Effects of thickness stretching in FGM plates using a quasi-3D higher order shear deformation theory

Belkacem Adim¹,² and Tahar Hassaine Daouadjj¹,²

¹Département de génie civil, Université Ibn Khaldoun Tiaret; BP 78 Zaouroura, 14000 Tiaret, Algérie
²Laboratoire de Géomatique et Développement Durable, Université Ibn Khaldoun de Tiaret, Algérie

(Received September 8, 2016, Revised December 20, 2016, Accepted December 21, 2016)

Abstract. In this paper, a higher order shear and normal deformation theory is presented for functionally graded material (FGM) plates. By dividing the transverse displacement into bending, shear and thickness stretching parts, the number of unknowns and governing equations for the present theory is reduced, significantly facilitating engineering analysis. Indeed, the number of unknown functions involved in the present theory is only five, as opposed to six or even greater numbers in the case of other shear and normal deformation theories. The present theory accounts for both shear deformation and thickness stretching effects by a hyperbolic variation of all displacements across the thickness and satisfies the stress-free boundary conditions on the upper and lower surfaces of the plate without requiring any shear correction factor. Equations of motion are derived from Hamilton’s principle. Analytical solutions for the bending and free vibration analysis are obtained for simply supported plates. The obtained results are compared with three-dimensional and quasi-three-dimensional solutions and those predicted by other plate theories. It can be concluded that the present theory is not only accurate but also simple in predicting the bending and free vibration responses of functionally graded plates.

Keywords: Functionally Graded Material; power law index; Higher-order Shear Deformation Theory; Navier solution

1. Introduction

The concept of functionally graded materials FGM was first introduced in 1984 by material scientists in the Sendai area of Japan. FGM is a class of composite materials that has continuous variation of material properties from one surface to another and thus eliminates the stress concentration found in laminated composites. Typically, the FGM is made from a mixture of a ceramic and a metal. FGMs are widely used in many structural applications such as mechanical, aerospace, civil, and automotive. When the application of FGMs increases, more accurate theories are required to predict their responses.

In the past three decades, researches on functionally graded material plates have received...
substantial attention, and an extensive spectrum of plate theories has been introduced based on the classical plate theory and shear deformation plate theory. The classical plate theory (CPT) neglects shear deformations and can lead to inaccurate results for moderately thick plates. This theory has been implemented for buckling analysis of FGM plates by Feldman and Aboudi (1997), Abrate (2008). First-order shear deformation theory (Reissner 1945, Mindlin 1951) considers the transverse shear deformation effects, but needs a shear correction factor in order to satisfy the zero transverse shear stress boundary conditions at the top and bottom of the plate. Many studies of the mechanical behavior of plates have been carried out using FSDT (Moradi 2012, Menaa 2012, Yaghoubi 2013 Gafour 2015, Baghdadi 2015, Rashidi 2012). To avoid the use of shear correction factors, several higher-order shear deformation plate theories have been proposed such as the theory propounded by Nelson and Lorch (1974) with nine unknowns, Lo et al. (1977) with eleven unknowns, Bhi-maraddi and Stevens (1984) with five unknowns, Reddy (1984) with five unknowns. Some higher order theories based on Carrera’s unified Formulation (CUF) such as proposed in Refs (Neves 2012, Reddy 2000, Ait atman 2010, Abdelhak 2016, Ait yahi 2015, Boumia 2014, Bouazza 2015, Bensatallah 2016, Bellifa 2015) have been used also to study FGM structures. The majority of HSDTs used to investigate FGM plate mechanics have the same five unknowns. The resulting equations of motion are much more complicated than those yielded with FSDT. In addition, it should be noted that the above-mentioned two-dimensional plate theories discard the thickness stretching effect as they consider a constant transverse displacement through the thickness. This assumption is appropriate for thin or moderately thick FGM plates, but is inadequate for thick FGM plates (Qian 2004). The importance of the thickness stretching effect in FGM plates has been identified succinctly in the work of Carrera et al. (2011). This effect plays a significant role in thick FGM plates and should be taken into consideration.

In general, higher order shear and normal deformation theories which consider thickness stretching effect can be implemented using the unified formulation initially proposed by Carrera (2005). More detailed information and applications of the unified formulation can be found in the recent books by Carrera et al. (2011). Many higher order shear and normal deformation theories have been proposed in the literature (Matsunaga 2009). These theories are cumbersome and computation-ally expensive since they invariably generate a host of unknowns (e.g., theories by Reddy (2011) with eleven unknowns; and Neves et al. (2012) with nine unknowns). Although some well-known quasi-three-dimensional theories developed by Zenkour (2007) and recently by Mantari and Guedes Soares (2012) have six unknowns, they are still more complicated than the FSDT. Thus, there is a scope to develop an accurate higher order shear and normal deformation theory, which is relatively simple to use and simultaneously retains important physical characteristics. Indeed, Huu and Seung (2013) presented recently a quasi-3D sinusoidal shear deformation theory with only five unknowns for bending behavior of FGM plates.

In this paper, an efficient and simple quasi-3D trigonometric shear and normal deformation theory with only five unknowns is developed for FGM plates. Contrary to the four-variable refined theories elaborated in (Hassaine Daouadji 2015, Tlidji 2014, Bennoun 2016, Hamidi 2015, Mahi 2016, Adim 2016, Benferhat 2016), where the stretching effect is neglected, in the current investigation this so-called “stretching effect” is taken into consideration. Numerical examples are presented to verify the accuracy of the present theory.

2. Problem formulation
2.1 The displacement field of the present theory is chosen based on the following assumptions (Fig. 1)

- The transverse displacements are partitioned into bending, shear and stretching components;
- The in-plane displacement is partitioned into extension, bending and shear components;
- The bending parts of the in-plane displacements are similar to those given by CPT;
- The shear parts of the in-plane displacements give rise to the trigonometric variations of shear strains and hence to shear stresses through the thickness of the plate in such a way that the shear stresses vanish on the top and bottom surfaces of the plate.

Based on these assumptions, the following displacement field relations can be obtained

\[
\begin{align*}
    u(x, y, z, t) &= u_0(x, y, t) - z \frac{\partial w_b}{\partial x} - f(z) \frac{\partial w_s}{\partial x} \\
    v(x, y, z, t) &= v_0(x, y, t) - z \frac{\partial w_b}{\partial y} - f(z) \frac{\partial w_s}{\partial y} \\
    w(x, y, z, t) &= w_b(x, y, t) + w_s(x, y, t) + g(z)w_z(x, y, t)
\end{align*}
\]

(1)

Where \(u_0\) and \(v_0\) denote the displacements along the \(x\) and \(y\) coordinate directions of a point on the mid-plane of the plate; \(w_b\) and \(w_s\) are the bending and shear components of the transverse displacement, respectively; and the additional displacement \(w_z\) accounts for the effect of normal stress. In this study, the shape functions \(f(z)\) and \(g(z)\) are chosen based on the trigonometric function \(\xi(z)\) proposed as (Hassaine Daouadj 2013)

\[
\begin{align*}
    f(z) &= z - \xi(z), \quad \text{with:} \quad \xi(z) = \frac{3\pi}{2} h \tanh\left(\frac{z}{h}\right) - \frac{3\pi}{2} z \sec h^2\left(\frac{1}{2}\right) \\
    g(z) &= 1 - \frac{df(z)}{dz}
\end{align*}
\]

(2)

The non-zero strains associated with the new displacement field in Eq. (1) are
\[
\begin{align*}
\begin{cases}
\varepsilon_x = \left( \frac{\partial u_0}{\partial x} \right) - f(z)
\end{cases}
\begin{cases}
\varepsilon_y = \left( \frac{\partial v_0}{\partial y} \right)
\end{cases}
\begin{cases}
\gamma_{xy} = \left( \frac{\partial^2 w_b}{\partial x^2} \right) - f(z)
\end{cases}
\begin{cases}
\varepsilon_z = \left( \frac{\partial^2 w_b}{\partial x^2} \right)
\end{cases}
\begin{cases}
\gamma_{yz} = \left( \frac{\partial^2 w_b}{\partial y^2} \right)
\end{cases}
\begin{cases}
\gamma_{xz} = \left( \frac{\partial^2 w_b}{\partial x \partial y} \right)
\end{cases}
\end{align*}
\]

\[
2.2 \text{ Governing equations}
\]

