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Abstract.  In this paper is presented the minimum cost (optimal design) for reinforced concrete circular isolated 
footings based on an analytic model. This model considers a load and two moments in directions of the X and Y 
axes, and the pressure has a variation linear, these are the effects that act on the footing. The minimum cost (optimal 
design) and the Maple program are shown in Flowcharts. Two numerical experiments are shown to obtain the 
minimum cost design of the two materials that are used for a circular footing supporting an axial load and moments 
in two directions in accordance to the code of the ACI (American Concrete Institute), and it is compared against the 
current design (uniform pressure). Also, the same examples are developed through the normal procedure to verify the 
minimum cost (optimal design) presented in this document, i.e., the equations of moment, bending shear and 
punching shear are used to check the thickness, and after, the steel areas of the footing are obtained, and it is 
compared against the current design (uniform pressure). Results section show that the optimal design is more 
accurate and more economical than to any other model. Therefore, it is concluded that the optimized design model 
presented in this paper should be used to obtain the minimum cost design for the circular isolated footings. 
 

Keywords:  optimal design; reinforced concrete circular isolated footings; minimum cost design; 

moments; bending shear; punching shear 

 
 
1. Introduction 
 

The footings sizes are mostly governed by the axial load and the moments, allowable soil 

pressure, concrete unit weight, soil unit weight, and the depth of the footing base below the final 

grade (Al-Ansari 2013, Luévanos-Rojas et al. 2017a). 

The design for the shallow footing solution is made for the following cases of load applied to 

the footings: 1) Concentric load, 2) Concentric load and moment around of an axis (X or Y) 

(uniaxial bending), 3) Concentric load and moment around of two axes (X and Y) (biaxial 

bending). 
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The objective of a designer is to generate an “optimal solution” for the structures design some 

considerations. An optimal solution usually involves the most economical structure without 

harming the functional purposes of the structure (Bhalchandra and Adsul 2012). 

The optimal design of structures in the last decade has been the topic of many studies in the 

field of structural design (see Table 1). 

The main studies published in the last decade in the topic for the structural foundations optimal 

design (see Table 2). 

Several papers show the mathematical equations to obtain the design of footings are: Design of 

rectangular isolated footings by Luévanos-Rojas et al. (2013); Design of circular isolated footings 

by Luévanos-Rojas (2014a); Design of rectangular boundary combined footings by Luévanos-

Rojas (2014b); Design of trapezoidal boundary combined footings by Luévanos-Rojas (2015); A 

comparative study for the design of rectangular and circular isolated footings by Luévanos-Rojas 

(2016b); Design for the rectangular combined footings restricted in two opposite sides by 

Luévanos-Rojas (2016c); Design of square isolated footings for general case by López-Chavarría 

et al. (2017c); A comparative study for design of trapezoidal and rectangular boundary combined 

footings by Luévanos-Rojas et al. (2017b); Design for the T-shaped combined footings by 

Luévanos-Rojas et al. (2018c); Design for the strap combined footings by Yáñez-Palafox et al. 

(2019b). These papers show only the design equations and same numerical examples for the 

footings, but the optimal design does not appear. 

Thus, there is not paper on the topic with the level of current knowledge on the optimal 

structural design for the reinforced concrete circular isolated footings. Finally, there are also no 

elaborate recommendations for the geotechnical and structural design of reinforced concrete 

circular isolated footings tending the minimum design cost. 

This paper presents the optimal design for the circular isolated footings using a new model. 

This analytical model estimated the minimum cost with constant parameters and decision variables 

(design variables). The Flowcharts are presented for the minimum cost (optimal design) and for 

the Maple program. Two numerical examples are presented to estimate the materials cost of the 

circular footing that support to an axial load, moment around of the “X” axis and moment around 

of the “Y” axis in accordance with the requirements of the construction code for structural 

concrete (ACI 318S-14 2014), and it is compared against the current design (uniform pressure). 

Also, the same examples using the equations of moments, bending shear and punching shear are 

obtained to verify the thickness, and after, the reinforced steel areas of the footing are obtained, 

and it is compared against the current design to observe the differences. 
 

 

2. Methodology 
 

2.1 Model to obtain the radius of circular footings 
 

Fig. 1 shows a circular isolated footing under the application of an axial load and moments in 

two directions (biaxial bending), where the pressure is different throughout the contact surface. 

The radius “R” is obtained by the following equations (Luévanos-Rojas 2012): 

𝑅 =
4√𝑀𝑥

2 +𝑀𝑦
2

𝑃
 

(1) 
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𝜎𝑚𝑎𝑥𝜋𝑅
3 − 𝑃𝑅 − 4√𝑀𝑥

2 +𝑀𝑦
2 = 0 (2) 

where: the value of “R” for Eq. (1) is obtained for when the soil pressure is equal to zero and the 

value of “R” for Eq. (2) is found for when the soil pressure is equal to the soil available allowable  

Table 1 Optimal design of structures 

Authors Main contribution 

Aschheim et al. (2008) Optimal design for reinforced concrete beam, column, and wall sections 

Yousif et al. (2010) 
Design optimized for the singly and doubly reinforced concrete rectangular beam 

sections by the artificial neural networks 

Bordignon and Kripka (2012) 
Optimal design for the reinforced concrete columns under uniaxial bending 

compression 

Bhalchandra and Adsul (2012) Optimal cost for a doubly reinforced rectangular beam section 

Kaveh and Talatahari (2012) Design optimized of structures by the hybrid CSS and PSO algorithms 

Fleith de Medeiros and Kripka 

(2013) 

