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Abstract.  In this paper, a cylindrical shell is immersed in a non-viscous fluid using first order shell theory of 
Sander. These equations are partial differential equations which are solved by approximate technique. Robust and 
efficient techniques are favored to get precise results. Employment of the Rayleigh-Ritz procedure gives birth to the 
shell frequency equation. Use of acoustic wave equation is done to incorporate the sound pressure produced in a 
fluid. Hankel’s functions of second kind designate the fluid influence. Mathematically the integral form of the 
Lagrange energy functional is converted into a set of three partial differential equations. Throughout the computation, 
simply supported edge condition is used. Expressions for modal displacement functions, the three unknown functions 
are supposed in such way that the axial, circumferential and time variables are separated by the product method. 
Comparison is made for empty and fluid-filled cylindrical shell with circumferential wave number, length- and 
height-radius ratios, it is found that the fluid-filled frequencies are lower than that of without fluid. To generate the 
fundamental natural frequencies and for better accuracy and effectiveness, the computer software MATLAB is used. 
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1. Introduction 
 

Vibration of fluid-filled cylindrical shell problems occurs in industrial and engineering fields. 

The vibration analysis predicts to approximate their experimental results. The nature of a shell 

material plays an important role in specifying their vibration frequencies. Stability of a cylindrical  
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shell depends highly on these aspects of material. 

More the shell material sustains a load due to physical situations, the more the shell is stable. 

Any predicted fatigue due to burden of vibrations is evaded by estimating their dynamical aspects. 

Study of vibration characteristics of fluid-filled cylindrical shells is a widely area of research in 

applied mathematics and theoretical mechanics. Analytical investigation of vibrations of these 

shells are performed to estimate the probable dynamical response. Addition of more physical 

parameters may give rise more instability in a system of a submerged cylindrical shell. During the 

recent years, study of submerged cylindrical shell has gained the attention of researchers doing 

work on their vibration characteristics. Advanced composite materials keep extreme particular 

stiffness, strength and are resistant to corrosion. The acoustic wave equation is applied to extract 

influence of a fluid on shell vibrations. Firstly, Love (1888) presented the Kirchhoff’s hypotheses 

for plates. This theory became a foundation stage for building new ones by changing physical 

terms expressions. More than one type of materials is used to structure the functionally graded 

materials and their physical properties vary from one surface to the other surface. In these surfaces, 

one has highly heat resistance property while other may preserve great dynamical perseverance 

and differs mechanically and physically in regular manner from one surface to other surface, 

making them of dual physical appearance. All these materials have changeable outer and inner 

sides and their physical properties greatly differ from each other (Suresh and Mortensen 1997, 

Koizumi 1997). These materials are organized by various techniques and their applications are 

seen in dynamical elements such as plates, beams and shells. Moreover, they are also observed in 

space crafts, nuclear reactors and missiles technology, etc. Loy and Lam (1997) investigated shell 

vibrations with ring supports that restricted the motion of cylindrical shells in the transverse 

direction. This influence was inducted by the polynomial functions. Xiang et al. (2002) formed 

some closed form solution functions for studying vibrations of cylindrical shells. The mid-way 

ring supports were clamped around the shells. Sewall and Naumann (1968) considered the 

vibration analysis of cylindrical shell based on analytical and experimental methods. The shells 

were strengthened with longitudinal stiffeners. Sharma and Johns (1971) analyzed vibration 

frequencies circular cylinder with using the Rayleigh-Ritz formulation and made comparisons of 

his results with some experimental ones. Chung et al. (1981) investigated the vibrations of fluid-

filled cylindrical shell and presented an analysis of experimental and analytical investigation. 

Goncalves and Batista (1988) gave an analytical investigation of submerged cylindrical shell with 

fluid. 

Jiang and Olson (1994) recommended the characteristics of analysis of stiffened shell using 

finite element method to diminish large computational efforts which are required in the 

conventional finite element analysis. Wang et al. (1997) scrutinized the vibrations of ring-stiffened 

cylindrical shells using Ritz polynomial functions. Materials of both shells and rings were of 

isotropic nature. These shells were stiffened with isotropic rings having three types of locations on 

the shell outer surface. To increase the stiffness of cylindrical shells was stabilized by ring-

stiffeners. Isotopic materials are the constituents of these rings. A large use of shell structures in 

practical applications makes their theoretical analysis an important field of structural dynamics. 

Since a shell problem is a physical one, so their vibrational behaviors are distorted by variations of 

physical and material parameters. To elude any complications which may risk a physical system 

their analytical investigation was done. Sofiyev et al. (2012) truncated the conical shells subjected 

to combined loads and resting on elastic foundations for two boundary condition. The functionally 

graded material properties are assumed to vary continuously through the thickness of the conical 

shell. Sharma et al. (1998) determined frequencies of composite cylindrical shells containing fluid. 
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They estimated the axial modal deformations by trigonometric functions. Amabili et al. (1998) 

assessed the free and forced non-linear vibrations of circular cylindrical shell with the quiescent, 

dense, inviscid and incompressible fluid. The analyses are made for the large moderately 

vibrations using Donnell’s shallow-shell model. Also, the dense fluid is studied for the influence 

of both the internal and external side of the shell. In the external side of the shell, the fluid was 

considered as an unbounded domain in the radial direction, while internally, the shell was 

considered as filled completely. Mercan et al. (2016) investigated the free vibration response of 

circular cylindrical shells with functionally graded material. The constitutive relations are based on 

the Love's first approximation shell theory. The material properties are graded in the thickness 

direction according to a volume fraction power law indices. Wang and Lai (2000) examined a 

novel approach for the evaluation of eigen - frequencies of cylindrical shells. The numerical 

process adopted by them was alike the wave propagation approach. Ergin and Temarel (2002) did 

a vibration study of cylindrical shells. The shells lied in a horizontal direction and contained fluid 

and submerged in it. Zhang (2002) studied vibrations of cylindrical shells submerged in a fluid. It 

was seen that the fluid factor impressed vibration shell frequencies to a significant limit. 