Hamilton’s principle is used herein to derive equations of motion. The principle can be stated in an analytical form as follows

\[\int_0^T (\delta U + \delta V - \delta K) dt = 0 \] (5)

where \(\delta U\) is the variation of strain energy; \(\delta V\) is the variation of potential energy; and \(\delta K\) is the variation of kinetic energy. The variation of strain energy of the plate is calculated by

\[
\begin{align*}
\delta U &= \frac{1}{2} \int_{\frac{h}{2}}^{h} \left( \sigma_x \varepsilon_x^0 + \sigma_y \varepsilon_y^0 + \sigma_z \varepsilon_z^0 + \varepsilon_{xy} \gamma_{xy}^0 + \varepsilon_{yz} \gamma_{yz}^0 + \varepsilon_{xz} \gamma_{xz}^0 \right) dA dz \\
&= \frac{1}{2} \int_{\frac{h}{2}}^{h} \left( \sigma_x \varepsilon_x^0 + \sigma_y \varepsilon_y^0 + \sigma_z \varepsilon_z^0 + \varepsilon_{xy} \gamma_{xy}^0 + \varepsilon_{yz} \gamma_{yz}^0 + \varepsilon_{xz} \gamma_{xz}^0 \right) dA dz
\end{align*}
\]

where \(A\) is the top surface and the stress resultants \(N\); \(M\), and \(Q\) are defined by

\[
\begin{align*}
\begin{cases}
N_x, \quad N_y, \quad N_z
\end{cases}
\begin{cases}
M_x, \quad M_y, \quad M_z
\end{cases}
\begin{cases}
M_x, \quad M_y, \quad M_z
\end{cases}
\end{cases}
\begin{align*}
&= \int_{-h/2}^{h/2} \left( \sigma_x \varepsilon_x, \sigma_y \varepsilon_y, \sigma_z \varepsilon_z \right) dz \\
&= \int_{-h/2}^{h/2} \left( \sigma_x \varepsilon_x, \sigma_y \varepsilon_y, \sigma_z \varepsilon_z \right) dz \\
&= \int_{-h/2}^{h/2} \left( \tau_{xz}, \tau_{yz}^0 \right) g(z) dz
\end{align*}
\]

\[
\begin{align*}
\begin{cases}
N_x = \int_{-h/2}^{h/2} (\sigma_x) g'(z) dz \\
(Q_x, Q_y) = \int_{-h/2}^{h/2} (\tau_{xz}, \tau_{yz}) g(z) dz
\end{cases}
\end{align*}
\]
Effects of thickness stretching in FGM plates using...

where

\[ N_s = A_{11} \frac{\partial u_o}{\partial x} + A_{12} \frac{\partial v_o}{\partial y} - B_{11} \frac{\partial^2 w_b}{\partial x^2} - B_{12} \frac{\partial^2 w_b}{\partial x \partial y} - B_{11}' \frac{\partial^2 w_r}{\partial x^2} - B_{12}' \frac{\partial^2 w_r}{\partial x \partial y} + X_{13} w_z \]  
(9a)

\[ N_y = A_{21} \frac{\partial u_o}{\partial x} + A_{22} \frac{\partial v_o}{\partial y} - B_{21} \frac{\partial^2 w_b}{\partial x^2} - B_{22} \frac{\partial^2 w_b}{\partial y^2} - B_{21}' \frac{\partial^2 w_r}{\partial x^2} - B_{22}' \frac{\partial^2 w_r}{\partial y^2} + X_{23} w_z \]  
(9b)

\[ N_{xy} = A_{66} \left( \frac{\partial u_o}{\partial x} + \frac{\partial v_o}{\partial y} \right) - 2B_{66} \frac{\partial^2 w_b}{\partial x \partial y} - 2B_{66}' \frac{\partial^2 w_r}{\partial x \partial y} \]  
(9c)

\[ M_{sb}^s = B_{11} \frac{\partial u_o}{\partial x} + B_{12} \frac{\partial v_o}{\partial y} - D_{11} \frac{\partial^2 w_b}{\partial x^2} - D_{12} \frac{\partial^2 w_b}{\partial x \partial y} - D_{11}' \frac{\partial^2 w_r}{\partial x^2} - D_{12}' \frac{\partial^2 w_r}{\partial x \partial y} + Y_{13} w_z \]  
(9d)

\[ M_{sy}^s = B_{12} \frac{\partial u_o}{\partial x} + B_{22} \frac{\partial v_o}{\partial y} - D_{12} \frac{\partial^2 w_b}{\partial x^2} - D_{22} \frac{\partial^2 w_b}{\partial y^2} - D_{12}' \frac{\partial^2 w_r}{\partial x^2} - D_{22}' \frac{\partial^2 w_r}{\partial y^2} + Y_{23} w_z \]  
(9e)

\[ M_{bx}^s = B_{66} \left( \frac{\partial u_o}{\partial y} + \frac{\partial v_o}{\partial x} \right) - 2D_{66} \frac{\partial^2 w_b}{\partial x \partial y} - 2D_{66}' \frac{\partial^2 w_r}{\partial x \partial y} \]  
(9f)

\[ M_{sx}^s = B_{11}' \frac{\partial u_o}{\partial x} + B_{12}' \frac{\partial v_o}{\partial y} - D_{11}' \frac{\partial^2 w_b}{\partial x^2} - D_{12}' \frac{\partial^2 w_b}{\partial x \partial y} - H_{11}' \frac{\partial^2 w_b}{\partial x^2} - H_{12}' \frac{\partial^2 w_b}{\partial y^2} + Y_{13} w_z \]  
(9g)

\[ M_{sy}^s = B_{12}' \frac{\partial u_o}{\partial x} + B_{22}' \frac{\partial v_o}{\partial y} - D_{12}' \frac{\partial^2 w_b}{\partial x^2} - D_{22}' \frac{\partial^2 w_b}{\partial y^2} - H_{12}' \frac{\partial^2 w_b}{\partial x^2} - H_{22}' \frac{\partial^2 w_b}{\partial y^2} + Y_{23} w_z \]  
(9h)

\[ M_{xy}^s = B_{66}' \left( \frac{\partial u_o}{\partial y} + \frac{\partial v_o}{\partial x} \right) - 2D_{66}' \frac{\partial^2 w_b}{\partial x \partial y} - 2H_{66}' \frac{\partial^2 w_b}{\partial x \partial y} \]  
(9i)

\[ N_z = X_{13} \frac{\partial u_o}{\partial x} + X_{23} \frac{\partial v_o}{\partial y} - Y_{13} \frac{\partial w_b}{\partial x^2} - Y_{23} \frac{\partial w_b}{\partial y^2} - Y_{13}' \frac{\partial^2 w}_r{\partial x^2} - Y_{23}' \frac{\partial^2 w}_r{\partial y^2} + Z_{33} w_z \]  
(9j)

\[ Q_s = A_{22} \left( \frac{\partial w_r}{\partial x} + \frac{\partial w_z}{\partial x} \right) \]  
(9k)

\[ Q_y = A_{44} \left( \frac{\partial w_z}{\partial y} + \frac{\partial w_z}{\partial y} \right) \]  
(9l)

\[ \left( A_{ij, A_{ij}}, B_{ij}, B_{ij, D_{ij}, D_{ij}, H_{ij}} \right) = \int_{b/2}^{h/2} \left( l, g^2, z, f, z, f, \right) \mathbf{C}_{ij} dz \]  
(9m)

\[ \left( X_{ij}, Y_{ij}, Y_{ij} Z_{ij} \right) = \int_{b/2}^{h/2} \left( g', g'z, g'f, g'z^2 \right) \mathbf{C}_{ij} dz \]  
(9n)

The variation of potential energy of the applied loads can be expressed thus

\[ \delta V = -\int_A q (\delta w_b + \delta w_z + g(z) \delta w_z) dA \]  
(10)

where \( q \) is the distributed transverse load. The variation of kinetic energy of the plate can be written in the form
\[ \delta K = \int_{-h/2}^{h/2} \int \left( \dot{u} \delta \dot{u} + \dot{v} \delta \dot{v} + \dot{w} \delta \dot{v} \right) \rho(z) \, dA \, dz \] (11)

\[ \delta K = \int_{A} \left[ I_0 (\dot{u}_0 \delta \dot{u}_0 + \dot{v}_0 \delta \dot{v}_0 + (\dot{w}_0 + \dot{w}_z)(\delta \dot{v}_z + \delta \dot{v}_0)) - I_1 (\ddot{u}_1 \delta \dot{u}_1 + \ddot{v}_1 \delta \dot{v}_1 + \ddot{w}_1 \delta \dot{v}_1) + I_2 (\ddot{w}_1 \delta \dot{w}_1 + \ddot{w}_z \delta \dot{w}_z) \right] \, dA \] (12)

where the dot-superscript convention corresponds to differentiation with respect to the time variable \( t \); and \( \left( I_0, I_1, I_2, J_1^z, J_1, J_2, K_2^z, K_2 \right) \) are mass inertias, defined as follows

\[ (I_0, I_1, I_2) = \int_{-h/2}^{h/2} (1, z, z^2) \rho(z) \, dz \] (13a)

\[ (J_1^z, J_1, J_2) = \int_{-h/2}^{h/2} (g(z), f(z), z \cdot f(z)) \rho(z) \, dz \] (13b)

\[ (K_2^z, K_2) = \int_{-h/2}^{h/2} (g^2(z), f^2(z)) \rho(z) \, dz \] (13c)