Optimal structures to obtain the pre-dimensioning parameters for beams in 

reinforced concrete buildings 

Ozturk and Durmus (2013) 
Optimal cost design of reinforced concrete columns by the artificial bee colony 

algorithm 

Awad (2013) Sandwich beam optimal design using the analytical and numerical solutions 

Kripka and Chamberlain Pravia 

(2013) 
Cold-formed steel channel optimal columns by the simulated annealing method 

Kaveh et al. (2013) 
Optimal design for the reinforced concrete retaining walls by the multi-objective 

genetic algorithm 

Shayanfar et al. (2013) Modal load optimal pattern for the building structures pushover analysis 

Nascimbene (2013) Optimal and analysis design of structures composite reinforced with fiber 

Tiliouine and Fedghouche (2014) Optimal cost for the reinforced high strength concrete T-sections under bending 

Kao and Yeh (2014a) 
Optimal design for the reinforced concrete plane frames by the artificial neural 

networks 

Kao and Yeh (2014b) 
Optimal design for the plane frame structures by the artificial neural networks and 

ratio variables 

Abbasnia et al. (2014) 
Optimal design based in reliability of structural systems using the hybrid genetic 

algorithm 

Kaveh and Mahdavi (2016) 
Design optimized for truss structures by a optimization algorithm based on a global 

sensitivity analysis 

Luévanos-Rojas (2016a) 
Design optimized for the reinforced concrete rectangular beams of singly 

reinforced sections with numerical experiments 

Gao et al. (2017) 
A multi-parameter optimal technique in cable-stayed bridges of prestressed 

concrete considering the prestress in girder 

Errouane et al. (2017) 
Optimal design of probability analysis for fatigue crack in aluminum plate repaired 

by a bonded composite patch 

Gharehbaghi (2018) 
Optimal seismic design controlling the damage of the reinforced concrete 

structures 

Hwang et al. (2018) 
Experimental validation of FE model updating based on multi-

objective optimization using the surrogate model 

Kaveh and Bijari (2018) Optimization, simultaneous analysis and design of trusses by the force method 

Zhang et al. (2018) 
Comparison of the performance for shear walls with openings designed by the 

genetic evolutionary structural optimization methods and elastic stress 

Luévanos-Rojas et al. (2018a) 
Optimization of reinforced concrete beams for rectangular sections with numerical 

experiments 
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Fig. 1 Circular isolated footing 

 

 

load capacity “σmax”, and the greater values is taken to satisfy the two conditions, because the 

pressure generated by the footing must be greater than or equal to zero and less or equal to the soil 

available allowable load capacity (Luévanos-Rojas 2012). 

The soil available allowable load capacity “σmax” is (Luévanos-Rojas 2014a): 

𝜎𝑚𝑎𝑥 = 𝑞𝑎 − 𝛾𝑝𝑝𝑧 − 𝛾𝑝𝑝𝑠 (3) 

where: qa is the soil allowable load capacity, γppz is the footing weight in square meters, γpps is 

the soil fill weight in square meters. 

If the earthquake loads and/or the wind are considered in the design, then the soil allowable 

load capacity must be increased by 33% (ACI 318S-14 2014). 

Also Eq. (3) could be presented as follows: 

𝜎𝑚𝑎𝑥 = 𝑞𝑎 − 𝛾𝑐(𝑑 + 𝑟) − 𝛾𝑔(𝐻 − 𝑑 − 𝑟) (4) 

Table 2 Optimal design of foundations structures 

Authors Main contribution 

Wang and Kulhawy (2008) Economic design optimization of foundation 

Wang (2009) Optimal economic design based in reliability of the spread foundation 

Rizwan et al. (2012) Optimal cost for the combined footings by the modified complex method of box 

Al-Ansari (2013) Structural optimal cost for the reinforced concrete isolated footing 

Al-Ansari (2014) Footing cost in shape paraboloid of reinforced concrete 

Khajehzadeh et al. (2014) Optimal foundation by multi-objective using a global-local gravitational search algorithm 

Luévanos-Rojas et al. (2017a) Design optimized for the rectangular isolated footings considering the real soil pressure 

Authors Main contribution 

López-Chavarría et al. (2017a) Optimal dimensioning for the square isolated footings: general case 

López-Chavarría et al. (2017b) Optimal dimensioning for the corner combined footings 

Velázquez-Santillán et al. 

(2018) 

Design optimized for the reinforced concrete rectangular combined footings with 

numerical experiments 

Luévanos-Rojas et al. (2018b) Optimal dimensioning for the T-shaped combined footings 

Aguilera-Mancilla et al. 

(2019a) 
Optimal dimensioning for the strap combined footings 
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Fig. 2 Critical sections for moments 

 

 

where: γc is the concrete density = 24 kN/m3, γg is the soil density, d is the effective depth of the 

footing (effective cant), r is the concrete coating in the footing and H is the depth of the footing 

base below the final grade. 

 

2.2 Model to obtain the design of circular footings 
 

The requirements of the construction code for the footings that support to a column, the critical 

sections are (ACI 318S-14 2014): The maximum moment is presented in face of column; Bending 

shear is located at a distance “d”; Punching shear is found in the perimeter “bo” (this perimeter is 

localized at a distance of “d/2” from face of column in both direction). 

