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Abstract. In this paper is presented the minimum cost (optimal design) for reinforced concrete circular isolated
footings based on an analytic model. This model considers a load and two moments in directions of the X and Y
axes, and the pressure has a variation linear, these are the effects that act on the footing. The minimum cost (optimal
design) and the Maple program are shown in Flowcharts. Two numerical experiments are shown to obtain the
minimum cost design of the two materials that are used for a circular footing supporting an axial load and moments
in two directions in accordance to the code of the ACI (American Concrete Institute), and it is compared against the
current design (uniform pressure). Also, the same examples are developed through the normal procedure to verify the
minimum cost (optimal design) presented in this document, i.e., the equations of moment, bending shear and
punching shear are used to check the thickness, and after, the steel areas of the footing are obtained, and it is
compared against the current design (uniform pressure). Results section show that the optimal design is more
accurate and more economical than to any other model. Therefore, it is concluded that the optimized design model
presented in this paper should be used to obtain the minimum cost design for the circular isolated footings.

Keywords: optimal design; reinforced concrete circular isolated footings; minimum cost design;
moments; bending shear; punching shear

1. Introduction

The footings sizes are mostly governed by the axial load and the moments, allowable soil
pressure, concrete unit weight, soil unit weight, and the depth of the footing base below the final
grade (Al-Ansari 2013, Luévanos-Rojas et al. 2017a).

The design for the shallow footing solution is made for the following cases of load applied to
the footings: 1) Concentric load, 2) Concentric load and moment around of an axis (X or Y)
(uniaxial bending), 3) Concentric load and moment around of two axes (X and Y) (biaxial
bending).
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The objective of a designer is to generate an “optimal solution” for the structures design some
considerations. An optimal solution usually involves the most economical structure without
harming the functional purposes of the structure (Bhalchandra and Adsul 2012).

The optimal design of structures in the last decade has been the topic of many studies in the
field of structural design (see Table 1).

The main studies published in the last decade in the topic for the structural foundations optimal
design (see Table 2).

Several papers show the mathematical equations to obtain the design of footings are: Design of
rectangular isolated footings by Luévanos-Rojas et al. (2013); Design of circular isolated footings
by Luévanos-Rojas (2014a); Design of rectangular boundary combined footings by Luévanos-
Rojas (2014b); Design of trapezoidal boundary combined footings by Luévanos-Rojas (2015); A
comparative study for the design of rectangular and circular isolated footings by Luévanos-Rojas
(2016b); Design for the rectangular combined footings restricted in two opposite sides by
Luévanos-Rojas (2016c); Design of square isolated footings for general case by Lopez-Chavarria
et al. (2017c); A comparative study for design of trapezoidal and rectangular boundary combined
footings by Luévanos-Rojas et al. (2017b); Design for the T-shaped combined footings by
Luévanos-Rojas et al. (2018c); Design for the strap combined footings by Yafiez-Palafox et al.
(2019b). These papers show only the design equations and same numerical examples for the
footings, but the optimal design does not appear.

Thus, there is not paper on the topic with the level of current knowledge on the optimal
structural design for the reinforced concrete circular isolated footings. Finally, there are also no
elaborate recommendations for the geotechnical and structural design of reinforced concrete
circular isolated footings tending the minimum design cost.

This paper presents the optimal design for the circular isolated footings using a new model.
This analytical model estimated the minimum cost with constant parameters and decision variables
(design variables). The Flowcharts are presented for the minimum cost (optimal design) and for
the Maple program. Two numerical examples are presented to estimate the materials cost of the
circular footing that support to an axial load, moment around of the “X” axis and moment around
of the “Y” axis in accordance with the requirements of the construction code for structural
concrete (ACI 318S-14 2014), and it is compared against the current design (uniform pressure).
Also, the same examples using the equations of moments, bending shear and punching shear are
obtained to verify the thickness, and after, the reinforced steel areas of the footing are obtained,
and it is compared against the current design to observe the differences.