Substituting the expressions for \( \delta U; \delta V; \delta K \) from Eqs. (6), (10), and (12) into Eq. (5) and integrating by parts, and collecting the coefficients of \( \delta \dot{u}_0; \delta \dot{v}_0; \delta \dot{w}_z; \delta \dot{w}_z \), the following equations of motion of the plate are obtained

\[ \delta u_0 : \quad \frac{\partial N_{xu}}{\partial x} + \frac{\partial N_{vx}}{\partial y} = I_0 \ddot{u}_0 - I_1 \ddot{w}_0 \delta \dot{w}_x - J_1 \delta \ddot{w}_x \] (14a)

\[ \delta v_0 : \quad \frac{\partial N_{yu}}{\partial x} + \frac{\partial N_{vy}}{\partial y} = I_0 \ddot{v}_0 - I_1 \ddot{w}_v \delta \dot{w}_y - J_1 \delta \ddot{w}_y \] (14b)

\[ \delta w_0 : \quad \frac{\partial^2 M_y}{\partial x^2} + 2 \frac{\partial^2 M_y}{\partial y \partial x} + \frac{\partial^2 M_y}{\partial y^2} + q = I_0 (\ddot{w}_0 + \ddot{w}_z) + J_1 \ddot{w}_z + I_2 \left( \ddot{w}_z + \ddot{w}_0 \right) - J_2 \left( \ddot{w}_z + \ddot{w}_z \right) \] (14c)

\[ \delta w_z : \quad \frac{\partial^2 M_y}{\partial x^2} + 2 \frac{\partial^2 M_y}{\partial y \partial x} + \frac{\partial^2 M_y}{\partial y^2} + q = I_0 (\ddot{w}_0 + \ddot{w}_z) + J_1 \ddot{w}_z + I_2 \left( \ddot{w}_z + \ddot{w}_z \right) - J_2 \left( \ddot{w}_z + \ddot{w}_z \right) \] (14d)

\[ \delta w_1 : \quad \frac{\partial Q_y}{\partial x} + \frac{\partial Q_y}{\partial y} \] (14e)
2.3 Constitutive equations

The material properties of FGM plates are assumed to vary continuously through the thickness. Three homogenization methods are deployable for the computation of the Young’s modulus $E(z)$ namely

- The exponential distribution,
- The power law distribution,
- The Mori-Tanaka scheme.

For the exponential distribution, the Young’s modulus is given as (Zenkour 2007)

$$E(z) = E_0 e^{P(z/h)}$$  \hspace{1cm} (15)

where $E_0$ is the Young’s modulus of the homogeneous plate; $E_m$ and $E_c$ denote Young’s modulus of the bottom (metal) and top (ceramic) surfaces of the FGM plate, respectively; $E_0$ is Young’s modulus of the homogeneous plate; and $P$ is a parameter that indicates the material variation through the plate thickness. For the power law distribution, the Young’s modulus is given as (Reddy 2000)

$$E(z) = E_m + (E_c - E_m)(\frac{1}{2} + \frac{z}{h})^P$$ \hspace{1cm} (16)

For Mori-Tanaka scheme, the Young’s modulus is given as (Mori Tanaka 1973)

$$E(z) = E_m + (E_c - E_m)\left(\frac{\frac{1}{2} + \frac{z}{h}}{1 + \left(\frac{1}{2} + \frac{z}{h}\right)^P}\left(\frac{E_c}{E_m} - 1\right)\frac{(1+\nu)}{3-3\nu}\right)$$ \hspace{1cm} (17)

Fig. 2 The exponential distribution of the Young’s modulus $E(z)$ along the thickness of an E-FGM plate

Fig. 3 The distribution of the Young’s modulus $E(z)$ along the thickness of an FGM plate according to Mori-Tanaka scheme
Belkacem Adim and Tahar Hassaine Daouadji

The linear constitutive relations of a FG plate can be written as

$$\begin{bmatrix}
\sigma_x \\
\sigma_y \\
\sigma_z \\
\gamma_{yz} \\
\gamma_{xz} \\
\gamma_{xy}
\end{bmatrix} =
\begin{bmatrix}
C_{11} & C_{12} & C_{13} & 0 & 0 & 0 \\
C_{12} & C_{22} & C_{23} & 0 & 0 & 0 \\
C_{13} & C_{23} & C_{33} & 0 & 0 & 0 \\
0 & 0 & 0 & C_{44} & 0 & 0 \\
0 & 0 & 0 & 0 & C_{55} & 0 \\
0 & 0 & 0 & 0 & 0 & C_{66}
\end{bmatrix}
\begin{bmatrix}
\varepsilon_x \\
\varepsilon_y \\
\varepsilon_z \\
\gamma_{yz} \\
\gamma_{xz} \\
\gamma_{xy}
\end{bmatrix}$$

(18)

where \((\sigma_x, \sigma_y, \sigma_z, \tau_{yz}, \tau_{xz}, \tau_{xy})\) and \((\varepsilon_x, \varepsilon_y, \varepsilon_z, \gamma_{yz}, \gamma_{xz}, \gamma_{xy})\) are the stress and strain components, respectively. The computation of the elastic constants \(C_{ij}\) depends on which assumption of \(\varepsilon_z\) we consider. If \(\varepsilon_z=0\), then \(C_{ij}\) are the plane stress reduced elastic constants, defined as

$$C_{11} = C_{22} = \frac{E(z)}{(1 - \nu^2)}$$

(19a)

$$C_{12} = \nu C_{11}$$

(19b)

$$C_{44} = C_{55} = C_{66} = \frac{E(z)}{2(1 + \nu)}$$

(19c)

If \(\varepsilon_z \neq 0\) (thickness stretching), then \(C_{ij}\) are the three-dimensional elastic constants, given by

$$C_{11} = C_{22} = C_{33} = \frac{(1 - \nu)E(z)}{(1 - 2\nu)(1 + \nu)}$$

(20a)

$$C_{12} = C_{13} = C_{23} = \frac{E(z)}{(1 - 2\nu)(1 + \nu)}$$

(20b)

$$C_{44} = C_{55} = C_{66} = \frac{E(z)}{2(1 + \nu)}$$

(20c)

Lamé’s coefficients are:

$$\lambda(z) = \frac{\nu E(z)}{(1 - 2\nu)(1 + \nu)}$$

(21a)

$$\mu(z) = G(z) = \frac{E(z)}{2(1 + \nu)}$$

(21b)

The module \(E(z), G(z)\) and the elastic coefficients \(C_{ij}\) vary through the thickness according to Eqs. (15), (16) or (17). By substituting Eq. (4) into Eq. (18) and the subsequent results into Eq. (8), the stress resultants are readily obtained as
\[
\begin{bmatrix}
N^b \\
M^b \\
M^s
\end{bmatrix}
= \begin{bmatrix}
A & B & B^s \\
A & D & D^s \\
B^s & D^s & H^s
\end{bmatrix}
\begin{bmatrix}
\varepsilon \\
k^b \\
k^s
\end{bmatrix}
+ \begin{bmatrix}
L \\
L^a \\
R
\end{bmatrix}
\varepsilon_0^0
\]

(22a)

\[
S = A^s \gamma
\]

(22b)

\[
N_z = R^a w_z + L(\varepsilon_x^0 + \varepsilon_y^0) + L^a (k_x^b + k_y^b) + R(k_x^s + k_y^s)
\]

(22c)

where

\[
N = \{N_x, N_y, N_{xy}\}, \quad M^b = \{M_x^b, M_y^b, M_{xy}^b\}, \quad M^s = \{M_x^s, M_y^s, M_{xy}^s\}
\]