 

2.2.1 Moments 
The critical sections for moments are located on the a’- a’ and b’-b’ axes (see Fig. 2) 

The moment “Ma’- a‘” that acts around the “a’-a’” axis is (Luévanos-Rojas 2014a, 2016b): 

𝑀𝑎,−𝑎, = [
𝑃𝑢(𝑐1

2 + 8𝑅2)

24𝜋𝑅2
+
𝑀𝑢𝑥𝑐1(𝑐1

2 − 10𝑅2)

24𝜋𝑅4
]√4𝑅2 − 𝑐1

2

+
(2𝑀𝑢𝑥 − 𝑃𝑢𝑐1) [𝜋 − 2𝐴𝑠𝑖𝑛 (

𝑐1
2𝑅)]

4𝜋
 

(5) 

The moment “Mb’- b‘” that acts around the “b’-b’” axis is (Luévanos-Rojas 2014, 2016): 

𝑀𝑏,−𝑏, = [
𝑃𝑢(𝑐2

2 + 8𝑅2)

24𝜋𝑅2
+
𝑀𝑢𝑦𝑐2(𝑐2

2 − 10𝑅2)

24𝜋𝑅4
]√4𝑅2 − 𝑐2

2

+
(2𝑀𝑢𝑦 − 𝑃𝑢𝑐2) [𝜋 − 2𝐴𝑠𝑖𝑛 (

𝑐2
2𝑅)]

4𝜋
 

(6) 
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Fig. 3 Critical section for bending shear 

 
 
2.2.2 Bending shear 
The critical section for bending shear (unidirectional shear force) is located on the c’- c’ axis 

(see Fig. 3). 

The bending shear that acts “Vf” is (Luévanos-Rojas 2014a, 2016b): 

𝑉𝑓 = 𝑃𝑢 [
1

2
− (

𝑐1 + 2𝑑

4𝜋𝑅2
)√4𝑅2 − (𝑐1 + 2𝑑)

2 −
1

𝜋
𝐴𝑠𝑖𝑛 (

𝑐1 + 2𝑑

2𝑅
)]

+
𝑀𝑢𝑥[4𝑅

2 − (𝑐1 + 2𝑑)
2]3/2

3𝜋𝑅4
 

(7) 

 

2.2.3 Punching shear 
The critical section for punching shear (bidirectional shear force) is located on rectangular 

surface formed by the corners 5, 6, 7 and 8, (see Fig. 4). 

The punching shear that acts “Vp” is (Luévanos-Rojas 2014a, 2016b): 

𝑉𝑃 =
𝑃𝑢[𝜋𝑅

2 − (𝑐1 + 𝑑)(𝑐2 + 𝑑)]

𝜋𝑅2
 (8) 

The equations proposed by the ACI code are shown in the appendix. 

 

2.3 Objective function to minimize the cost 
 

A cost function is defined as the total minimum cost “Ctm” which is equal to steel cost more the 

concrete cost. These costs include the material costs and the manpower costs, respectively. The 

cost of the circular isolated footing is: 

𝐶𝑡𝑚 = 𝑉𝑐𝐶𝑐 + 𝑉𝑠𝛾𝑠𝐶𝑠 (9) 

where: Cc is cost of concrete for 1 m3 in dollars, Cs is cost of steel for 1 kN of steel in dollars, Vs 

is volume of steel, Vc is volume of concrete and γs is steel density = 76.94 kN/m3.  

278



 

 

 

 

 

 

Optimal design for the reinforced concrete circular isolated footings 

 
Fig. 4 Critical section for punching shear 

 

 

The amount of steel is estimated as follows: The footing will be reinforced in the form of a 

rectangular or square grid and a circular ring at a distance r cm from the outer edge of the footing. 

The reinforcing area “Asx” and “Asy” in the direction “X” and “Y” are given as: 

𝐴𝑠𝑥 = 𝜌𝑥𝑏𝑤𝑦𝑑; 𝐴𝑠𝑦 = 𝜌𝑦𝑏𝑤𝑥𝑑 (10) 

where: ρx is the ratio of the steel in the direction of the “X” axis, ρy is the ratio of the steel in the 

direction of the “Y” axis. 

The number of rods “nx” and “ny” in the two directions is obtained as follows: 

𝑛𝑥 =
𝐴𝑠𝑥
𝑎𝑠

;  𝑛𝑦 =
𝐴𝑠𝑦

𝑎𝑠
 (11) 

where: as is the area of the rod that is used and this is considered the same in both directions. 

The separation for reinforcing steel in both directions is: 

𝑠𝑥 =
𝑏𝑤𝑦𝑎𝑠

𝐴𝑠𝑥
;  𝑠𝑦 =

𝑏𝑤𝑥𝑎𝑠
𝐴𝑠𝑦

 (12) 

The length of the steel bars in the directions “X” and “Y” are: 

𝐿𝑥 = 2𝑅 + 4 ∑ √𝑅2 − (𝑗𝑠𝑥)
2

(𝑛𝑥−3)/2

𝑗=1

 (13) 

𝐿𝑦 = 2𝑅 + 4 ∑ √𝑅2 − (𝑖𝑠𝑦)
2

(𝑛𝑦−3)/2

𝑖=1

 (14) 

The length of the circumferential reinforcing steel is calculated as: 

𝐿𝑐 = 2𝜋(𝑅 − 𝑟) (15) 

The total volume of reinforcing steel for the circular footing is: 
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𝑉𝑠 = 𝑎𝑠(𝐿𝑦  + 𝐿𝑥 + 𝐿𝑐) (16) 

The volume of concrete for the circular footing is: 

𝑉𝑐 = 𝜋𝑅
2𝑡 − 𝑎𝑠(𝐿𝑦  + 𝐿𝑥 + 𝐿𝑐) (17) 

Substituting the Eqs. (16) and (17) into Eq. (9) is obtained: 

𝐶𝑡𝑚 = 𝐶𝑐[𝜋𝑅
2𝑡 − 𝑎𝑠(𝐿𝑦  + 𝐿𝑥 + 𝐿𝑐)] + 𝛾𝑠𝐶𝑠[𝑎𝑠(𝐿𝑦  + 𝐿𝑥 + 𝐿𝑐)] (18) 