2. Methodology
2.1 Model to obtain the radius of circular footings

Fig. 1 shows a circular isolated footing under the application of an axial load and moments in
two directions (biaxial bending), where the pressure is different throughout the contact surface.
The radius “R” is obtained by the following equations (Luévanos-Rojas 2012):

2 2
4 /Mx + M, 1)

R =
P
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Table 1 Optimal design of structures

Authors Main contribution

Aschheim et al. (2008) Optimal design for reinforced concrete beam, column, and wall sections

Design optimized for the singly and doubly reinforced concrete rectangular beam
sections by the artificial neural networks

Optimal design for the reinforced concrete columns under uniaxial bending
compression

Bhalchandra and Adsul (2012)  Optimal cost for a doubly reinforced rectangular beam section
Kaveh and Talatahari (2012)  Design optimized of structures by the hybrid CSS and PSO algorithms
Fleith de Medeiros and Kripka ~ Optimal structures to obtain the pre-dimensioning parameters for beams in

Yousif et al. (2010)

Bordignon and Kripka (2012)

(2013) reinforced concrete buildings
Ozturk and Durmus (2013) Optln_’lal cost design of reinforced concrete columns by the artificial bee colony
algorithm
Awad (2013) Sandwich beam optimal design using the analytical and numerical solutions
Kripka and (Egngb)erlam Pravia Cold-formed steel channel optimal columns by the simulated annealing method

Optimal design for the reinforced concrete retaining walls by the multi-objective
genetic algorithm

Shayanfar et al. (2013) Modal load optimal pattern for the building structures pushover analysis

Kaveh et al. (2013)

Nascimbene (2013) Optimal and analysis design of structures composite reinforced with fiber

Tiliouine and Fedghouche (2014) Optimal cost for the reinforced high strength concrete T-sections under bending

Optimal design for the reinforced concrete plane frames by the artificial neural
networks

Optimal design for the plane frame structures by the artificial neural networks and
ratio variables

Optimal design based in reliability of structural systems using the hybrid genetic
algorithm

Design optimized for truss structures by a optimization algorithm based on a global
sensitivity analysis

Design optimized for the reinforced concrete rectangular beams of singly
reinforced sections with numerical experiments

A multi-parameter optimal technique in cable-stayed bridges of prestressed
concrete considering the prestress in girder

Optimal design of probability analysis for fatigue crack in aluminum plate repaired
by a bonded composite patch

Optimal seismic design controlling the damage of the reinforced concrete
structures

Experimental validation of FE model updating based on multi-
objective optimization using the surrogate model

Kaveh and Bijari (2018) Optimization, simultaneous analysis and design of trusses by the force method

Comparison of the performance for shear walls with openings designed by the
genetic evolutionary structural optimization methods and elastic stress
Optimization of reinforced concrete beams for rectangular sections with numerical
experiments

OmaxTR® — PR — 4 /sz +M,*=0 (2)

where: the value of “R” for Eq. (1) is obtained for when the soil pressure is equal to zero and the
value of “R” for Eq. (2) is found for when the soil pressure is equal to the soil available allowable

Kao and Yeh (2014a)
Kao and Yeh (2014b)
Abbasnia et al. (2014)
Kaveh and Mahdavi (2016)
Luévanos-Rojas (2016a)
Gao et al. (2017)
Errouane et al. (2017)
Gharehbaghi (2018)

Hwang et al. (2018)

Zhang et al. (2018)

Luévanos-Rojas et al. (2018a)
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Table 2 Optimal design of foundations structures

Authors Main contribution
Wang and Kulhawy (2008) Economic design optimization of foundation
Wang (2009) Optimal economic design based in reliability of the spread foundation
Rizwan et al. (2012) Optimal cost for the combined footings by the modified complex method of box
Al-Ansari (2013) Structural optimal cost for the reinforced concrete isolated footing
Al-Ansari (2014) Footing cost in shape paraboloid of reinforced concrete

Khajehzadeh et al. (2014) Optimal foundation by multi-objective using a global-local gravitational search algorithm
Luévanos-Rojas et al. (2017a) Design optimized for the rectangular isolated footings considering the real soil pressure

Authors Main contribution
Lopez-Chavarria et al. (2017a) Optimal dimensioning for the square isolated footings: general case
Lopez-Chavarri et al. (2017b) Optimal dimensioning for the corner combined footings
Velézquez-Santillan et al. Design optimized for the reinforced concrete rectangular combined footings with
(2018) numerical experiments
Luévanos-Rojas et al. (2018b) Optimal dimensioning for the T-shaped combined footings
Aguilera-Mancilla et al.

(2019a) Optimal dimensioning for the strap combined footings

Fig. 1 Circular isolated footing

load capacity “o.«”’, and the greater values is taken to satisfy the two conditions, because the
pressure generated by the footing must be greater than or equal to zero and less or equal to the soil
available allowable load capacity (Luévanos-Rojas 2012).