(23a)

\[
\varepsilon = \{\varepsilon_x^0, \varepsilon_y^0, \gamma_{xy}^0\}, \quad k^b = \{k_x^b, k_y^b, k_{xy}^b\}, \quad k^s = \{k_x^s, k_y^s, k_{xy}^s\}
\]

(23b)

\[
A = \begin{bmatrix}
A_{11} & A_{12} & 0 \\
A_{12} & A_{22} & 0 \\
0 & 0 & A_{66}
\end{bmatrix}, \quad B = \begin{bmatrix}
B_{11} & B_{12} & 0 \\
B_{12} & B_{22} & 0 \\
0 & 0 & B_{66}
\end{bmatrix}, \quad D = \begin{bmatrix}
D_{11} & D_{12} & 0 \\
D_{12} & D_{22} & 0 \\
0 & 0 & D_{66}
\end{bmatrix}
\]

(23c)

\[
B^s = \begin{bmatrix}
B_{11}^s & B_{12}^s & 0 \\
B_{12}^s & B_{22}^s & 0 \\
0 & 0 & B_{66}^s
\end{bmatrix}, \quad D^s = \begin{bmatrix}
D_{11}^s & D_{12}^s & 0 \\
D_{12}^s & D_{22}^s & 0 \\
0 & 0 & D_{66}^s
\end{bmatrix}, \quad H^s = \begin{bmatrix}
H_{11}^s & H_{12}^s & 0 \\
H_{12}^s & H_{22}^s & 0 \\
0 & 0 & H_{66}^s
\end{bmatrix}
\]

(23d)

\[
S = \{S_{xz}^s, S_{yz}^s\}, \quad \gamma = \{\gamma_{xz}, \gamma_{yz}\}, \quad A^s = \begin{bmatrix}
A_{44} & 0 \\
0 & A_{55}
\end{bmatrix}
\]

(23e)

\[
\begin{bmatrix}
L \\
L^a \\
R \\
R^a
\end{bmatrix}
= \int_{-h/2}^{h/2} \lambda(z) \begin{bmatrix}
1 \\
z \\
f(z) \\
g'(z) \frac{1-\nu}{\nu}
\end{bmatrix} g'(z) dz
\]

(23f)

where \(A_{ij}, B_{ij}, \) etc., are the plate stiffness, defined by

\[
\begin{bmatrix}
A_{11} & B_{11} & D_{11} & B_{11}^s & D_{11}^s & H_{11}^s \\
A_{12} & B_{12} & D_{12} & B_{12}^s & D_{12}^s & H_{12}^s \\
A_{66} & B_{66} & D_{66} & B_{66}^s & D_{66}^s & H_{66}^s
\end{bmatrix}
= \int_{-h/2}^{h/2} \lambda(z) \begin{bmatrix}
1 \\
z \\
f(z) \\
f'(z) \\
f''(z)
\end{bmatrix} \begin{bmatrix}
1-\nu \\
\nu \\
1-2\nu \\
2\nu
\end{bmatrix} dz.
\]

(24a)
and:
\[ (A_{22}, B_{22}, D_{22}, B'_2, D'_2, H'_2) = (A_{11}, B_{11}, D_{11}, B'_{11}, D'_{11}, H'_{11}) \] (24b)

\[ A_{44} = A_{55} = \int_{-h/2}^{h/2} \mu(z)(g(z))^2 \, dz, \] (24c)

2.4 Equations of motion in terms of displacements

Introducing Eq. (23) into Eq. (14), the equations of motion can be expressed in terms of displacements \((\partial u_0, \partial v_0, \partial w_z, \partial w_y, \text{ and } \partial w_z)\) and the appropriate equations take the form

\[ A_1 \frac{\partial^2 u_0}{\partial x^2} + A_{66} \frac{\partial^2 u_0}{\partial x \partial y} + (A_{12} + A_{66}) \frac{\partial^2 v_0}{\partial x \partial y} - B_{11} \frac{\partial^3 w_z}{\partial x^3} - (B_{12} + 2B_{66}) \frac{\partial^2 w_z}{\partial x^2 \partial y} - (B_{12} + 2B_{66}) \frac{\partial^2 w_z}{\partial x \partial y^2} \]
\[- B_{12} \frac{\partial^3 w_z}{\partial x^2 \partial y} + X_{13} \frac{\partial w_z}{\partial x} = I_0 \mu_{u_0} - I_1 \left( \frac{\partial w_z}{\partial y} \right) \] (25a)

\[ A_{22} \frac{\partial^2 v_0}{\partial y^2} + A_{66} \frac{\partial^2 v_0}{\partial x \partial y} + (A_{12} + A_{66}) \frac{\partial^2 u_0}{\partial x \partial y} - B_{22} \frac{\partial^3 w_y}{\partial x^2 \partial y} - (B_{12} + 2B_{66}) \frac{\partial^2 w_y}{\partial x \partial y^2} - (B_{12} + 2B_{66}) \frac{\partial^2 w_y}{\partial x \partial y^2} \]
\[- B_{22} \frac{\partial^3 w_y}{\partial x^2 \partial y} + X_{23} \frac{\partial w_y}{\partial y} = I_0 \mu_{v_0} - I_1 \left( \frac{\partial w_y}{\partial y} \right) \] (25b)

\[ B_{11} \frac{\partial^2 u_0}{\partial x^2} + (B_{12} + 2B_{66}) \frac{\partial^3 u_0}{\partial x \partial y^2} + (B_{12} + 2B_{66}) \frac{\partial^2 v_0}{\partial x \partial y} + B_{22} \frac{\partial^3 v_0}{\partial x \partial y^2} - D_{11} \frac{\partial^4 w_z}{\partial x^4} \]
\[- 2(D_{12} + 2D_{66}) \frac{\partial^3 w_z}{\partial x \partial y^3} - D_{22} \frac{\partial^4 w_y}{\partial x \partial y^3} - D_{12} \frac{\partial^4 w_y}{\partial x^2 \partial y^2} - 2(D_{12} + 2D_{66}) \frac{\partial^4 w_z}{\partial x \partial y^4} - D_{22} \frac{\partial^4 w_z}{\partial x \partial y^4} + Y_{13} \frac{\partial^2 w_z}{\partial x^2} + Y_{23} \frac{\partial^2 w_y}{\partial y^2} + q = I_0 \left( \frac{\partial w_z}{\partial y} \right) + J_1 \left( \frac{\partial v_0}{\partial x} + \frac{\partial w_z}{\partial y} \right) \]
\[- J_2 \left( \frac{\partial^2 w_z}{\partial x^2} + \frac{\partial^2 w_y}{\partial y^2} \right) \] (25c)

\[ B_{11} \frac{\partial^2 u_0}{\partial x^2} + (B_{12} + 2B_{66}) \frac{\partial^3 u_0}{\partial x \partial y^2} + (B_{12} + 2B_{66}) \frac{\partial^2 v_0}{\partial x \partial y} + B_{22} \frac{\partial^3 v_0}{\partial x \partial y^2} - D_{11} \frac{\partial^4 w_z}{\partial x^4} \]
\[- 2(D_{12} + 2D_{66}) \frac{\partial^3 w_z}{\partial x \partial y^3} - D_{22} \frac{\partial^4 w_y}{\partial x \partial y^3} - H_{11} \frac{\partial^4 w_z}{\partial x \partial y^3} - 2(H_{12} + 2H_{66}) \frac{\partial^4 w_y}{\partial x \partial y^3} - H_{22} \frac{\partial^4 w_z}{\partial x \partial y^3} + A_{55} \frac{\partial^2 w_z}{\partial y^2} + A_{44} \frac{\partial^2 w_z}{\partial x^2} + (Y_{13} + A_{55}) \frac{\partial^2 w_y}{\partial x^2} + (Y_{23} + A_{44}) \frac{\partial^2 w_y}{\partial y^2} + q = \]
\[ I_0 \left( \frac{\partial w_z}{\partial y} \right) + J_1 \left( \frac{\partial v_0}{\partial x} + \frac{\partial w_z}{\partial y} \right) + J_3 \left( \frac{\partial^2 w_z}{\partial x^2} + \frac{\partial^2 w_y}{\partial y^2} \right) - K_4 \left( \frac{\partial^2 w_z}{\partial x^2} + \frac{\partial^2 w_y}{\partial y^2} \right) \] (25d)

\[ - X_{13} \frac{\partial u_0}{\partial x} - X_{23} \frac{\partial v_0}{\partial y} + Y_{13} \frac{\partial^2 w_z}{\partial x^2} + Y_{23} \frac{\partial^2 w_y}{\partial y^2} + (Y_{13} + A_{55}) \frac{\partial^2 w_y}{\partial x^2} + (Y_{23} + A_{44}) \frac{\partial^2 w_y}{\partial y^2} + A_{55} \frac{\partial^2 w_z}{\partial x^2} + A_{44} \frac{\partial^2 w_z}{\partial y^2} - Z_{55} w_z + gq = J_1 \left( \frac{\partial w_z}{\partial y} \right) + K_4 \frac{\partial w_z}{\partial y} \]
\[- A_{55} \frac{\partial^2 w_z}{\partial x^2} + A_{44} \frac{\partial^2 w_z}{\partial y^2} - Z_{55} w_z + gq = J_1 \left( \frac{\partial w_z}{\partial y} \right) + K_4 \frac{\partial w_z}{\partial y} \] (25e)