Now, considering α = γsCs/Cc, and substituting into Eq. (18) is found: 

𝐶𝑡𝑚 = 𝐶𝑐[𝜋𝑅
2𝑡 − 𝑎𝑠(𝐿𝑦  + 𝐿𝑥 + 𝐿𝑐)(1 − 𝛼)] (19) 

Substituting the Eqs. (13), (14) and (15) into Eq. (19) is obtained: 

𝐶𝑡𝑚 =

[
 
 
 
 
 
 

(

 
 
 
 4𝑅 + 4 ∑ √𝑅2 − (𝑖𝑠𝑦)

2

(𝑛𝑦−3)

2

𝑖=1

 +

4 ∑ √𝑅2 − (𝑗𝑠𝑥)2

(𝑛𝑥−3)/2

𝑗=1

+ 2𝜋(𝑅 − 𝑟)
)

 
 
 
 

(𝛼 − 1)𝑎𝑠 + 𝜋𝑅
2𝑡

]
 
 
 
 
 
 

𝐶𝑐 (20) 

 

2.4 Constraint functions 
 

Equations of the model for the dimensioning of circular isolated footings, the new model for 

the design of the circular isolated footings, and the construction code requirements for concrete are 

considered to obtain the constraint functions: 

𝑅 ≥
4√𝑀𝑥

2 +𝑀𝑦
2

𝑃
 

(21) 

[𝑞𝑎 − 𝛾𝑐(𝑑 + 𝑟) − 𝛾𝑔(𝐻 − 𝑑 − 𝑟)]𝜋𝑅
3 − 𝑃𝑅 − 4√𝑀𝑥

2 +𝑀𝑦
2 ≥ 0 (22) 

[
𝑃𝑢(𝑐1

2 + 8𝑅2)

24𝜋𝑅2
+
𝑀𝑢𝑥𝑐1(𝑐1

2 − 10𝑅2)

24𝜋𝑅4
]√4𝑅2 − 𝑐1

2 +
(2𝑀𝑢𝑥 − 𝑃𝑢𝑐1) [𝜋 − 2𝐴𝑠𝑖𝑛 (

𝑐1
2𝑅)]

4𝜋

≤ Ø𝑓𝑓𝑦𝜌𝑦√4𝑅
2 − 𝑐1

2𝑑2 (1 – 
0.59𝜌𝑦𝑓𝑦

𝑓′
𝑐

) 

(23) 

[
𝑃𝑢(𝑐2

2 + 8𝑅2)

24𝜋𝑅2
+
𝑀𝑢𝑦𝑐2(𝑐2

2 − 10𝑅2)

24𝜋𝑅4
]√4𝑅2 − 𝑐2

2 +
(2𝑀𝑢𝑦 − 𝑃𝑢𝑐2) [𝜋 − 2𝐴𝑠𝑖𝑛 (

𝑐2
2𝑅)]

4𝜋

≤ Ø𝑓𝑓𝑦𝜌𝑥√4𝑅
2 − 𝑐2

2𝑑2 (1 – 
0.59𝜌𝑥𝑓𝑦

𝑓′
𝑐

) 

(24) 
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𝑃𝑢 [
1

2
− (

𝑐1 + 2𝑑

4𝜋𝑅2
)√4𝑅2 − (𝑐1 + 2𝑑)

2 −
1

𝜋
𝐴𝑠𝑖𝑛 (

𝑐1 + 2𝑑

2𝑅
)]

+
𝑀𝑢𝑥[4𝑅

2 − (𝑐1 + 2𝑑)
2]3/2

3𝜋𝑅4
≤ 0.17∅𝑣√𝑓′𝑐√4𝑅

2 − (𝑐1 + 2𝑑)
2𝑑 

(25) 

𝑃𝑢[𝜋𝑅
2 − (𝑐1 + 𝑑)(𝑐2 + 𝑑)]

𝜋𝑅2
≤

{
 
 

 
 0.17∅𝑣 (1 +

2

𝛽𝑐
)√𝑓′𝑐[2(𝑐1 + 𝑐2 + 2𝑑)]𝑑

0.083∅𝑣 (
𝛼𝑠𝑑

𝑏0
+ 2)√𝑓′𝑐[2(𝑐1 + 𝑐2 + 2𝑑)]𝑑

0.33∅𝑣√𝑓′𝑐[2(𝑐1 + 𝑐2 + 2𝑑)]𝑑

 (26) 

𝜌𝑦, 𝜌𝑥 ≤ 0.75 [
0.85𝛽1𝑓′𝑐

𝑓𝑦
(

600

600 + 𝑓𝑦
)] (27) 

𝜌𝑦, 𝜌𝑥 ≥

{
 
 

 
 0.25√𝑓′𝑐

𝑓𝑦
1.4

𝑓𝑦

 (28) 

𝐴𝑠𝑦 = 𝜌𝑦√4𝑅
2 − 𝑐1

2𝑑 (29) 

𝐴𝑠𝑥 = 𝜌𝑥√4𝑅
2 − 𝑐2

2𝑑 (30) 

𝑛𝑥 =
𝐴𝑠𝑥
𝑎𝑠

 (31) 

𝑛𝑦 =
𝐴𝑠𝑦

𝑎𝑠
 (32) 

𝑠𝑥 =
√4𝑅2 − 𝑐2

2𝑎𝑠
𝐴𝑠𝑥

 (33) 

𝑠𝑦 =
√4𝑅2 − 𝑐1

2𝑎𝑠
𝐴𝑠𝑦

 (34) 

It is assumed that all variables are non-negative. 