The soil available allowable load capacity “oma’ is (Luévanos-Rojas 2014a):

Omax = 9a — Yppz — Vops (3)

where: ¢, is the soil allowable load capacity, y,,- is the footing weight in square meters, y,s is
the soil fill weight in square meters.

If the earthquake loads and/or the wind are considered in the design, then the soil allowable
load capacity must be increased by 33% (ACI 3185-14 2014).

Also Eq. (3) could be presented as follows:

Omax ZQa_yc(d+r)_yg(H_d_r) 4
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Fig. 2 Critical sections for moments

where: y. is the concrete density = 24 kN/m’, y, is the soil density, d is the effective depth of the
footing (effective cant), r is the concrete coating in the footing and H is the depth of the footing
base below the final grade.

2.2 Model to obtain the design of circular footings

The requirements of the construction code for the footings that support to a column, the critical
sections are (ACI 318S-14 2014): The maximum moment is presented in face of column; Bending
shear is located at a distance “d”’; Punching shear is found in the perimeter “b,” (this perimeter is
localized at a distance of “d/2” from face of column in both direction).

2.2.1 Moments
The critical sections for moments are located on the - a’and b -b " axes (see Fig. 2)

(13 s

The moment “M, . that acts around the “a’-a ™ axis is (Luévanos-Rojas 2014a, 2016b):
P,(c;?+8R?») M,,c;(c;? —10R?)
My_op = + VAR? — ;2
a-a [ 247R? 24mR* “

N (2Myy — Pycy) [n — 2 Asin (%)] (5)
41

The moment “M,-. -’ that acts around the “b°-b ™ axis is (Luévanos-Rojas 2014, 2016):
_ [Pu(c2® +8R?)  Myyc(c,® — 10R?)

2 2
Mo—v = | ™ 2azr2 247R* Ww—e
. (C 6
. (2Myy — Pucy) [ — 2 Asin (55| ©)

41
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hy
< R »
Fig. 3 Critical section for bending shear
2.2.2 Bending shear
The critical section for bending shear (unidirectional shear force) is located on the ¢ - ¢’ axis
(see Fig. 3).
The bending shear that acts “V;” is (Luévanos-Rojas 2014a, 2016b):
1 ¢ +2d 1 /cq+2d
Vr =k [E N ( 4TR? )‘/4R2 — (e +2d)° - EASL"( 2R )]
| Mu[4R? — (¢ + 2d)°)°/2 (7)
3mR*

2.2.3 Punching shear

The critical section for punching shear (bidirectional shear force) is located on rectangular
surface formed by the corners 5, 6, 7 and 8, (see Fig. 4).
The punching shear that acts “V},” is (Luévanos-Rojas 2014a, 2016b):

P,[mR? — (¢; + d)(cy + d)]
Ve = mR?2

The equations proposed by the ACI code are shown in the appendix.

(8)

2.3 Objective function to minimize the cost

A cost function is defined as the total minimum cost “Cy,”” which is equal to steel cost more the
concrete cost. These costs include the material costs and the manpower costs, respectively. The
cost of the circular isolated footing is:

Cem = VeCe + VsysCs (9)

where: C, is cost of concrete for 1 m? in dollars, C; is cost of steel for 1 kN of steel in dollars, V
is volume of steel, V. is volume of concrete and ; is steel density = 76.94 kN/m?.
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“x

Fig. 4 Critical section for punching shear

The amount of steel is estimated as follows: The footing will be reinforced in the form of a
rectangular or square grid and a circular ring at a distance » cm from the outer edge of the footing.
The reinforcing area “A,” and “A,,” in the direction “X” and “Y” are given as:

Agx = pxbwyd; Asy = pybyxd (10)

where: p. is the ratio of the steel in the direction of the “X” axis, p, is the ratio of the steel in the
direction of the “Y” axis.
The number of rods “n,” and “n,” in the two directions is obtained as follows:
A A
Ny =—>;n,=—= (11)
aS aS

where: ay is the area of the rod that is used and this is considered the same in both directions.
The separation for reinforcing steel in both directions is:

bwyas waas
Sy = ; Sy = (12)
* Asx Y Asy
The length of the steel bars in the directions “X” and “Y” are:
(nx—3)/2
L, =2R+4 Z VR? — (js,)? (13)
=1
(ny—3)/2
Y
Ly=2R+4 Y [R2=(is) (14)
i=1
The length of the circumferential reinforcing steel is calculated as:
L.=2n(R—71) (15)