2.5 Analytical solutions
Consider a simply supported rectangular plate with length $a$ and width $b$ under transverse load $q$. Based on Navier solution method, the following expansions of displacements $(u_0; v_0; w_b; w_s; w_z)$ are assumed as

$$u_0(x, y) = \sum_{m=1}^{\infty} \sum_{n=1}^{\infty} U_{mn} e^{ix\lambda} \cos(\lambda x) \sin(\mu y)$$

$$v_0(x, y) = \sum_{m=1}^{\infty} \sum_{n=1}^{\infty} V_{mn} e^{iy\lambda} \sin(\lambda x) \cos(\mu y)$$

$$w_b(x, y) = \sum_{m=1}^{\infty} \sum_{n=1}^{\infty} W_{mn} e^{ix\lambda} \sin(\lambda x) \sin(\mu y)$$

$$w_s(x, y) = \sum_{m=1}^{\infty} \sum_{n=1}^{\infty} W_{mn} e^{iy\lambda} \sin(\lambda x) \sin(\mu y)$$

$$w_z(x, y) = \sum_{m=1}^{\infty} \sum_{n=1}^{\infty} W_{mn} e^{ix\lambda} \sin(\lambda x) \sin(\mu y)$$

where $U_{mn}$, $V_{mn}$, $W_{bmn}$, $W_{smn}$, and $W_{zmn}$ unknown parameters must be determined, $\omega$ is the Eigen frequency associated with $(m, n)$ the Eigen-mode, and $\lambda = \frac{m\pi}{a}$ and $\mu = \frac{n\pi}{b}$.

The transverse load $q$ is also expanded in the double-Fourier sine series as follows

$$q(x, y) = \sum_{m=1}^{\infty} \sum_{n=1}^{\infty} Q_{mn} \sin(\lambda x) \sin(\mu y)$$

The coefficients $Q_{mn}$ are given below for some typical loads

$$Q_{mn} = \frac{4}{ab} \int_0^a \int_0^b q(x, y) \sin(\lambda x) \sin(\mu y) dxdy$$

$$Q_{mn} = \frac{16q_0}{mn\pi^2}$$

$$a_{11} a_{12} a_{13} a_{14} a_{15} \begin{bmatrix} m_1 & 0 & m_3 & m_4 & 0 \ 0 & m_{22} & m_{23} & m_{24} & 0 \ 0 & m_{33} & m_{34} & m_{35} & 0 \ 0 & m_{44} & m_{45} & m_{55} & 0 \ 0 & m_{55} & m_{55} & m_{55} & 0 \ \end{bmatrix}$$

$$[U_{mn}] = \frac{0}{[V_{mn}]} = \frac{0}{[W_{bmn}]} = \frac{0}{[W_{smn}]} = \frac{Q_{mn}}{[W_{zmn}]} = [Q_{mn}]$$

Where

$$a_{11} = A_1 \lambda^2 + A_{66} \mu^2 \quad a_{13} = -\lambda [B_{11} \lambda^2 + (B_{12} + 2B_{66}) \mu^2]$$

$$a_{12} = \lambda \mu (A_{12} + A_{66})$$

$$a_{14} = -\lambda [B_{11} \lambda^2 + (B_{12} + 2B_{66}) \mu^2]$$

$$a_{15} = X_{13} \lambda \quad a_{23} = -\mu [B_{22} \mu^2 + (B_{12} + 2B_{66}) \lambda^2]$$

$$a_{23} = -\mu [B_{22} \mu^2 + (B_{12} + 2B_{66}) \lambda^2]$$
Belkacem Adim and Tahar Hassaine Daouadji

\[ a_{22} = A_{66} \lambda^2 + A_{22} \mu^2 \quad a_{24} = -\mu [B_{22} \mu^2 + (B_{12} + 2B_{66}) \lambda^2] \]

\[ a_{25} = X_{23} \mu \quad a_{33} = D_{11} \lambda^2 + 2(D_{12} + 2D_{66}) \lambda^2 \mu^2 + D_{22} \mu^4 \]

\[ a_{35} = Y_{13} \lambda^2 + Y_{23} \mu^2 \quad a_{34} = D_{11} \lambda^2 + 2(D_{12} + 2D_{66}) \lambda^2 \mu^2 + D_{22} \mu^4 \]

\[ a_{55} = A_{55} \lambda^2 + A_{44} \mu^2 + Z_{33} \quad a_{45} = (Y_{13} + A_{55}) \lambda^2 + (Y_{23} + A_{44}) \mu^2 \]

\[ a_{44} = H_{11} \lambda^2 + 2(H_{12} + 2H_{66}) \lambda^2 \mu^2 + H_{22} \mu^4 + A_{44} \lambda^2 + A_{55} \mu^2 \]

\[ m_{14} = I_0 + I_1 (\lambda^2 + \mu^2) \quad m_{24} = I_0 + K_2 (\lambda^2 + \mu^2) \quad m_{34} = I_0 + J_1 (\lambda^2 + \mu^2) \]

3. Numerical results and discussions

In this study, various numerical examples are presented and discussed to verify the accuracy of the present theory in predicting the natural frequency of simply supported plates. For verification purpose; the obtained results are compared with exact solutions of 3D elasticity theory and those predicted by quasi-3D (Zenkour 2007, Mantari 2012) theories and HSCT (Hassaine Daouadji 2013). The type of FGM plates are used in this study, and their corresponding material properties are:

- Metal Aluminum Al: \( E_m = 700 \text{ GPa} \); \( \nu = 0.3 \); \( \rho_m = 2702 \text{ kg/m}^3 \)
- Ceramic : Alumina Al₂O₃: \( E_c = 380 \text{ GPa} \); \( \nu = 0.3 \); \( \rho_c = 3800 \text{ kg/m}^3 \)
- Ceramic : Zirconia ZrO₂: \( E_c = 200 \text{ GPa} \); \( \nu = 0.3 \); \( \rho_c = 5700 \text{ kg/m}^3 \)

The description of various theories is given in Table 1. Quasi-3D (Zenkour 2007, Mantari 2012) theory is the HSCT (Hassaine Daouadji 2013) with a higher-order variation for the transverse displacements. The difference among quasi-3D theories comes from the use of shear strain shape functions. For example, the quasi-3D theory is based on trigonometric functions for both in-plane and transverse displacements, while the quasi-3D theory (Mantari 2012) is based on cubic function for the in-plane displacement and parabolic function for the transverse displacement. The results of the present model are also computed independently in this work using Eq. (29). For bending analysis, a plate subjected to a sinusoidal load is considered, for convenience, the following dimensionless forms are used

\[ \overline{z} = z/h, \quad \overline{a} = \frac{10E_hh^3}{a^4q_0} \left( 0, \frac{b}{2}, z \right), \quad \overline{v} = \frac{10E_hh^3}{a^4q_0} \left( \frac{a}{2}, 0, z \right), \]

\[ \overline{w} = \frac{10E_hh^3}{a^4q_0} w \left( \frac{a}{2}, \frac{b}{2}, z \right), \quad \overline{\sigma} = \frac{h}{a^2q_0} \sigma \left( \frac{a}{2}, \frac{b}{2}, z \right), \quad \overline{\tau_w} = \frac{h}{a^2q_0} \tau_w (0, 0, z), \]

\[ \overline{\tau_{xc}} = \frac{h}{a^2q_0} \tau_{xc} \left( 0, \frac{b}{2}, z \right), \quad \overline{\tau_{yc}} = \frac{h}{a^2q_0} \tau_{yc} \left( \frac{a}{2}, 0, z \right) \quad \overline{\omega} = \omega h \sqrt{\frac{\rho_c}{E_c}}, \]

\[ \overline{\sigma} = \omega \frac{a^2}{h} \sqrt{\frac{\rho_c}{E_m}}, \]
Effects of thickness stretching in FGM plates using...