Fig. 5 shows the flowchart of the algorithm for the reinforced concrete circular isolated footing 

optimal design. 

Fig. 6 shows the flowchart of Maple program for the reinforced concrete circular isolated 

footing optimal design. 
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Fig. 5 Flowchart of the optimal design model 

 

 

3. Numerical problem 
 

Design of two reinforced concrete circular isolated footing supporting a square column with the 

information following is presented: f ’c = 21 MPa, fy = 420 MPa, qa = 220 kN/m2, γc = 24 kN/m3, γg 

= 15 kN/m3, c1 = 40 cm, c2 = 40 cm, H = 1.5 m, r = 8 cm, as = 1.98 cm2, α = 90. The forces and 

moments that act for each case on the footing are: Case 1; PD = 700 kN, PL = 500 kN, MDx =240 

kN-m, MLx = 160 kN-m, MDy = 120 kN-m, MLy = 80 kN-m. Case 2; PD = 700 kN, PL = 500 kN, MDx 

=140 kN-m, MLx = 100 kN-m, MDy = 120 kN-m, MLy = 80 kN-m. It is required to determine the 

values of the optimal relations of reinforcing steel ρx and ρy, the optimal areas of reinforcing steel 

Asx and Asy, the number of rods nx and ny, the separation of reinforcing steel sx and sy, the optimum 

radius of the footing R, and the optimal effective depth of the concrete d. 

Where: PD is the dead load, PL is the live load, MDx is the moment of the dead load around the 

“X-X” axis, MLx is the moment of the live load around the “X-X” axis, MDy is the moment of the 

dead load around the “Y-Y” axis, MLy is the moment of the live load around the “Y-Y” axis. 
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Fig. 6 Flowchart of Maple program 

 

 

The loads and moments that act on the footing are: Case 1; P = 1200 kN, Mx = 400 kN-m, My = 

200 kN-m. Case 2; P = 1200 kN, Mx = 240 kN-m, My = 200 kN-m. 

The loads and moments that act on the footing are factored by Eq. (44): Case 1; Pu = 1640 kN, 

Mux = 544 kN-m, Muy = 272 kN-m. Case 2; Pu = 1640 kN, Mux = 328 kN-m, Muy = 272 kN-m. 

Substituting the values that correspond into Eq. (20) to find the objective function and also into 

Eqs. (21) to (34) to obtain the constraint functions for each case. 

In order to evaluate the optimal design with respect to the minimum cost for the reinforced 

concrete isolated footing in a circular shape for the new model, the MAPLE15 software is used to 

obtain the optimization problem solution. 

Table 3 shows the effective depth “d” varying its value of 38.43, 42.00, 47.00, 52.00, 57.00 and 

62.00 cm for the case 1, and for the case 2 varies its value of 38.43, 42.00, 47.00, 52.00, 57.00 and 

62.00 cm. Table 4 presents the radius “R” of the footing changing its value of 188.18, 190.00, 

200.00, 210.00, 220.00 and 230.00 cm for the case 1, and for the case 2 changes its value of 

177.18, 180.00, 190.00, 200.00, 210.00 and 220.00 cm. Table 5 shows the percentage of 

reinforcing steel in the direction “Y” axis “ρy” modifying the value of 0.00500, 0.00450, 0.00400, 

0.00363, 0.00350 and 0.000333 for the case 1, and for the case 2 modifies its value of 0.00500, 

0.00450, 0.00400, 0.00350, 0.00336 and 0.000333. The results of the optimal design for the 

reinforced concrete circular isolated footing are marked on the tables and these provide a very 

precise estimate of the minimum design cost of the materials. 
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4. Results 
 

Table 3 shows the results for the numerical examples by varying the effective depth “d”. When 

the value of “d” is increased: For the case 1, the value of “ρx” is constant of 0.00333, the value of 

“ρy” decreases starting from 0.00363 until reaching 0.00333 (minimum percentage), and the values 

of “Asy”, “Asx”, “R” and “Ctm” increase. For the case 2, the values of “ρx” and “ρy” decrease starting  

Table 3 Effective depth “d” varies 

R 

(cm) 

d 

(cm) 
ρy 

Asy 

(cm2) 
ny 

sy 

(cm) 
ρx 

Asx 

(cm2) 
nx 

sx 

(cm) 

Ctm 

($) 

Case 1 

188.18 38.43 0.00363 52.16 26.34 14.21 0.00333 47.93 24.21 15.46 7.859Cc 

188.31 42.00 0.00333 52.43 26.48 14.14 0.00333 52.43 26.48 14.14 8.382Cc 

188.49 47.00 0.00333 58.72 29.66 12.64 0.00333 58.72 29.66 12.64 9.344Cc 

188.67 52.00 0.00333 65.04 32.85 11.42 0.00333 65.04 32.85 11.42 10.186Cc 

188.85 57.00 0.00333 71.36 36.04 10.42 0.00333 71.36 36.04 10.42 11.152Cc 

189.03 62.00 0.00333 77.69 39.24 9.58 0.00333 77.69 39.24 9.58 12.112Cc 

Case 2 

177.18 38.24 0.00336 45.19 22.82 15.43 0.00336 45.19 22.82 15.43 6.812Cc 

177.25 42.00 0.00333 49.31 24.91 14.14 0.00333 49.31 24.91 14.14 7.395Cc 

177.43 47.00 0.00333 55.24 27.90 12.64 0.00333 55.24 27.90 12.64 8.267Cc 

177.60 52.00 0.00333 61.18 30.90 11.42 0.00333 61.18 30.90 11.42 9.019Cc 

177.78 57.00 0.00333 67.13 33.90 10.42 0.00333 67.13 33.90 10.42 9.890Cc 

177.96   62.00    0.00333   73.09   36.92    9.58    0.00333   73.09   36.92    9.58    12.112Cc 