The total volume of reinforcing steel for the circular footing is:
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Vi = as(Ly + Ly +Lc) (16)
The volume of concrete for the circular footing is:
V. =nR*t —as(Ly + Ly + L) (17
Substituting the Eqgs. (16) and (17) into Eq. (9) is obtained:
Cem = Co[nR?*t — ag(Ly + Ly + Lc)| + vsCsas(Ly + Ly + Lc)] (18)
Now, considering a = y,Cy/C., and substituting into Eq. (18) is found:
Cem = Co[nR?*t — ag(Ly + Ly + L.)(1 — a)] (19)
Substituting the Eqs. (13), (14) and (15) into Eq. (19) is obtained:
(ny_3)
2
R+4 Y Rz — (is,)" +
Com = i=1 (a — Dag + nR?t|C, (20)
(nx—3)/2
\4 Z JRZ = (s,)? + 2n(R — 1)
] j=1

2.4 Constraint functions

Equations of the model for the dimensioning of circular isolated footings, the new model for
the design of the circular isolated footings, and the construction code requirements for concrete are
considered to obtain the constraint functions:

2 2
. 4 |m, +M, 1)

P

[90 —ve(d+71)—y,(H—d—71)]nR®— PR — 4 /sz +M,>>0 (22)

. C
[Pu(clz + 8R?%) M, .c;(c;? — 10R?) Myx — P,c1) [n — 2 Asin (ﬁ)]

@
JART =2
24nRZ 247R* ] as A

0.59 (23)
< 0 f,p,ARE — c12d? (1 _ f—pyfy>

P,(c2 + 8R%)  My,cy(c,* — 10R (2Myy — Pycy) [ﬂ — 2 Asin (2(:1_122)]
24mR? 24mR* 4

(24)
0.59
< B/ f, pu4R? — c,2d? (1 - f_pry>

2
)] 4R? — c,% +
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1 <c1+2d

P ¢+ Zd)]
“12 4TR?

1
2 _ 2 Aci
)\/4R (c; +24d) 7TA5m< R

M, [4R? — (c; + 2d)?]3/? : (25)
+ 31‘[1;4 < 0170,/ \J4R? — (¢; + 2d)?d

0.170, (1 + ﬁi)\/ﬁ[za1 oy +2d)]d

Ozsd + z)JE[z(c1 + oy +2d)]d (26)
0

0.330,/f"c[2(cs + ¢, + 2d)]d

P,[mR? — (¢c; + d)(cy + d)]
R? = 0.083(2),,(

0.858,f'c( 600
o sors[L)
0.25\/f¢
Py Px = 1fy4 (28)
fy

Asy = pyJ4R? — c12d (29)
Agy = py/4R? — c32d (30)

SX

Ny = e (31)
n, = % (32)
s, = w/4R2A:xc22aS (33)
5, = w/4R2A:yclzas (34)

It is assumed that all variables are non-negative.

Fig. 5 shows the flowchart of the algorithm for the reinforced concrete circular isolated footing
optimal design.

Fig. 6 shows the flowchart of Maple program for the reinforced concrete circular isolated
footing optimal design.
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Start with the known points
Seifys Qas Ves Yoy €1, €2, H, 1, @, @,
P, My, My, Pu, Mix, Mo

v

Calculation of the objective
function of the minimum design
cost (Eq. 34)

Calculation of the constraint
functions (Eqs. 35 to 52)

R R >

1 v
Narrow the decision Generate the solution
variables R. d. 4. (assuming that all variables

Az, By, Ny, Sy, Sx are non-negative)

A

1

1

1

1 .

L e I:To Stopping

criteria check

VY
Output the results

End

Fig. 5 Flowchart of the optimal design model

3. Numerical problem

Design of two reinforced concrete circular isolated footing supporting a square column with the
information following is presented: /. = 21 MPa, f, = 420 MPa, q. = 220 kN/m?, y. = 24 kN/m’, y,
= 15 kN/m’, c;= 40 cm, c2=40 cm, H=1.5m, r = 8 cm, a, = 1.98 cm’, & = 90. The forces and
moments that act for each case on the footing are: Case 1; Pp= 700 kN, Pr= 500 kN, Mp, =240
kN-m, M= 160 kN-m, Mp, = 120 kN-m, My, = 80 kN-m. Case 2; Pp= 700 kN, PL= 500 kN, Mpx
=140 kN-m, M. = 100 kN-m, Mp, = 120 kN-m, M;, = 80 kN-m. It is required to determine the
values of the optimal relations of reinforcing steel p and p,, the optimal areas of reinforcing steel
Ajsy and Ay, the number of rods n, and #,, the separation of reinforcing steel s, and sy, the optimum
radius of the footing R, and the optimal effective depth of the concrete d.