Table 1 Displacement models

<table>
<thead>
<tr>
<th>Model</th>
<th>Theory</th>
<th>$\varepsilon_z$</th>
<th>Unknown</th>
</tr>
</thead>
<tbody>
<tr>
<td>Present Model</td>
<td>Quasi-3D with trigonometric functions</td>
<td>$\varepsilon_z \neq 0$</td>
<td>5</td>
</tr>
<tr>
<td>HSDT (Hassaine Daouadji 2013)</td>
<td>Higher order Shear Deformation Theory</td>
<td>$\varepsilon_z = 0$</td>
<td>4</td>
</tr>
<tr>
<td>Quasi-3D (Neves 2012)</td>
<td>Quasi-3D theory with hyperbolic and parabolic functions</td>
<td>$\varepsilon_z \neq 0$</td>
<td>9</td>
</tr>
<tr>
<td>Quasi-3D (Neves 2013)</td>
<td>Quasi-3D theory with cubic and parabolic functions</td>
<td>$\varepsilon_z \neq 0$</td>
<td>9</td>
</tr>
<tr>
<td>Quasi-3D (Zenkour 2007)</td>
<td>Quasi-3D theory with sinusoidal functions</td>
<td>$\varepsilon_z \neq 0$</td>
<td>6</td>
</tr>
<tr>
<td>Quasi-3D (Mantari 2012)</td>
<td>Quasi-3D theory with sinusoidal functions</td>
<td>$\varepsilon_z \neq 0$</td>
<td>6</td>
</tr>
</tbody>
</table>

3.1 Numerical results for bending analysis

Numerical results for bending analysis, an exponentially graded plate subjected to sinusoidal loads is considered. The effective Young’s modulus is calculated using the exponential distribution (Zenkour 2007) in Eq. (15) and the power law distribution (Reddy 2000) in Eq. (16). Tables 2-9 contain dimensionless displacements and stresses for rectangular plates with various values of aspect ratio $b/a$, thickness ratio $a/h$, and material parameter $P$. The obtained results are compared with exact 3D solutions (Zenkour 2007) and those predicted by quasi-3D theories (Zenkour 2007, Thai 2013, Mantari 2012), HSDT (Hassaine Daouadji 2013), and present model (Quasi-3D with trigonometric functions). It is noted that the exact 3D solutions (Zenkour 2007) are not available for $a/h=10$. It is observed that the present model and quasi-3D theories give solutions close to each other, and their solutions are in an excellent agreement with the exact 3D solutions. Inspection of Tables 2-9 demonstrates that the present computations are in very good agreement with quasi-3-dimensional solutions available in the literature.

Figs. 4-11 illustrates the distribution of displacements, deflection and stresses across the thickness of thick plates. The results presented demonstrate that the same accuracy is achievable with the present theory using a lower number of unknowns than other theories, and clearly highlights how the present theory is simpler and more easily deployed in FGM structural mechanics simulations. Again, an excellent agreement between the results is seen. Thus, the proposed quasi-3D trigonometric higher order shear and normal deformation theory is not only accurate but also simple in predicting the behavior of FGM plates.

Table 2 Dimensionless transverse deflection $\overline{w}$ of plates ($a/h=2$)

<table>
<thead>
<tr>
<th>$b/a$</th>
<th>Theory</th>
<th>$P$</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>0.1</td>
</tr>
<tr>
<td>3</td>
<td>Present Model</td>
<td>1.4422</td>
</tr>
<tr>
<td></td>
<td>3D (Zenkour 2007)</td>
<td>1.4430</td>
</tr>
<tr>
<td></td>
<td>Quasi-3D (Zenkour 2006)</td>
<td>1.4421</td>
</tr>
<tr>
<td></td>
<td>Quasi-3D (Mantari 2012)</td>
<td>1.4419</td>
</tr>
<tr>
<td></td>
<td>HSDT (Hassaine Daouadji 2013)</td>
<td>1.5341</td>
</tr>
<tr>
<td>2</td>
<td>Present Model</td>
<td>1.1942</td>
</tr>
</tbody>
</table>
Table 2 Continued

<table>
<thead>
<tr>
<th>b/a</th>
<th>Theory</th>
<th>0.1</th>
<th>0.3</th>
<th>0.5</th>
<th>0.7</th>
<th>1.0</th>
<th>1.5</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>3D (Zenkour 2007)</td>
<td>1.1945</td>
<td>1.0859</td>
<td>0.9864</td>
<td>0.8952</td>
<td>0.7727</td>
<td>0.6017</td>
</tr>
<tr>
<td></td>
<td>Quasi-3D (Zenkour 2006)</td>
<td>1.1941</td>
<td>1.0795</td>
<td>0.9750</td>
<td>0.8799</td>
<td>0.7538</td>
<td>0.5786</td>
</tr>
<tr>
<td></td>
<td>Quasi-3D (Mantari 2012)</td>
<td>1.1938</td>
<td>1.0793</td>
<td>0.9748</td>
<td>0.8797</td>
<td>0.7530</td>
<td>0.5785</td>
</tr>
<tr>
<td></td>
<td>HSDT (Hassaine Daouadji 2013)</td>
<td>1.2777</td>
<td>1.1554</td>
<td>1.0442</td>
<td>0.9431</td>
<td>0.8086</td>
<td>0.6238</td>
</tr>
<tr>
<td>1</td>
<td>Present Model</td>
<td>0.5780</td>
<td>0.5225</td>
<td>0.4719</td>
<td>0.4258</td>
<td>0.3642</td>
<td>0.2794</td>
</tr>
<tr>
<td></td>
<td>3D (Zenkour 2007)</td>
<td>0.5769</td>
<td>0.5247</td>
<td>0.4766</td>
<td>0.4324</td>
<td>0.3727</td>
<td>0.2890</td>
</tr>
<tr>
<td></td>
<td>Quasi-3D (Mantari 2012)</td>
<td>0.5776</td>
<td>0.5222</td>
<td>0.4716</td>
<td>0.4257</td>
<td>0.3640</td>
<td>0.2792</td>
</tr>
<tr>
<td></td>
<td>HSDT (Hassaine Daouadji 2013)</td>
<td>0.6363</td>
<td>0.5752</td>
<td>0.5195</td>
<td>0.4688</td>
<td>0.4011</td>
<td>0.3079</td>
</tr>
</tbody>
</table>

Table 3 Dimensionless transverse deflection \( \bar{w} \) of plates (a/h=4)