Najafizadeh and Isvandzibaei (2007) applied ring supports to cylindrical shells for vibration 

analysis of along the tangential direction and founded their research on angular deformation theory 

of higher order. The angular deformation was used for shell equations and determined the effects 

of constituent volume fractions and shell configurations on the shell vibrations. Functionally 

graded material parameters were changed step by step. 

Shah et al. (2009) and Sofiyev and Avcar (2010) studied stability of cylindrical shells based on 

Rayleigh-Ritz and Galerkin technique using elastic foundations. The structures of cylindrical shell 

are tackled under the exponential law and axial load. Ersoy et al. (2018) investigated numerically 

the free vibration analysis of curved structural components such as truncated conical shells. The 

method of discrete singular convolution and the method Differential Quadrature (DQ) are used for 

numerical simulations, respectively. Naeem et al. (2013) conducted the vibrational behavior of 

submerged functionally graded cylindrical shells. The problem of submerged cylindrical shells was 

frequently met where fluid envelopes a structure. The present problem consists of a cylindrical 

shell submerged in a fluid and surrounded by ring supports. There is no evidence found where this 

problem has not been studied earlier. Farahani and Barati (2015) focused the vibration analysis of 

functionally graded cylindrical shell submerged in an incompressible fluid. The equation is 

established considering axial and lateral hydrostatic pressure based on first order shear 

deformation theory of shell motion using the wave propagation approach and classic Flügge shell 

equations. Ansari et al. (2015) performed nonlocal model for the frequencies of multi-walled 

carbon nanotubes with small effects subject to various boundary conditions using Rayleigh-Ritz 

technique. The governing equation was formulated based on Flügge’s and nonlocal shell theory. 

Some new resonant frequencies were identified with the association of vibrational modes and 

circumferential modes into shell model. Khayat et al. (2018) examined the free vibration of 

cylindrical shells made up of functionally graded material. The properties of functionally graded 

shells are assumed to be temperature-dependent and vary continuously in the thickness direction 

according to a simple power law distribution in terms of the volume fraction of ceramic and metal. 

Hussain et al. (2017) demonstrated an overview of Donnell theory for the frequency characteristics 

of two types of SWCNTs. Fundamental frequencies with different parameters have been 

investigated with wave propagation approach. Hussain and Naeem (2017) examined the 

frequencies of armchair tubes using Flügge’s shell model. The effect of length and thickness-to-

radius ratios against fundamental natural frequency with different indices of armchair tube was 
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investigated. On continuing their work, Hussain and Naeem (2018a, b) used Donnell’s shell model 

to calculate the dimensionless frequencies for two types of single-walled carbon nanotubes. The 

frequency influence was observed with different parameters. Li et al. (2019) analyzed the free 

vibration characteristics of uniform and stepped functionally graded circular cylindrical shells 

under complex boundary conditions. The analytical model is established based on multi-segment 

partitioning strategy and first-order shear deformation theory.  

Sharma et al. (2019) studied the functionally graded material using sigmoid law distribution 

under hygrothermal effect. The Eigen frequencies are investigated in detail. Frequency spectra for 

aspect ratios have been depicted according to various edge conditions. Avcar (2019) presented the 

free vibration of beams made of imperfect functionally graded materials including porosities is 

investigated. Because of faults during process of manufacture, micro voids or porosities may arise 

in the functionally graded material, and this situation causes imperfection in the 

structure. Recently, Hussain and Naeem (2019a, 2019b) performed the vibration of SWCNTs 

based on wave propagation approach and Galerkin’s method. 

According to our knowledge, up to now little is known about the vibration analyses of fluid-

filled functionally graded cylindrical shells based on Rayleigh-Ritz method. A large use of shell 

structures in practical applications makes their theoretical analysis an important field of structural 

dynamics. Since a shell problem is a physical one, so their vibrational behaviors are distorted by 

variations of physical and material parameters. It is also exhibited that the effect of frequencies by 

varying the different layers with constituent material. The coupled frequencies changes with these 

layers according to the material formation of fluid-filled functionally graded cylindrical shells. 

Also, the Sander’s theory based on the Rayleigh-Ritz method for estimating fundamental natural 

frequency has been developed to converge more quickly than other methods and models. The 

presented vibration modeling and analysis of cylindrical shell may be helpful especially in 

applications such as oscillators and in non-destructive testing. To elude any complications which 

may risk a physical system their analytical investigation is done.   

 

 

2. Functionally graded material 
 

The modeling of functionally graded cylindrical shell is due to mixing two or more than two 

materials like ceramic and metal and the distribution of various functions and properties (physical 

and material), is termed as rule of mixture. Power law function has been utilized for with particular 

index using material properties in the thickness direction. The temperature and properties 

variations have been obtained by using the property of temperature and volume fraction. The 

distributions of volume fraction for all types of cylindrical shell are assumed as (Chi and Chung 

2006) 

𝑉𝑓 = [
𝑧

ℎ
+

1

2
]

𝑁

 (1) 

where N, h and z, respectively, denoted for power law index, thickness and the coordinate, where z 

which varies from zero to infinity.  

A functionally graded cylindrical shells consisting of two constituent materials. In these types, 

nickel and stainless steel are used as the interior surfaces and the exterior surface respectively, but 

their arrangement has profound influence on the formation of functionally graded cylindrical 

shells. If 𝐸1 and 𝐸2  as Young’s moduli, 𝜈1  and 𝜈2  as Poisson’s ratios, 𝜌1  and 𝜌2  mass 
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densities respectively. Then effective material quantities for functionally graded material are 

𝐸𝐹𝐺𝑀 = [𝐸1 − 𝐸2] [
2𝑧 + ℎ

2ℎ
]

𝑁

+ 𝐸2, 𝑣𝐹𝐺𝑀 = [𝑣1 − 𝑣2] [
2𝑧 + ℎ

2ℎ
]

𝑁

+ 𝑣2 (2) 

𝜌𝐹𝐺𝑀 = [𝜌1 − 𝜌2] [
2𝑧 + ℎ

2ℎ
]

𝑁

+ 𝜌2 (3) 

Toulokian (1967) stated the material properties 𝐶  at high temperature environ, with 

temperature-dependents which is a function of temperature. In Eq. (3), the constants 

(𝐶0,  𝐶−1,  𝐶1,  𝐶2,  𝐶3) are different for different material. 