Table 4 Radius “R” is modified 

R 

(cm) 

d 

(cm) 
ρy 

Asy 

(cm2) 
ny 

sy 

(cm) 
ρx 

Asx 

(cm2) 
nx 

sx 

(cm) 

Ctm 

($) 

Case 1 

188.18 38.43 0.00363 52.16 26.34 14.21 0.00333 47.93 24.21 15.46 7.859Cc 

190.00 38.46 0.00362 52.59 26.56 14.23 0.00333 48.44 24.47 15.44 7.999Cc 

200.00 38.60 0.00358 54.99 27.78 14.33 0.00333 51.21 25.86 15.39 8.926Cc 

210.00 38.72 0.00355 57.40 28.99 14.42 0.00333 53.96 27.25 15.34 9.827Cc 

220.00 38.82 0.00352 59.82 30.21 14.50 0.00333 56.70 28.64 15.30 10.776Cc 

230.00 38.91 0.00349 62.22 31.43 14.58 0.00333 59.44 30.02 15.27 11.838Cc 

Case 2 

177.18 38.24 0.00336 45.19 22.82 15.43 0.00336 45.19 22.82 15.43 6.812Cc 

180.00 38.30 0.00333 45.67 23.07 15.51 0.00333 45.67 23.07 15.51 7.137Cc 

190.00 38.45 0.00333 48.43 24.46 15.45 0.00333 48.43 24.46 15.45 7.888Cc 

200.00 38.59 0.00333 51.20 25.86 15.39 0.00333 51.20 25.86 15.39 8.813Cc 

210.00 38.71 0.00333 53.95 27.25 15.34 0.00333 53.95 27.25 15.34 9.782Cc 

220.00   38.82    0.00333   56.70   28.64   15.30    0.00333   56.70   28.64   15.30    10.662Cc 
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from 0.00336 until reaching 0.00333 (minimum percentage), and the values of “Asy”, “Asx”, “R” 

and “Ctm” increase. 

Table 4 shows the results for the numerical examples by modifying the radius “R” of the 

footing. When the value of “R” is increased: For the case 1, the value of “ρx” is constant of 

0.00333, the value of “ρy” decreases starting from 0.00363 until reaching 0.00333 (minimum 

percentage), and the values of “Asy”, “Asx”, “d” and “Ctm” increase. For the case 2, the values of 

“ρx” and “ρy” decrease starting from 0.00336 until reaching 0.00333 (minimum percentage), and 

the values of “Asy”, “Asx”, “d” and “Ctm” increase. 

Table 5 shows the results for the numerical examples by varying the steel reinforcement 

percentage “ρy” from 0.00500 to 0.00333 (minimum percentage). When the value of “ρy” is 

reduced: For the case 1, the value of “ρx” is constant of 0.00333, the values of “R”, “Asx” and “d” 

are increased, the value of “Asy” is reduced, and the “Ctm” is reduced until percentage of ρy = 

0.00363 and subsequently increases. For the case 2, the value of “ρx” is constant of 0.00333 with 

exception of the value of ρx = 0.00336 (value that presents the minimum cost), the value of “R” is 

constant with exception of the value that presents the minimum cost, the value of “d” is constant 

with exception of the value of ρy = 0.00333 that presents the minimum percentage, the value of 

“Asx” increases until steel area of Asx = 45.19 cm2 that presents the minimum cost and subsequently 

reduces, the value of “Asy” is reduced, and the “Ctm” is reduced until percentage of ρy = 0.00336 

and subsequently increases. 

The optimal solutions for the two numerical examples are marked in Tables 3, 4 and 5. The 

minimum design cost of the material for the case 1 is 7.859Cc, and for the case 2 is 6.812Cc.   

Fig. 7 shows the input data and the optimal solution for the numerical example (case 1) for the 

circular isolated footing. 

Fig. 8 shows the input data and the optimal solution for the numerical example (case 2) for the 

circular isolated footing. 

Table 5 Percentage of reinforcing steel “ρy” changes 

R 

(cm) 

d 

(cm) 
ρy 

Asy 

(cm2) 
ny 

sy 

(cm) 
ρx 

Asx 

(cm2) 
nx 

sx 

(cm) 

Ctm 

($) 

Case 1 

188.18 38.42 0.00500 71.89 36.31 10.31 0.00333 47.93 24.21 15.46 8.391Cc 

188.18 38.42 0.00450 64.71 32.68 11.45 0.00333 47.93 24.21 15.46 8.187Cc 

188.18 38.42 0.00400 57.52 29.05 12.88 0.00333 47.93 24.21 15.46 8.041Cc 

188.18 38.43 0.00363 52.16 26.34 14.21 0.00333 47.93 24.21 15.46 7.859Cc 

188.20 39.11 0.00350 51.23 25.87 14.47 0.00333 48.79 24.64 15.19 7.935Cc 

188.23 40.02 0.00333 49.94 25.22 14.84 0.00333 49.94 25.22 14.84 8.101Cc 

Case 2 

177.12 38.24 0.00500 67.30 33.99 10.36 0.00333 44.86 22.66 15.53 7.394Cc 

177.12 38.24 0.00450 60.56 30.59 11.51 0.00333 44.86 22.66 15.53 7.206Cc 

177.12 38.24 0.00400 53.84 27.18 12.95 0.00333 44.86 22.66 15.53 7.075Cc 

177.12 38.24 0.00350 47.11 22.79 14.79 0.00333 44.86 22.66 15.53 6.888Cc 

177.18 38.24 0.00336 45.19 22.82 15.43 0.00336 45.19 22.82 15.43 6.812Cc 

177.13   38.41    0.00333   45.07   22.76   15.47    0.00333   45.07   22.76   15.47     6.823Cc 
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Fig. 7 Input data and the optimal solution (case 1) 

 

 

Fig. 9 shows the dimensions of the concrete and the steel in general form for the isolated 

footings of circular shape. 

