
increased. The resonance frequencies of the FRC beam increase with increasing of the volume 
fraction of fiber significantly. The results show that the dynamical behavior of FRC beams change 
dramatically with the material properties. 
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