𝐶 =  𝐶0(𝐶−1𝑇−1 + 𝐶1𝑇 + 𝐶2𝑇2 + 𝐶3𝑇3) (4) 

 

 

3. Theoretical formation 

 

Geometrical structure of a cylinder is sketched in Fig. 1. The tube is assumed to have length L, 

thickness h and the radius R for cylindrical shell with its coordinate system (𝑥, 𝜃, 𝑧) as shown in 

Fig. 1. The 𝑥, 𝜃 co-ordinates are assumed to be along longitudinal and circumferential direction, 

respectively and 𝑧-co-ordinates are taken in its radial directions.  

When the material and geometrical parameters are considered, the formula for a strain energy, S 

of a vibrating cylindrical shell is expressed as 

𝑆 =
𝑅

2
∫ ∫ [𝐴11

2𝜋

0

𝐿

0

𝑒1
2 + 𝐴22𝑒2

2 + 2𝐴12𝑒1𝑒2 + 𝐴66𝑒12
2 + 2(𝐵11𝑒1𝑘1 + 𝐵11𝑒1𝑘1 + 𝐵11𝑒1𝑘1 

+𝐵11𝑒1𝑘1 + 2𝐵66𝑒12𝑘12)  + 𝐷11𝑘1
2 + 𝐷22𝑘2

2 + 2𝐷12𝑘1𝑘2 + 𝐷66
2 𝑘12

2 ]𝑑𝜃𝑑𝑥 

(5) 

where 𝑒1, 𝑒2  and e3 designate the reference surface strains and 𝑘1, 𝑘2 and 𝑘3  denote the 

reference surface curvatures respectively. The extensional stiffness, 𝐴𝑖𝑗, coupling stiffness, 𝐵𝑖𝑗 

and bending stiffness, 𝐷𝑖𝑗 are written as  

{𝐴𝑖𝑗, 𝐵𝑖𝑗 , 𝐷𝑖𝑗} = ∫  

ℎ
2⁄

ℎ
2⁄

𝑄𝑖𝑗{1, 𝑧, 𝑧2}𝑑𝑧(𝑖, 𝑗 = 1,2,6) (6) 

 

 

 
Fig. 1 Geometry of cylindrical shell  
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Here the reduced stiffness, 𝑄𝑖𝑗’s for isotropic material are written as 

𝑄11 = 𝑄22 =
𝐸

1 − 𝑣2
, Q12 =

𝑣𝐸

1 − 𝑣2
, Q66 =

𝐸

2(1 + 𝑣)
 (7) 

 

 

4. Application of Budiansky and Sander’s shell theory 

 

The strain-displacement relations from Budiansky and Sanders (1963) theory are furnished as 

𝑒12 =
𝜕𝑦

𝜕𝑥
, 𝑒22 =

1

𝑅
(

𝜕𝑣

𝜕𝜃
− 𝑤) , 𝑒12 =

𝜕𝑣

𝜕𝑥
+

1

𝑅

𝜕𝑢

𝜕𝜃
 (8) 

and the expressions for the curvature - displacement relations are represented as 

𝑘11 =
𝜕2𝑤

𝜕𝑥2
, 𝑘22 =

1

𝑅2 (
𝜕2𝑤

𝜕𝜃2
+

𝜕𝑣

𝜕𝜃
) , 𝑘12 =

1

𝑅
(

𝜕2𝑤

𝜕𝑥𝜕𝜃
+

3

4

𝜕𝑣

𝜕𝑥
−

1

4𝑅

𝜕𝑢

𝜕𝜃
) (9) 

Making substitutions of these relations from the Eqs. (8) and (9) into the Eq. (5), the shell strain 

energy, S takes the following forms 

𝑆 =
1

2
∬ [

2𝜋𝐿

0 0

𝐴11 (
𝜕𝑢

𝜕𝑥
)

2

+ 𝐴22

1

𝑅2
(

𝜕𝑣

𝜕𝜃
+ 𝑤)

2

+ 2𝐴12

1

𝑅

𝜕𝑢

𝜕𝑥
(

𝜕𝑣

𝜕𝜃
+ 𝑤) + 𝐴66 (

𝜕𝑣

𝜕𝜃
+

1

𝑅

𝜕𝑢

𝜕𝑥
)

2

 

−2𝐵11 (
𝜕𝑢

𝜕𝑥
) (

𝜕2𝑤

𝜕𝑥2 ) − 2𝐵12

1

𝑅2
(

𝜕𝑢

𝜕𝑥
) (

𝜕2𝑤

𝜕𝜃2
−

𝜕𝑣

𝜕𝜃
) − 2𝐵12

1

𝑅
(

𝜕𝑣

𝜕𝜃
+ 𝑤) (

𝜕2𝑤

𝜕𝑥2 )         

− 2𝐵22

1

𝑅3
(

𝜕𝑣

𝜕𝜃
+ 𝑤) (

𝜕2𝑤

𝜕𝜃2
−

𝜕𝑣

𝜕𝜃
) − 4𝐵66

1

𝑅
(

𝜕𝑣

𝜕𝜃
+

1

𝑅

𝜕𝑢

𝜕𝑥
) (

𝜕2𝑤

𝜕𝑥𝜕𝜃
−

3

4

𝜕𝑣

𝜕𝑥
+

1

4𝑅

𝜕𝑢

𝜕𝜃
)  

+𝐷11 (
𝜕2𝑤

𝜕𝑥2 )

2

+
𝐷22

𝑅4 (
𝜕2𝑤

𝜕𝜃2
−

𝜕𝑣

𝜕𝜃
)