Now, the examples are developed using the procedure for the classical model and proposed 

model presented by Luévanos-Rojas (2014a). First is proposed the minimum thickness “t” of the 

footing, which is of 25 cm marking by code ACI, subsequently the thickness is revised to comply 

the following conditions: moment, bending shear and punching shear. If such conditions are not 

satisfied is proposed a greater thickness until it fulfills the three conditions mentioned. The 

thickness that satisfies the three conditions is:  

For case 1: the proposed model is of 38.5 cm, and for the classical model is of 57 cm. 

For case 2: the proposed model is of 38.5 cm, and for the classical model is of 52 cm. 

Table 6 shows the comparison of the classical model and proposed model, and also the 

comparison of the classical model and optimal design. 

The maximum moment Ma’-a’ is obtained by the Eq. (5), and the maximum moment Mb’-b’ is 

found by the Eq. (6). The bending shear that resists the concrete ØvVcf is obtained by the Eq. (45) 

that is presented in appendix. The bending shear acting Vf is found by the Eq. (7). The punching 

shear that resists the concrete ØvVcp is obtained by the Eqs. (48a), (48b) and (48c) that are 

presented in appendix. The punching shear acting Vp is found by the Eq. (8). The steel area Asy and 

Asx are obtained by the Eq. (10). 

The results show the following (see Table 6):  

For the moments that act on the footing: the moments for the classical model are same in the 

two directions because the pressure diagram is uniform for the two cases. Now the highest 

percentage is presented with respect to the optimal design for the two cases. 

For the bending shear that resists the footing: the highest percentage is presented with respect 

to the optimal design for the two cases. 
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Fig. 8 Input data and the optimal solution (case 2) 

 

 

For the bending shear that act on the footing: the highest percentage is presented with respect to 

the optimal design for the two cases. 

For the punching shear that resists the footing: the highest percentage is presented with respect 

to the optimal design for the two cases. 

For the punching shear that act on the footing: the highest percentage is presented with respect 

to the optimal design for the two cases. 

For the steel areas of the footing: the steel areas for the classical model are same in the two 

directions because the pressure diagram is uniform for the two cases. For case 1 is presented the 

highest percentage with respect to the optimal design. For case 2 the steel areas are equals because 

the minimum steel governed in the two directions. 

For the minimum cost of the footing: the classical model is larger in a 41% with respect to the 

proposed model, and the classical model is larger in a 44% with respect to the optimal design for 

the case 1, and for the case 2 the classical model is larger in a 36% with respect to the proposed 

model, and the classical model is larger in a 44% with respect to the optimal design. 

 

 

5. Conclusions 
 

The standard design method (classical method) is obtained in the following way: a radius “R” is 

proposed and it must comply with the admissible stress, and then an effective depth or effective 

cant is found from the maximum moment and compared with the bending shear (unidirectional 

shear) and the punching shear (bidirectional shear) until it meets these conditions, and then the 

reinforcing steel is found, but it is not guaranteed that the minimum design cost is obtained. 
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Fig. 9 Circular isolated footing 

 

Table 6 Comparison of results 

Concept 
Case 1 Case 2 

CM PM OD CM/PM CM/OD CM PM OD CM/PM CM/OD 

Ma’-a’ (kN-m) 905.01 731.88 725.08 1.24 1.25 747.71 598.31 597.18 1.25 1.25 

Mb’-b’ (kN-m) 905.01 620.05 613.59 1.46 1.47 747.71 575.64 574.51 1.30 1.30 

D 

(cm) 
380 380 376.36 1.00 1.01 360 355 354.36 1.01 1.02 

d 

(cm) 
57 38.5 38.43 1.48 1.48 52 38.5 38.24 1.35 1.36 

t 

(cm) 
65 46.5 46.43 1.40 1.40 60 46.5 46.24 1.29 1.30 

Vc 

(m3) 
7.37 5.27 5.17 1.40 1.43 6.11 4.60 4.56 1.33 1.34 

Ø vVcf (kN) 1311.22 921.71 910.32 1.42 1.44 1136.12 854.47 847.42 1.33 1.34 

Vf 

(kN) 
727.92 713.00 711.90 1.00 1.02 652.72 614.24 615.48 1.06 1.06 

Ø vVcp 

(kN) 

4393.45 2401.54 2394.65 1.83 1.83 3801.46 2401.54 2377.24 1.58 1.60 

5631.64 2698.53 2688.91 2.09 2.09 4734.16 2698.53 2664.63 1.75 1.78 

2842.82 1553.94 1549.48 1.83 1.83 2459.77 1553.94 1538.21 1.58 1.60 

Vp 

(kN) 
2678.15 1550.89 1549.33 1.73 1.73 2371.80 1537.90 1538.21 1.54 1.54 

Asy 

(cm2) 
71.73 52.52 52.16 1.37 1.38 61.95 45.22 45.19 1.37 1.37 

Asx 

(cm2) 
71.73 48.45 47.93 1.48 1.50 61.95 45.22 45.19 1.37 1.37 

Ctm 

($) 
11.28Cc 8.00Cc 7.86Cc 1.41 1.44 9.35Cc 6.86Cc 6.81Cc 1.36 1.37 

Where: CM is classical model, PM is the proposed model, OD is the optimal design 
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The optimal design presented in this document is formulated from an analytical approach based 

on a minimum cost design criteria and a set of constraints in accordance with the requirements of 

the construction code for structural concrete and comments (ACI 318S-14 2014). The constant 

parameters (independent variables) are: c1, c2, H, P, Mx, My, qa, γc, γg, r, α, f’c y fy. The decision 

variables (dependent variables) are: R, d, ρy, ρx, ny, nx, sy, sx, Asy and Asx. 