<table>
<thead>
<tr>
<th>b/a</th>
<th>Theory</th>
<th>0.1</th>
<th>0.3</th>
<th>0.5</th>
<th>0.7</th>
<th>1.0</th>
<th>1.5</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>Present Model</td>
<td>1.0124</td>
<td>0.9155</td>
<td>0.8272</td>
<td>0.7470</td>
<td>0.6404</td>
<td>0.4941</td>
</tr>
<tr>
<td></td>
<td>3D (Zenkour 2007)</td>
<td>1.0134</td>
<td>0.9190</td>
<td>0.8335</td>
<td>0.7561</td>
<td>0.6533</td>
<td>0.5121</td>
</tr>
<tr>
<td></td>
<td>Quasi-3D (Zenkour 2006)</td>
<td>1.0094</td>
<td>0.9127</td>
<td>0.8248</td>
<td>0.7449</td>
<td>0.6385</td>
<td>0.4927</td>
</tr>
<tr>
<td></td>
<td>Quasi-3D (Mantari 2012)</td>
<td>1.0124</td>
<td>0.9155</td>
<td>0.8272</td>
<td>0.7470</td>
<td>0.6404</td>
<td>0.4941</td>
</tr>
<tr>
<td></td>
<td>HSDT (Hassaine Daouadji 2013)</td>
<td>1.0325</td>
<td>0.9345</td>
<td>0.8459</td>
<td>0.7659</td>
<td>0.6601</td>
<td>0.5154</td>
</tr>
<tr>
<td>2</td>
<td>Present Model</td>
<td>0.8145</td>
<td>0.7365</td>
<td>0.6655</td>
<td>0.6009</td>
<td>0.5151</td>
<td>0.3973</td>
</tr>
<tr>
<td></td>
<td>3D (Zenkour 2007)</td>
<td>0.8153</td>
<td>0.7395</td>
<td>0.6707</td>
<td>0.6085</td>
<td>0.5257</td>
<td>0.4120</td>
</tr>
<tr>
<td></td>
<td>Quasi-3D (Mantari 2012)</td>
<td>0.8120</td>
<td>0.7343</td>
<td>0.6635</td>
<td>0.5992</td>
<td>0.5136</td>
<td>0.3962</td>
</tr>
<tr>
<td></td>
<td>HSDT (Hassaine Daouadji 2013)</td>
<td>0.8325</td>
<td>0.7534</td>
<td>0.6819</td>
<td>0.6173</td>
<td>0.5319</td>
<td>0.4150</td>
</tr>
<tr>
<td>1</td>
<td>Present Model</td>
<td>0.3486</td>
<td>0.3152</td>
<td>0.2848</td>
<td>0.2571</td>
<td>0.2203</td>
<td>0.1697</td>
</tr>
<tr>
<td></td>
<td>3D (Zenkour 2007)</td>
<td>0.3490</td>
<td>0.3167</td>
<td>0.2875</td>
<td>0.2608</td>
<td>0.2253</td>
<td>0.1805</td>
</tr>
<tr>
<td></td>
<td>Quasi-3D (Zenkour 2006)</td>
<td>0.3475</td>
<td>0.3142</td>
<td>0.2839</td>
<td>0.2563</td>
<td>0.2196</td>
<td>0.1692</td>
</tr>
<tr>
<td></td>
<td>Quasi-3D (Mantari 2012)</td>
<td>0.3486</td>
<td>0.3152</td>
<td>0.2848</td>
<td>0.2571</td>
<td>0.2203</td>
<td>0.1697</td>
</tr>
<tr>
<td></td>
<td>HSDT (Hassaine Daouadji 2013)</td>
<td>0.3602</td>
<td>0.3259</td>
<td>0.2949</td>
<td>0.2668</td>
<td>0.2295</td>
<td>0.1785</td>
</tr>
</tbody>
</table>

Table 4 Dimensionless transverse deflection \( \bar{w} \) of plates (a/h=10)

<table>
<thead>
<tr>
<th>b/a</th>
<th>Theory</th>
<th>0.1</th>
<th>0.3</th>
<th>0.5</th>
<th>0.7</th>
<th>1.0</th>
<th>1.5</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>Present Model</td>
<td>0.8877</td>
<td>0.8027</td>
<td>0.7255</td>
<td>0.6554</td>
<td>0.5622</td>
<td>0.4346</td>
</tr>
<tr>
<td></td>
<td>Quasi-3D (Mantari 2012)</td>
<td>0.8877</td>
<td>0.8027</td>
<td>0.7255</td>
<td>0.6554</td>
<td>0.5622</td>
<td>0.4346</td>
</tr>
<tr>
<td></td>
<td>HSDT (Hassaine Daouadji 2013)</td>
<td>0.8909</td>
<td>0.8066</td>
<td>0.7307</td>
<td>0.6622</td>
<td>0.5720</td>
<td>0.4489</td>
</tr>
<tr>
<td>2</td>
<td>Present Model</td>
<td>0.7037</td>
<td>0.6364</td>
<td>0.5752</td>
<td>0.5196</td>
<td>0.4457</td>
<td>0.3445</td>
</tr>
<tr>
<td></td>
<td>Quasi-3D (Mantari 2012)</td>
<td>0.7037</td>
<td>0.6364</td>
<td>0.5752</td>
<td>0.5196</td>
<td>0.4457</td>
<td>0.3445</td>
</tr>
<tr>
<td></td>
<td>HSDT (Hassaine Daouadji 2013)</td>
<td>0.7066</td>
<td>0.6397</td>
<td>0.5795</td>
<td>0.5252</td>
<td>0.4536</td>
<td>0.3560</td>
</tr>
</tbody>
</table>
Table 4 Continued

<table>
<thead>
<tr>
<th>b/a</th>
<th>Theory</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>0.1</td>
</tr>
<tr>
<td>1</td>
<td>Present Model</td>
<td>0.2799</td>
</tr>
<tr>
<td></td>
<td>Quasi-3D (Mantari 2012)</td>
<td>0.2799</td>
</tr>
<tr>
<td></td>
<td>HSDT (Hassaine Daouadiji 2013)</td>
<td>0.2816</td>
</tr>
</tbody>
</table>

Table 5 Dimensionless in-plane normal stress $\sigma_y (h/2)$ of plates (a/h=2)

<table>
<thead>
<tr>
<th>b/a</th>
<th>Theory</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>0.1</td>
</tr>
<tr>
<td>3</td>
<td>Present Model</td>
<td>0.2909</td>
</tr>
<tr>
<td></td>
<td>3D (Zenkour 2007)</td>
<td>0.3081</td>
</tr>
<tr>
<td></td>
<td>Quasi-3D (Zenkour 2006)</td>
<td>0.3042</td>
</tr>
<tr>
<td></td>
<td>Quasi-3D (Mantari 2012)</td>
<td>0.2920</td>
</tr>
<tr>
<td></td>
<td>HSDT (Hassaine Daouadiji 2013)</td>
<td>0.2366</td>
</tr>
<tr>
<td>2</td>
<td>Present Model</td>
<td>0.3040</td>
</tr>
<tr>
<td></td>
<td>3D (Zenkour 2007)</td>
<td>0.3200</td>
</tr>
<tr>
<td></td>
<td>Quasi-3D (Zenkour 2006)</td>
<td>0.3146</td>
</tr>
<tr>
<td></td>
<td>Quasi-3D (Mantari 2012)</td>
<td>0.3049</td>
</tr>
<tr>
<td></td>
<td>HSDT (Hassaine Daouadiji 2013)</td>
<td>0.2537</td>
</tr>
<tr>
<td>1</td>
<td>Present Model</td>
<td>0.2924</td>
</tr>
<tr>
<td></td>
<td>3D (Zenkour 2007)</td>
<td>0.3103</td>
</tr>
<tr>
<td></td>
<td>Quasi-3D (Zenkour 2006)</td>
<td>0.2955</td>
</tr>
<tr>
<td></td>
<td>Quasi-3D (Mantari 2012)</td>
<td>0.2927</td>
</tr>
<tr>
<td></td>
<td>HSDT (Hassaine Daouadiji 2013)</td>
<td>0.2520</td>
</tr>
</tbody>
</table>

Table 6 Dimensionless in-plane normal stress $\sigma_y (h/2)$ of plates (a/h=4)

<table>
<thead>
<tr>
<th>b/a</th>
<th>Theory</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>0.1</td>
</tr>
<tr>
<td>3</td>
<td>Present Model</td>
<td>0.2267</td>
</tr>
<tr>
<td></td>
<td>3D (Zenkour 2007)</td>
<td>0.2319</td>
</tr>
<tr>
<td></td>
<td>Quasi-3D (Zenkour 2006)</td>
<td>0.2493</td>
</tr>
<tr>
<td></td>
<td>Quasi-3D (Mantari 2012)</td>
<td>0.2286</td>
</tr>
<tr>
<td></td>
<td>HSDT (Hassaine Daouadiji 2013)</td>
<td>0.2162</td>
</tr>
<tr>
<td>2</td>
<td>Present Model</td>
<td>0.2391</td>
</tr>
<tr>
<td></td>
<td>3D (Zenkour 2007)</td>
<td>0.2431</td>
</tr>
<tr>
<td></td>
<td>Quasi-3D (Zenkour 2006)</td>
<td>0.2588</td>
</tr>
<tr>
<td></td>
<td>Quasi-3D (Mantari 2012)</td>
<td>0.2407</td>
</tr>
<tr>
<td></td>
<td>HSDT (Hassaine Daouadiji 2013)</td>
<td>0.2294</td>
</tr>
<tr>
<td>1</td>
<td>Present Model</td>
<td>0.2235</td>
</tr>
<tr>
<td>b/a</td>
<td>Theory</td>
<td>P</td>
</tr>
<tr>
<td>-----</td>
<td>-------------------------------</td>
<td>----</td>
</tr>
<tr>
<td>1</td>
<td>3D (Zenkour 2007)</td>
<td>P</td>
</tr>
<tr>
<td></td>
<td>Quasi-3D (Zenkour 2006)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Quasi-3D (Mantari 2012)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>HSDT (Hassaine Daouadji 2013)</td>
<td></td>
</tr>
</tbody>
</table>