2

+ 2𝐷12

1

𝑅2 (
𝜕2𝑤

𝜕𝑥2 ) (
𝜕2𝑤

𝜕𝜃2
−

𝜕𝑣

𝜕𝜃
) + 4𝐷66

1

𝑅2 (
𝜕2𝑤

𝜕𝑥𝜕𝜃
 

−
3

4

𝜕𝑣

𝜕𝑥
+

1

4𝑅

𝜕𝑢

𝜕𝜃
)

2

]𝑅𝑑𝑥𝑑𝜃 

(10) 

The shell kinetic energy, K of the cylindrical shell is written as 

𝐾 =
1

2
∬ 𝜌𝑡

2𝜋𝐿

0 0

[(
𝜕𝑢

𝜕𝑡
)2 + (

𝜕𝑣

𝜕𝑡
)2 + (

𝜕𝑤

𝜕𝑡
)2] 𝑅𝑑𝑥𝑑𝜃 (11) 

𝜌t designates the mass density per unit length and is written as 

𝜌𝑡 = ∫  𝜌𝑑𝑧

ℎ
2⁄

ℎ
2⁄

 (12) 

where 𝜌 stands for the mass density. The Lagrangian energy functional is obtained by combing the 

above said energies. 

∏ = 𝐾 − 𝑆 (13) 
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5. Solution methodology 

 

Here Rayleigh’s method is used to solve the cylindrical shell problem of differential equations 

in an efficient and comprehensive way. This method needs the axial modal approximates 

dependence on the characteristic function. The governing equation was formulated based on 

Sander’s thin shell theory with energy functional. Over the past several years vibration of 

tube/shell and plate structures of various configurations and boundary conditions have been 

extensively studied (Hussain and Naeem 2018a, 2020, Hussain et al. 2018a, 2018b, 2019a, 2019b, 

2019c, Sehar et al. 2020). The Rayleigh-Ritz method is very powerful technique for the prediction 

of vibration of shells/tubes. Here the Rayleigh-Ritz method is employed to obtain the shell 

frequency equation. For separating the space and time variables, the product method for PDEs has 

been utilized and modal deformation displacement functions are supposed in the form of product 

of functions of the axial, tangential and time variables. A cylindrical shell problem is described in 

which the three unknown functions represent the deformation displacement. The vibration 

investigation of submerged cylindrical shells is studied here. This problem crops up while 

examining response of waves in water, noise and vibration, etc. 

𝑢(𝑥, 𝜃, 𝑡) = 𝑈(𝑥) sin(𝑛𝜃) sin (𝜔𝑡) 

𝑣(𝑥, 𝜃, 𝑡) = 𝑉(𝑥) cos(𝑛𝜃) sin (𝜔𝑡)  

𝑤(𝑥, 𝜃, 𝑡) = 𝑊(𝑥) sin(𝑛𝜃) sin (𝜔𝑡) 

(14) 

The number of circumferential wave mode n and axial wave mode m demonstrate for modes of 

vibrations of a fluid-filled functionally graded cylindrical shell. 𝑈(𝑥), 𝑉(𝑥) and 𝑊(𝑥) are the 

axial modal deformation, respectively, in the direction of longitudinal, tangential and transverse.  

For generality, the following non-dimension parameters are written as 

Ū =
𝑈

ℎ
 , �̅� =  

𝑉

ℎ
 , �̅� =  

𝑊

𝑅
 , 𝑎 =

𝐿

𝑅
 , 𝑏 =

ℎ

𝑅
 , 𝑋 =

𝑥

𝐿
 (15) 

Using these quantities, the expressions designate in the equation (18) is re-framed as 

𝑢(𝑥, 𝜃, 𝑡) = ℎ�̅� sin(𝑛𝜃) sin(𝜔𝑡),     𝑣(𝑥, 𝜃, 𝑡) = ℎV̅ cos(𝑛𝜃) sin (𝜔𝑡) 

                     𝑤(𝑥, 𝜃, 𝑡) = 𝑅W̅ sin(𝑛𝜃) sin (𝜔𝑡) 
(16) 

The displacement function was first invoked by Flügge (1962) to clarify the problem of 

cylindrical shells and then used by Forsberg (1964) and Warburton (1965). The following 

expressions for Ritz polynomial functions are taken for measuring the axial modal deformations: 

�̅�, �̅� and �̅� that fulfill the edge conditions 

�̅� =  ∑ 𝑎𝑖

𝑁

𝑖=1

�̅�𝑖 =  ∑ 𝑎𝑖

𝑁

𝑖=1

𝑋𝑖−1𝑋𝑛𝑢
0

 (1 − 𝑋)𝑛𝑢
1

,    

�̅� =  ∑ 𝑏𝑖

𝑁

𝑖=1

�̅�𝑖 =  ∑ 𝑏𝑖

𝑁

𝑖=1

𝑋𝑖−1𝑋𝑛𝑣
0
 (1 − 𝑋)𝑛𝑣

1
 

�̅� =  ∑ 𝑐𝑖

𝑁

𝑖=1

�̅�𝑖 =  ∑ 𝑐𝑖

𝑁

𝑖=1

𝑋𝑖−1𝑋𝑛𝑤
0

 (1 − 𝑋)𝑛𝑤
1

 

(17) 

where the exponents 𝑛𝑢
0 , 𝑛𝑢

1 ,   𝑛𝑣
0, 𝑛𝑣

1,   𝑛𝑤
1  𝑎𝑛𝑑  𝑛𝑤

0  are used for boundary conditions. 