The minimum cost design from the optimization technique presented that is lower than the cost 

obtained from the standard design method (classical method). Furthermore both techniques were 

verified. This comparison showed the superiority of the optimization technique over the standard 

design method (classical method). 

It can be said that the investigations carried out to find the optimal design of concrete structures 

are of great value for the practice of engineers. The optimal solution satisfies the provisions of the 

code and minimizes the cost of the structure. 

Using the optimal design, this document successfully acquires a model to predict the 

proportions of reinforcing steel ρy and ρx, the optimal areas of steel reinforcement Asy and Asx, the 

optimum radius of the footing R, the optimum effective depth d and the lowest cost for the 

reinforced concrete circular isolated footings under to a concentrated load and moments in two 

generalized directions. 
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Appendix 
 

Equations for moment in both axes are considered at the face of the column are (ACI 318S-14 

2014, Luévanos-Rojas 2016a): 

𝑀𝑢 = Ø𝑓𝑀𝑛 (35) 

𝑀𝑢 = Ø𝑓𝑏𝑤𝑑
2𝜌𝑓𝑦 (1 – 

0.59𝜌𝑓𝑦

𝑓′𝑐
) (36) 

𝜌 =
𝐴𝑠
𝑏𝑑

 (37) 

𝜌𝑏 =
0.85𝛽1𝑓′𝑐

𝑓𝑦
(

600

600 + 𝑓𝑦
) (38) 

0.65 ≤ 𝛽1 = (1.05 −
𝑓′
𝑐

140
) ≤ 0.85 (39) 

𝜌𝑚á𝑥 = 0.75𝜌𝑏 (40) 

𝜌𝑚𝑖𝑛 =

{
 
 

 
 0.25√𝑓′𝑐

𝑓𝑦
1.4

𝑓𝑦

 (41) 

𝐴𝑠𝑡 = 0.0018𝑏𝑤𝑡 (42) 

where: Mu is the factored maximum moment, Øf is the strength reduction factor by bending and its 

value is 0.90, bw is analysis width in structural member, ρ is ratio of As (steel area) to bd, β1 is the 

factor relating depth of equivalent rectangular compressive stress block to neutral axis depth, fy is 

the specified yield strength of reinforcement of steel, f’c is the specified compressive strength of 

the concrete at 28 days, Ast is the steel area by temperature, t is the total thickness of the footing. 

The values of bwx and bwy are the analysis widths for moments on both sides of the column and 

these are obtained as follows (Luévanos-Rojas 2014a, 2016b): 

𝑏𝑤𝑥 = √4𝑅
2 − 𝑐1

2;  𝑏𝑤𝑦 = √4𝑅
2 − 𝑐2

2 (43) 

Required strength U to resist factored loads or related internal moments and forces is (ACI 

318S-14 2014): 

𝑈 = 1.2𝐷 + 1.6𝐿 (44) 

where: D is the dead load and L is the live load of the internal moments and forces. 

The bending shear (unidirectional shear force) that must resist the concrete provided by the 

code is obtained by the following equation (ACI 318S-14 2014): 
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∅𝑣𝑉𝑐𝑓 = 0.17∅𝑣√𝑓′𝑐𝑏𝑤𝑐𝑑 (45) 

where: Vcf is bending shear that must resist the concrete, Øv = 0.85 is the strength reduction factor 

for the shear, bws is the analysis width for the bending shear and this is obtained as follows 

(Luévanos-Rojas, 2014): 

𝑏𝑤𝑠 = √4𝑅
2 − (𝑐1 + 2𝑑)

2 (46) 

For bending shear that acts on the footing Vf must be compared against the bending shear that 

must be resisted by the concrete Vcf, and this must comply with the following equation (ACI 318S-

14 2014): 

𝑉𝑓 ≤ ∅𝑣𝑉𝑐𝑓 (47) 

The punching shear (shear force bidirectional) that must resist the concrete provided by the 

code is obtained by the following equations (ACI 318S-14 2014): 

∅𝑣𝑉𝑐𝑝 = 0.17∅𝑣 (1 +
2

𝛽𝑐
)√𝑓′𝑐𝑏0𝑑 (48a) 

where: Vcp is punching shear that must resist the concrete, βc is the long side between the short side 

of the column, b0 is the perimeter where the punching is presented. 

∅𝑣𝑉𝑐𝑝 = 0.083∅𝑣 (
𝛼𝑠𝑑

𝑏0
+ 2)√𝑓′𝑐𝑏0𝑑 (48b) 

where: αs is 20 for corner columns, 30 for edge columns, and 40 for interior columns. 

∅𝑣𝑉𝑐𝑝 = 0.33∅𝑣√𝑓′𝑐𝑏0𝑑 (48c) 

Note: ØvVcp must be the smallest value of Eqs. (48a), (48b) and (48c). 

For punching shear that acts on the footing Vp must be compared against the bending shear that 

must be resisted by the concrete Vcp, and this must comply with the following equation (ACI 318S-

14 2014): 

𝑉𝑝 ≤ ∅𝑣𝑉𝑐𝑝 (49) 
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