Where: Pp is the dead load, Py is the live load, My, is the moment of the dead load around the
“X-X” axis, My, is the moment of the live load around the “X-X" axis, Mp, is the moment of the
dead load around the “Y-Y” axis, M, is the moment of the live load around the “Y-Y” axis.
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Load the objective function and
constraints functions

Optimization

| Optimization assistant |

v

Check the objective function
and the constraint functions

v

It is assumed that all
variables are non-negative

v

The instructions are:
Local default
Minimize
Optimality Tolerance: default
Interaction Limit: default
Infinite limit: defanlt

1
Narrow the decision
variables R. d. As.
Ace, My, M. Sy, Sx

Click on solve

Fig. 6 Flowchart of Maple program

The loads and moments that act on the footing are: Case 1; P = 1200 kN, M, = 400 kN-m, M, =
200 kN-m. Case 2; P = 1200 kN, M, =240 kN-m, M, =200 kN-m.

The loads and moments that act on the footing are factored by Eq. (44): Case 1; P, = 1640 kN,
My = 544 kN-m, M., = 272 kN-m. Case 2; P, = 1640 kN, Mx = 328 kN-m, M,,, = 272 kN-m.

Substituting the values that correspond into Eq. (20) to find the objective function and also into
Egs. (21) to (34) to obtain the constraint functions for each case.

In order to evaluate the optimal design with respect to the minimum cost for the reinforced
concrete isolated footing in a circular shape for the new model, the MAPLELS software is used to
obtain the optimization problem solution.

Table 3 shows the effective depth “d” varying its value of 38.43, 42.00, 47.00, 52.00, 57.00 and
62.00 cm for the case 1, and for the case 2 varies its value of 38.43, 42.00, 47.00, 52.00, 57.00 and
62.00 cm. Table 4 presents the radius “R” of the footing changing its value of 188.18, 190.00,
200.00, 210.00, 220.00 and 230.00 cm for the case 1, and for the case 2 changes its value of
177.18, 180.00, 190.00, 200.00, 210.00 and 220.00 cm. Table 5 shows the percentage of
reinforcing steel in the direction “Y” axis “p,” modifying the value of 0.00500, 0.00450, 0.00400,
0.00363, 0.00350 and 0.000333 for the case 1, and for the case 2 modifies its value of 0.00500,
0.00450, 0.00400, 0.00350, 0.00336 and 0.000333. The results of the optimal design for the
reinforced concrete circular isolated footing are marked on the tables and these provide a very
precise estimate of the minimum design cost of the materials.



284 Arnulfo Luévanos-Rojas et al.

Table 3 Effective depth “d” varies

R d Asy n Sy Asx n Sx Cim
cm)  (cm) - (cm?) Y (cm) Px (cm?) X (cm) ®)
Case 1

188.18  38.43 0.00363 5216 2634 14.21 0.00333 4793 2421 1546 7.859C¢
188.31  42.00 0.00333 52.43 2648 1414  0.00333 5243 2648 14.14 8.382C.
188.49  47.00 0.00333 58.72 29.66 12.64  0.00333 58.72 29.66 1264 9.344C.
188.67  52.00 0.00333 65.04 3285 11.42 0.00333 65.04 3285 11.42 10.186C¢
188.85  57.00 0.00333 7136 36.04 10.42 0.00333 7136 36.04 10.42 11.152C.
189.03  62.00 0.00333 7769 39.24 958 0.00333 7769 3924  9.58 12.112C.
Case 2
177.18 3824 0.00336  45.19 2282 1543 0.00336 4519 2282 1543 6.812Cc
177.25  42.00 0.00333 4931 2491 1414  0.00333 4931 2491 1414 7.395C
17743  47.00 0.00333 55.24 2790 12.64  0.00333 5524 2790 1264 8.267C.
177.60  52.00 0.00333 61.18 30.90 11.42 0.00333 61.18 3090 11.42 9.019C.
177.78  57.00 0.00333 67.13 33.90 10.42 0.00333 67.13 3390 10.42 9.890C.
177.96 62.00 0.00333  73.09 36.92 9.58 0.00333  73.09 36.92 9.58 12.112C.