The Lagrange function is achieved in the dimensionless quantities given in Eq. (13) as follows 
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∏ = ∫ {
𝜋ℎ𝐿𝑅3

2

1

0

[(𝑏2 ∑ 𝑎1

𝑁

𝑖=1

�̅�𝑖)2 + (𝑏2 ∑ 𝑏𝑖

𝑁

𝑖=1

�̅�𝑖)2 + (𝑏2 ∑ 𝑐𝑖

𝑁

𝑖=1

�̅�𝑖)2 ]�̅�𝑡𝜔2𝑐𝑜𝑠2𝜔𝑡 −
𝜋ℎ𝐿𝑅

2
 

[𝑎2𝑏2�̅�11(∑ 𝑎𝑖

𝑁

𝑖=1

𝑑�̅�𝑖

𝑑𝑋
)2 + �̅�22(−𝑛𝑏 ∑ 𝑏𝑖�̅�𝑖

𝑁

𝑖=1

+ ∑ 𝑐𝑖

𝑁

𝑖=1

�̅�𝑖)2 + 2𝑎𝑏�̅�12(∑ 𝑎𝑖

𝑁

𝑖=1

𝑑�̅�𝑖

𝑑𝑋
) (−𝑛𝑏 ∑ 𝑏𝑖

𝑁

𝑖=1

�̅�𝑖  

+ ∑ 𝑐𝑖

𝑁

𝑖=1

�̅�𝑖 + �̅�66(𝑎𝑏 ∑ 𝑏𝑖

𝑁

𝑖=1

𝑑�̅�𝑖

𝑑𝑋
𝑠 + 𝑛𝑏 ∑ 𝑎𝑖

𝑁

𝑖=1

�̅�𝑖)2 − 2𝑎3𝑏2�̅�11(∑ 𝑎𝑖

𝑁

𝑖=1

𝑑�̅�𝑖

𝑑𝑋
) (∑ 𝑐𝑖

𝑁

𝑖=1

𝑑2�̅�𝑖

𝑑𝑋2
) 

−2𝑎𝑏2�̅�12 (∑ 𝑎𝑖

𝑁

𝑖=1

𝑑�̅�𝑖

𝑑𝑋
) (−𝑛2 ∑ 𝑐𝑖

𝑁

𝑖=1

�̅�𝑖 + 𝑛𝑏 ∑ 𝑏�̅�𝑖

𝑁

𝑖=1

) − 2𝑎2𝑏�̅�12 (−𝑛𝑏 ∑ 𝑏𝑖�̅�𝑖

𝑁

𝑖=1

+ ∑ 𝑐𝑖

𝑁

𝑖=1

�̅̅̅�𝑖) 

(∑ 𝑐𝑖

𝑁

𝑖=1

𝑑2�̅�𝑖

𝑑𝑋2
) − 2𝑏�̅�22 (−𝑛𝑏 ∑ 𝑏𝑖�̅�𝑖

𝑁

𝑖=1

+ ∑ 𝑐𝑖

𝑁

𝑖=1

�̅�𝑖) (−𝑛2 ∑ 𝑐𝑖

𝑁

𝑖=1

�̅�𝑖 + 𝑛𝑏 ∑ 𝑏𝑖�̅�𝑖

𝑁

𝑖=1

 ) − 4𝑏�̅�66 

(𝑎𝑏 ∑ 𝑏𝑖

𝑁

𝑖=1

𝑑�̅�𝑖

𝑑𝑋
+ 𝑛𝑏 ∑ 𝑎𝑖

𝑁

𝑖=1

�̅�𝑖)(𝑛𝑎 ∑ 𝑐𝑖

𝑁

𝑖=1

𝑑�̅�𝑖

𝑑𝑋
−

3𝑎𝑏

4
∑ 𝑏𝑖

𝑁

𝑖=1

�̅�𝑖 +
𝑛𝑏

4
∑ 𝑎𝑖

𝑁

𝑖=1

�̅�𝑖  )  + 𝑎4𝑏2�̅�11 

(∑ 𝑐𝑖

𝑁

𝑖=1

𝑑2�̅�𝑖

𝑑𝑋2
)2 + 𝑏2�̅�22(−𝑛2 ∑ 𝑐𝑖

𝑁

𝑖=1

�̅�𝑖 + 𝑛𝑏 ∑ 𝑏𝑖

𝑁

𝑖=1

�̅�𝑖)2 + 2𝑎2𝑏2�̅�12(∑ 𝑐𝑖

𝑁

𝑖=1

𝑑2�̅�𝑖

𝑑𝑋2
) (−𝑛2 ∑ 𝑐𝑖

𝑁

𝑖=1

�̅�𝑖 

 +𝑛𝑏 ∑ 𝑏𝑖

𝑁

𝑖=1

�̅�𝑖) + 4𝑏2�̅�66 ( 𝑛𝑎 ∑ 𝑐𝑖

𝑁

𝑖=1

𝑑�̅�𝑖

𝑑𝑋
−  

3𝑎𝑏

4
∑ 𝑏𝑖

𝑁

𝑖=1

�̅�𝑖 +
𝑛𝑏

4
∑ 𝑎𝑖

𝑁

𝑖=1

�̅�𝑖)2] 𝑠𝑖𝑛2𝑤𝑡}𝑑𝑋 

(18) 

 

 

6. Use of the Rayleigh-Ritz procedure 
 

To obtain necessary extreme conditions the Lagrangian functional ∏   is differentiated with 

regard to the generalized Fourier coefficients 𝑎𝑖, 𝑏𝑖, 𝑐𝑖. The following conditions are obtained 

𝜕 ∏  

𝜕𝑎𝑖
=

𝜕 ∏  

𝜕𝑏𝑖
=

𝜕 ∏  

𝜕𝑐𝑖
=0        where 𝑖 = 1,2, … 𝑁  (19) 