Table 7 Dimensionless in-plane normal stress $\sigma_y (h/2)$ of plates (a/h=10)

<table>
<thead>
<tr>
<th>b/a</th>
<th>Theory</th>
<th>P</th>
<th>0.1</th>
<th>0.3</th>
<th>0.5</th>
<th>0.7</th>
<th>1.0</th>
<th>1.5</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>Present Model</td>
<td>P</td>
<td>0.2094</td>
<td>0.2218</td>
<td>0.2352</td>
<td>0.2497</td>
<td>0.2740</td>
<td>0.3224</td>
</tr>
<tr>
<td></td>
<td>Quasi-3D (Mantari 2012)</td>
<td></td>
<td>0.2115</td>
<td>0.2240</td>
<td>0.2377</td>
<td>0.2524</td>
<td>0.2770</td>
<td>0.3258</td>
</tr>
<tr>
<td></td>
<td>HSDT (Hassaine Daouadji 2013)</td>
<td></td>
<td>0.2104</td>
<td>0.2248</td>
<td>0.2402</td>
<td>0.2565</td>
<td>0.2929</td>
<td>0.3328</td>
</tr>
</tbody>
</table>

Table 8 Dimensionless in-plane normal stress $\sigma_y (h/2)$ of plates (a/h=10)

<table>
<thead>
<tr>
<th>b/a</th>
<th>Theory</th>
<th>P</th>
<th>0.1</th>
<th>0.3</th>
<th>0.5</th>
<th>0.7</th>
<th>1.0</th>
<th>1.5</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>Present Model</td>
<td>P</td>
<td>0.4283</td>
<td>0.4276</td>
<td>0.4261</td>
<td>0.4239</td>
<td>0.4193</td>
<td>0.4082</td>
</tr>
<tr>
<td></td>
<td>Quasi-3D (Mantari 2012)</td>
<td></td>
<td>0.4295</td>
<td>0.4287</td>
<td>0.4272</td>
<td>0.4251</td>
<td>0.4204</td>
<td>0.4093</td>
</tr>
<tr>
<td></td>
<td>HSDT (Hassaine Daouadji 2013)</td>
<td></td>
<td>0.4282</td>
<td>0.4275</td>
<td>0.4260</td>
<td>0.4238</td>
<td>0.4192</td>
<td>0.4081</td>
</tr>
</tbody>
</table>
Table 9 Continued

<table>
<thead>
<tr>
<th>b/a</th>
<th>Theory</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>0.1</td>
</tr>
<tr>
<td>2</td>
<td>Present Model</td>
<td>0.3807</td>
</tr>
<tr>
<td></td>
<td>Quasi-3D (Mantari 2012)</td>
<td>0.3817</td>
</tr>
<tr>
<td></td>
<td>HSDT (Hassaine Daouadji 2013)</td>
<td>0.3806</td>
</tr>
<tr>
<td>1</td>
<td>Present Model</td>
<td>0.2379</td>
</tr>
<tr>
<td></td>
<td>Quasi-3D (Mantari 2012)</td>
<td>0.2385</td>
</tr>
<tr>
<td></td>
<td>HSDT (Hassaine Daouadji 2013)</td>
<td>0.2378</td>
</tr>
</tbody>
</table>

Table 10 Dimensionless fundamental frequency $\omega$ of square plates

<table>
<thead>
<tr>
<th>Theory</th>
<th>$a/h=\sqrt{10}$</th>
<th>$a/h=10$</th>
<th>$a/h=5$</th>
<th>$a/h=10$</th>
<th>$a/h=20$</th>
<th>$P=2$</th>
<th>$P=2$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Present Model</td>
<td>0.4660</td>
<td>0.0578</td>
<td>0.2192</td>
<td>0.0597</td>
<td>0.0153</td>
<td>0.2201</td>
<td>0.2214</td>
</tr>
<tr>
<td>3D (Zenkour 2007)</td>
<td>0.4658</td>
<td>0.0578</td>
<td>0.2192</td>
<td>0.0596</td>
<td>0.0153</td>
<td>0.2197</td>
<td>0.2211</td>
</tr>
<tr>
<td>HSDT (Hassaine Daouadji 2013)</td>
<td>0.4622</td>
<td>0.0577</td>
<td>0.2169</td>
<td>0.0592</td>
<td>0.0152</td>
<td>0.2178</td>
<td>0.2193</td>
</tr>
<tr>
<td>Quasi-3D (Mantari 2012)</td>
<td>-</td>
<td>-</td>
<td>0.2193</td>
<td>0.0596</td>
<td>0.0153</td>
<td>0.2198</td>
<td>0.2212</td>
</tr>
<tr>
<td>Quasi-3D (Neves 2012)</td>
<td>-</td>
<td>-</td>
<td>0.2193</td>
<td>0.0596</td>
<td>0.0153</td>
<td>0.2201</td>
<td>0.2216</td>
</tr>
<tr>
<td>Quasi-3D (Neves 2013)</td>
<td>-</td>
<td>-</td>
<td>0.2193</td>
<td>-</td>
<td>-</td>
<td>0.2200</td>
<td>0.2215</td>
</tr>
</tbody>
</table>

(a) Square plates $a/h=4$, $P=0.5$  
(b) E-FGM rectangular plates; $a/h=4$, $b=3a$

Fig. 4 Variation of non-dimensional displacement $\overline{U}$ through the thickness

(a) Square plates $a/h=4$, $P=0.5$  
(b) E-FGM rectangular plates; $a/h=4$, $b=3a$

Fig. 5 Variation of non-dimensional displacement $\overline{V}$ through the thickness
Fig. 6 Variation of non-dimensional deflection $\tilde{w}$ through the thickness

(a) Square plates \(a/h=4, P=0.5\)

(b) E-FGM rectangular plates; \(a/h=4, b=3a\)

Fig. 7 Dimensionless center deflection $\tilde{w}$ plate using the present model ($\varepsilon_z \neq 0$)

(a) variation $\tilde{w}$ as a function of the side-to-thickness ratio $a/h$ of FGM square plate ($\varepsilon_z \neq 0$)

(b) variation $\tilde{w}$ as a function of aspect ratio $a/b$ of FGM rectangular plate ($\varepsilon_z \neq 0$)

Fig. 8 Variation of axial stress $\tilde{\sigma}_x$ through the thickness

(a) Square plates \(a/h=4, P=0.5\)

(b) E-FGM rectangular plates; \(a/h=4, b=3a\)
3.2 Numerical results for vibration analysis

The accuracy of the present model proposed quasi-3D trigonometric higher order shear and normal deformation theory is also verified with free vibration analysis of a simply supported FGM plate. The effective Young’s modulus is estimated using the power law distribution with Mori-Tanaka scheme (1973) in Eq. (17). Table 10 contains the dimensionless fundamental frequencies of square Al/ZrO$_2$ plate.

This approach has also been used by many other investigators and is applicable in zones of graded microstructure which possess a well-defined continuous matrix and a discontinuous particulate phase. It models with sufficient robustness the interaction of the elastic fields among neighboring inclusions. The non-dimensional fundamental frequency $\tilde{\omega}$ is given in Table 10 for different values of thickness ratio and power law index. It is evident that the present model is in an excellent agreement with the 3D solutions (Mantari 2012) and quasi-3D solutions (Neves 2012).
4. Conclusions

We have considered a quasi-3D trigonometric higher order shear and normal deformation theory for the thickness stretching effect has been derived for bending and vibration analyses for simply supported functionally graded rectangular plates. The effective material properties at points in the plate are assumed to vary in the thickness direction only according to a simple exponential law. The theory accounts for the stretching and shear deformation effects without requiring a shear correction factor. By dividing the transverse displacement into bending, shear and stretching components, the number of unknowns and governing equations of the present theory is reduced to five and is therefore less than alternate theories available in the scientific literature. From the present analytical, it is evident that the thickness stretching effect is more pronounced for thick plates and it needs to be taken into consideration in more physically realistic simulations. The results predicted by the proposed theory are in an excellent agreement with 3D solutions and the thickness stretching effect is more pronounced for thick plates and it needs to be taken in consideration in the modeling. Numerical results show that the proposed quasi-3D trigonometric higher order shear and normal deformation theory is not only accurate but also provides an elegant and easily implementable approach for simulating bending and vibration behaviors of FGM plates.

Acknowledgments

The authors thank the referees for their valuable comments.

References


Effects of thickness stretching in FGM plates using...