These equations are written in the following complete forms after concealing a huge amount of 

algebraic process 

∑ 𝑎𝑗

𝑁

𝑗=1

[𝑎2𝑏2�̅�11 ∫
𝑑�̅�𝑖

𝑑𝑥

1

0

𝑑�̅�𝑗

𝑑𝑥
𝑑𝑋 + 𝑛2𝑏2(�̅�66 − 𝑏�̅�66 +

𝑏2�̅�66

4
) ∫ �̅�𝑖�̅�𝑗

1

0

𝑑𝑋]  + ∑ 𝑏𝑗

𝑁

𝑗=1

[−𝑛𝑎𝑏2 

(�̅�12 + 𝑏�̅�12) ∫
𝑑�̅�𝑖

𝑑𝑋

1

0

�̅�𝑗𝑑𝑋 + 𝑛𝑎𝑏2(�̅�66 + 𝑏�̅�66 −
3𝑏2�̅�66

4
) ∫ �̅�𝑖

1

0

𝑑�̅�𝑗

𝑑𝑋
𝑑𝑋]  + ∑ 𝑐𝑗

𝑁

𝑗=1

[𝑎𝑏(�̅�12 

+𝑛2𝑏�̅�12) ∫
𝑑�̅�𝑖

𝑑𝑋

1

0

�̅�𝑗𝑑𝑋 + 𝑛2𝑎𝑏2(−2�̅�66 + 𝑏�̅�66) ∫ �̅�𝑖

1

0

𝑑�̅�𝑗

𝑑𝑋
𝑑𝑋 − 𝑎3𝑏2�̅�11 ∫

𝑑�̅�𝑗

𝑑𝑋

1

0

𝑑2�̅�𝑗

𝑑𝑋2
𝑑𝑋] 

      = 𝑅2�̅�𝑡𝜔2 ∑ 𝑎𝑗
𝑁
𝑗=1 𝑏2 ∫ �̅�𝑖�̅�𝑗

1

0
𝑑X 

(20) 
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∑ 𝑎𝑗

𝑁

𝑗=1

[−𝑛𝑎𝑏2(�̅�12 + 𝑏�̅�12) ∫
𝑑�̅�𝑗

𝑑𝑋

1

0

�̅�𝑖𝑑𝑋 + 𝑛𝑎𝑏2(�̅�66 + 𝑏�̅�66 −
3𝑏2�̅�66

4
∫ �̅�𝑗

1

0

𝑑�̅�𝑖

𝑑𝑋
𝑑𝑋 

+ ∑ 𝑏𝑗

𝑁

𝑗=1

[𝑎2𝑏2(�̅�66 + 3𝑏�̅�66 +
9𝑏2�̅�66

4
) ∫

𝑑�̅�𝑖

𝑑𝑋

1

0

𝑑�̅�𝑗

𝑑𝑋
𝑑𝑋 + (�̅�22 + 2𝑏�̅�22 + 𝑏2�̅�22) 

+ ∑ 𝑐𝑗

𝑁

𝑗=1

[−𝑛𝑏(�̅�22 + (𝑛2 + 1)𝑏�̅�22 + 𝑛2𝑏2�̅�22) ∫ �̅�𝑖

1

0

�̅�𝑗𝑑 − 𝑛2𝑏2(2�̅�66 + 3𝑏�̅�66) 

∫
𝑑�̅�𝑗

𝑑𝑋

1

0

𝑑�̅�𝑗

𝑑𝑋
𝑑𝑋 + 𝑛𝑎𝑏2(�̅�12 + 𝑏�̅�66) ∫ �̅�𝑖

1

0

𝑑2�̅�𝑖

𝑑𝑋2
𝑑𝑋] = 𝑅2�̅�𝑡𝜔2 ∑ 𝑏𝑗

𝑁

𝑗=1

𝑏2 ∫ �̅�𝑖

1

0

�̅�𝑗𝑑𝑋 

(21) 

∑ 𝑎𝑗

𝑁

𝑗=1

[𝑎𝑏(�̅�12 + 𝑛2𝑏�̅�12) ∫
𝑑�̅�𝑗

𝑑𝑋

1

0

�̅�𝑗𝑑𝑋 + 𝑛2𝑎𝑏2(−2�̅�12 + 𝑏�̅�66) ∫ �̅�𝑗

1

0

𝑑�̅�𝑖

𝑑𝑋
𝑑𝑋 − 𝑛2𝑏2�̅�11 

∫
𝑑�̅�𝑗

𝑑𝑋

1

0

𝑑2�̅�𝑖

𝑑𝑋
𝑑𝑋] + ∑ 𝑏𝑗

𝑁

𝑗=1

[−𝑛𝑏(�̅�12 + (𝑛2 + 1𝑏�̅�22 + 𝑛2𝑏2�̅�22) ∫ �̅�𝑖

1

0

�̅�𝑖𝑑𝑋 − 𝑛𝑎2𝑏2(2�̅�66 

+3𝑏�̅�66) ∫
𝑑�̅�𝑗

𝑑𝑋

1

0

𝑑�̅�𝑗

𝑑𝑋
𝑑𝑋 + 𝑛𝑎2𝑏2(2�̅�12 + 3𝑏�̅�66) ∫

𝑑�̅�𝑗

𝑑𝑋

1

0

𝑑�̅�𝑖

𝑑𝑋
𝑑𝑋 + 𝑛 ∫

𝑑�̅�𝑗

𝑑𝑋

1

0

𝑑�̅�𝑗

𝑑𝑋
𝑑𝑋𝑏2(�̅�12 

+𝑏�̅�12)  + 𝑛 ∫
𝑑�̅�𝑗

𝑑𝑋

1

0

𝑑�̅�𝑗

𝑑𝑋
𝑑𝑋𝑏2(�̅�12 + 𝑏�̅�12) ∫ �̅�𝑗

1

0

𝑑2�̅�𝑖

𝑑𝑋2
𝑑𝑋] + ∑ 𝑐𝑗

𝑁

𝑗=1

[(�̅�22 + 2𝑛2𝑏�̅�22 

+𝑛4𝑏2�̅�22) ∫ �̅�𝑖

1

0

�̅�𝑗𝑑𝑋 + 4𝑛2𝑎2𝑏2�̅�66 ∫
𝑑�̅�𝑖

𝑑𝑋

1

0

𝑑�̅�𝑗

𝑑𝑋
𝑑𝑋 − 𝑎2𝑏(�̅�12 + 𝑛2𝑏�̅�12) ∫(

1

0

�̅�𝑖

𝑑2�̅�𝑗

𝑑𝑋2
 

       +
𝑑2�̅�𝑖

𝑑𝑋2
�̅�𝑖)𝑑𝑋 + 𝑎4𝑏2�̅�11 ∫

𝑑2�̅�𝑖

𝑑𝑋2

1

0

𝑑2�̅�𝑗

𝑑𝑋2
𝑑𝑋] = 𝑅2�̅�𝑡𝜔2 ∑ 𝑐𝑗

𝑁

𝑗=1

𝑏2 ∫ �̅�𝑖

1

0

�̅�𝑗𝑑𝑋 

(22) 

After the ordering of above equations, the shell vibration frequency is expressed by the 

generalized eigenvalue relation as 

{[𝐾] − ∆[𝑀]}[𝑥]𝑇 = 0 (23) 

where [𝐾] and [𝑀] represent the stiffness and mass matrices for the cylindrical shells and 

[𝑥]𝑇 = (𝑎1, 𝑎2, … , 𝑎𝑁 , 𝑏2, … 𝑏𝑁 , 𝑐1, 𝑐2, … , 𝑐𝑁) (24) 

and 

∆1= 𝑅2𝜌𝑡𝜔2 (25) 
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The eigenvalues represent with the shell frequencies and the corresponding eigenvectors 

designate the mode shapes. 

 

 
7. Annexation of fluid term 

 
The acoustic wave equation represents pressure of sound in fluid and this equation of motion 

describing fluid is given by 

1

𝑟

𝜕

𝜕𝑟
(𝑟

𝜕𝜙

𝜕𝑟
) +

1

𝑟2

𝜕2𝜙

𝜕𝜃2
+

𝜕2𝜙

𝜕𝑥2
=

1

𝑐2

𝜕2𝜙

𝜕𝑡2
 (26) 

where (x, θ, r) are the cylindrical coordinates and 𝜙, t, c, r stands respectively, for acoustic 

pressure, time variable, fluid sound speeds and the axial coordinate adopted from the shell axis. 

The acoustic pressure expression for an immersed cylinder in a fluid that satisfied the acoustic 

wave Eq. (26), written in following form 

𝜙 = 𝜙𝑚 𝑠𝑖𝑛( 𝑛𝜃)𝐻𝑛
(2)

(𝑘𝑟𝑟)𝜓(𝑥) 𝑐𝑜𝑠 𝜔 𝑡 (27) 

where 𝜙𝑚 symbolizes the pressure amplitude, 𝐻𝑛
(2)

(𝑘𝑟𝑟) denotes the second kind of Hankel 

functions with order n. The radial and axial wave numbers 𝑘𝑟 and 𝑘𝑥 respectively linked by the 

vector equation, 𝑘𝑟 = (𝑘0 − 𝑘𝑥)1/2, where 𝑘0 =
𝑤

𝑐
 is written for the acoustic wave number of 

the fluid. Here 𝑘𝑟 has many values and depends on the variable 𝑘𝑥. In order to ensure that the 

sound field fulfills the suitable conditions of radiation and decay as 𝑟 → ∞, the branch that meets 

the condition 𝑘𝑟 = √𝑘0 − 𝑘𝑥 for 𝑘0 ≥ 𝑘𝑟 and 𝑘𝑟 = −𝑖√𝑘𝑥 − 𝑘0 for 𝑘0 < 𝑘𝑥, is chosen. For 

the assurance of keeping fluid connection with shell wall, the radial displacement of the fluid must 

be equal to that at the boundary of the outer wall of shell and the fluid. 

The coupling condition is applied and is written as 

−{1/(𝑖𝑤𝜙𝜌)}(𝜕𝜙/𝜕𝑟)|𝑟=𝑅 = (𝜕𝑤/𝜕𝑡)|𝑟=𝑅 (28) 

Subsequently the above condition has new form 

𝜙𝑚 = [𝜔2𝜌𝑓/𝑘𝑟𝐻𝑛
′(2)(𝑘𝑟𝑟)] 𝐶𝑚 (29) 

where 𝜌𝑓  signifies the fluid density and the dot written upon the 𝐻𝑛
(2)

(𝑘𝑟𝑟) represents the 

differentiation w, r, t the argument 𝑘𝑟𝑅. With the application of the coupling condition Eq. (29) 

along with the relation Eq. (25), the shell frequency of the submerged cylindrical shell is given by i 

as 

{[𝐾 + 𝐹𝐿] − ∆[𝑀]}[𝑥]𝑇 = 0 (30) 

FL defines the fluid loading term and is written as 

𝐹𝐿 = 𝛺2(𝜌𝑓/𝜌𝑠)(𝑅/ℎ)(𝑘𝑟𝑅)−1 [𝐻𝑛
(2)

(𝑘𝑟𝑅)/𝐻𝑛
′(2)

(𝑘𝑟𝑅)] (31) 

When the fluid term reduces to zero, the frequency equation fluid-filled cylindrical shells 

converts into that for the empty shell case.  
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On mixing the Rayleigh-Ritz formulation with Hankel’s function for vibration of fluid-filled… 

Table 1 Comparison of the frequency parameter 𝜔∗ = 𝜔𝑅√(1 − 𝜈2)𝜌/𝐸 for a long rotating isotropic 

cylindrical shell with m=1, h/R=0.002, L/R = 200, v = 0 

Finite element method (Chen et al. 1993) RRM 

0.00167 0.00166 

0.00447 0.00445 

0.00847 0.00846 

0.01364 0.01362 

 
Table 2 Convergence of Rayleigh-Ritz method frequencies 

  Method 
                      Modal order (m, n) 

(1,3) (2,3) (3,3) (3,4) 

Coupled frequency 
Zhang et al. (2001) 8.94 10.64 14.66 19.96 

Present 8.90 10.62 14.59 19.85 

Uncoupled frequency 
Zhang et al. (2001) 19.61 23.28 31.98 39.78 

Present 19.6 23.31 32.01 39.81 

 

 
Fig. 2 Convergence of Rayleigh-Ritz method frequencies (L=8 in, h=0.1 in, R=2 in, E=30×106 lbf in-2, 

𝜈=0.3, 𝜌=7.35×10-4 lbf s2 in-4) 
 

 

8. Simulation results and discussion 

 

In this section, the versatile numerical technique Rayleigh-Ritz method has been used in current 

study to study the frequency analysis of fluid-filled functionally graded cylindrical shells. For the 

convergence rate of cylindrical shell, the non-dimensional frequency enumerated in the current 

work, i.e., using Rayleigh-Ritz method. The proposed model based on Rayleigh-Ritz method can 

incorporate in order to accurately predict the acquired results of material data point. Table 1 shows 

the comparison of present results with finite element method (Chen et al. 1993). In Table 2, the 

coupled and uncouple frequency results are well matched those evaluated by Zhang et al. (2001) 

for different modal numbers for C-C shells. The proposed model based on Rayleigh-Ritz method 

can incorporate in order to accurately predict the acquired results of material data point. In this 

section, using Rayleigh-Ritz method happened to be in a good consistency along with the so-called 
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Fig. 3 Convergence of Rayleigh-Ritz method frequencies (m=1, L=0.41 m, h=0.001 m, R=0.3015 m, 

E=2.1 ×1011 N/m2, v=0.3, 𝜌=7850 Kg/m3) 
 

Table 3 Comparison of fluid-filled and without fluid versus circumferential wave number (m=1, L=8 m, 

h=0.004 m, R=1 m, E=2.1x1011 N/m2, v=0.3, 𝜌=7850 Kg/m3) 

n 
Frequencies (Hz) 

Without fluid With fluid 

1 75.439 33.693 

2 27.333 12.238 

3 15.220 5.5650 

4 16.499 7.1548 

5 24.103 10.452 

6 34.718 14.923 

7 47.563 20.336 

8 62.469 26.695 

9 79.3907 33.760 

10 98.314 41.744 

 

 

exact results furnished by Loy et al. (1999), Rahimi et al. (2011) and Warburton (1965), those 

were established by working out with the deformation theory provided in Fig. 2. There is once 

again comparison of empty and fluid-filled cylindrical shell with Gonclaves et al. (2006) as shown 

in Fig 3. The proposed model based on Rayleigh-Ritz method can incorporate in order to 

accurately predict the acquired results of material data point. 

This section influence of inclusion of fluid in an isotropic cylindrical shell is analyzed for some 

shell parameters. These parameters are associated with the physical quantities which describes a 

cylindrical shell problem. Table 3 indicates that the frequency values versus circumferential wave 

number. It is observed that the frequencies are highly visible for without fluid are higher than those 

for ones. They have been considerably reduced by the impact of terms. In Table 4, variations of 

natural frequencies (Hz) for an empty cylindrical shell and a cylindrical shell with fluid are 

exhibited versus the axial half wave modes (m). The rest shell factors are labeled in the Table. As 

m grows, frequencies for the empty and fluid-filled cylindrical shells boost indefinitely. For a 

cylindrical shell with fluid, frequencies are diminished considerably when their comparison is 
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Table 4 Comparison of fluid-filled and without fluid versus half axial wave mode (m) (n=1, L=8 m,  

h=0.004 m, R=1 m, E=2.1x1011 N/m2, v=0.3, 𝜌=7850 Kg/m3, 𝜌𝑓=1000 Kg\m3) 

n 
Frequencies (Hz) 

Without fluid With fluid 

1 75.4385 33.6914 

2 221.672 94.1282 

3 368.978 156.0425 

4 494.248 208.8342 

5 589.228 248.8925 

6 655.284 276.7597 

7 699.488 295.4044 

8 729.187 307.9337 

9 749.662 316.5669 

10 764.239 322.7088 

 

 
Fig. 4 Comparison of fluid-filled and without fluid versus length-to-radius ratio (m=1, L=0.41 m,  

h=0.001 m, R=0.3015 m, E=2.1 ×1011 N/m2, v=0.3, 𝜌=7850 Kg/m3 
 

 
Fig. 5 Comparison of fluid-filled and without fluid versus height-to-radius ratio (L=8 in, h=0.1 in, R=2 in, 

E=30×106 lbf in-2,𝜈=0.3, 𝜌=7.35×10-4 lbf s2 in-4) 
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made with ones for the empty cylindrical shells. Fig. 4 represent frequencies with length-to-radius 

ratio using simply supported edge conditions. There is a pronounced decrease in frequencies when 

the cylindrical shell has been filled with fluid. Moreover, it is observed that with increments in 

L/R, the fundamental frequencies decrease. Fig. 5 shows the frequencies against h/R. As h/R is 

increased, the fundamental frequency increases for a fixed value of L/R. In these figures, the 

frequencies are considerably reduced when the shell are filled with fluid as compared to without 

fluid. They are approximately half of those for a cylindrical shell not filled with fluid. This 

reduction is approximately fifty percent.  

 

 

9. Conclusions 

 

The Rayleigh-Ritz method has been employed in this paper to analyze the vibration 

characteristics of fluid-filled functionally graded cylindrical shells using Sander’s shell theory. The 

fundamental natural frequency of functionally graded cylindrical shells of parameter versus ratios 

of length-to-diameter and height-to-diameter for a wide range has been reported and investigated 

through the study. Hankel’s functions of second kind are utilized to represent this phenomenon. 

The frequencies are higher for higher values of circumferential wave number. The frequency first 

increases and gain maximum value with the increase of circumferential wave mode. It has been 

investigated that the frequencies lower down on implicating the fluid term. The uncoupled 

frequencies are higher than that of coupled frequencies. The shells are submerged in a fluid and 

terms describing fluid effects are added with the shell motion equations. The problem is 

formulated by applying the Rayleigh-Ritz method and the shell fluid condition is annexed with the 

third equation of shell motion equations. The longitudinal modal displacement functions are 

assessed by characteristic beam ones meet end conditions applied at the shell edges. Stability of a 

cylindrical shell depends highly on these aspects of material. More the shell material sustains a 

load due to physical situations, the more the shell is stable. Any predicted fatigue due to burden of 

vibrations is evaded by estimating their dynamical aspects. An extension of present study can be 

done for investigating the rotating functionally graded cylindrical shells with ring supports. 
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