Table 4 Radius “R” is modified

R d Asy n Sy Asx n Sx Cim
cm)  (cm) - (cm?) Y (cm) P (cm?) X (cm) )
Case 1

188.18  38.43 0.00363 52.16 26.34 14.21 0.00333 4793 2421 1546 7.859C.
190.00 38.46 0.00362 5259 26,56 14.23 0.00333 4844 2447 1544 7.999Cc
200.00 38.60 0.00358 5499 2778 14.33 0.00333 51.21 2586 15.39 8.926Cc
210.00 38.72 0.00355 57.40 2899 14.42 0.00333 53.96 2725 1534 9.827Cc¢
220.00 38.82 0.00352 59.82 30.21 1450 0.00333 56.70 28.64 15.30 10.776Cc
230.00 38.91 0.00349 62.22 3143 1458 0.00333 59.44  30.02 15.27 11.838C¢
Case 2
177.18  38.24 0.00336 4519 2282 1543 0.00336 4519 2282 1543 6.812C.
180.00  38.30 0.00333 45.67 23.07 1551 0.00333 4567 2307 1551 7.137Cc
190.00 38.45 0.00333 4843 2446 1545 0.00333 4843 2446 1545 7.888Cc
200.00 38.59 0.00333 51.20 25.86 15.39 0.00333 51.20 25.86 15.39 8.813Cc
210.00 38.71 0.00333 5395 2725 1534 0.00333 53.95 2725 1534 9.782C.
220.00 38.82 0.00333 56.70 2864 1530 0.00333 56.70 28.64 15.30 10.662Cc

4. Results

Table 3 shows the results for the numerical examples by varying the effective depth “d”. When
the value of “d” is increased: For the case 1, the value of “p,” is constant of 0.00333, the value of
“p,” decreases starting from 0.00363 until reaching 0.00333 (minimum percentage), and the values
of “dy”, “As”, “R” and “Ci” increase. For the case 2, the values of “p,” and “p,” decrease starting
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Table 5 Percentage of reinforcing steel “py” changes

R d Asy n Sy Asx n Sx Cim
cm)  (cm) - (cm?) Y (cm) Px (cm?) X (cm) ®)
Case 1

188.18 38.42 0.00500 7189 36.31 1031 0.00333 4793 2421 1546 8.391C,
188.18 38.42 0.00450 64.71 32.68 1145 0.00333 4793 2421 1546 8.187Cc
188.18 38.42 0.00400 5752 29.05 12.88 0.00333 4793 2421 1546 8.041C,
188.18  38.43 0.00363 5216 2634 14.21 0.00333 4793 2421 1546 7.859C¢
188.20 39.11 0.00350 51.23 25.87 14.47 0.00333 48.79 2464 1519 7.935C
188.23  40.02 0.00333  49.94 2522 1484  0.00333 4994 2522 1484 8.101C.
Case 2
177.12 3824  0.00500 67.30 33.99 10.36 0.00333 4486 2266 1553 7.394Cc
177.12  38.24  0.00450 60.56 30.59 1151 0.00333 4486 2266 1553 7.206C:
177.12  38.24  0.00400 53.84 2718 12.95 0.00333 4486 2266 1553 7.075C
177.12 3824  0.00350  47.11 2279 14.79 0.00333 4486 2266 1553 6.888C¢
177.18 3824  0.00336  45.19 2282 1543 0.00336 4519 2282 1543 6.812C¢
177.13 38.41 0.00333  45.07 2276  15.47 0.00333  45.07 22.76 15.47 6.823Cc

from 0.00336 until reaching 0.00333 (minimum percentage), and the values of “A”, “4.”, “R”
and “Cy,” increase.

Table 4 shows the results for the numerical examples by modifying the radius “R” of the
footing. When the value of “R” is increased: For the case 1, the value of “p,” is constant of
0.00333, the value of “p,” decreases starting from 0.00363 until reaching 0.00333 (minimum
percentage), and the values of “4,”, “4y”, “d” and “Cy,” increase. For the case 2, the values of
“py” and “p,” decrease starting from 0.00336 until reaching 0.00333 (minimum percentage), and
the values of “4y,”, “As”, “d” and “C,” increase.

Table 5 shows the results for the numerical examples by varying the steel reinforcement
percentage “p,” from 0.00500 to 0.00333 (minimum percentage). When the value of “p,” is
reduced: For the case 1, the value of “p,” is constant of 0.00333, the values of “R”, “A,” and “d”
are increased, the value of “4,” is reduced, and the “C,,” is reduced until percentage of p, =
0.00363 and subsequently increases. For the case 2, the value of “p,” is constant of 0.00333 with
exception of the value of p. = 0.00336 (value that presents the minimum cost), the value of “R” is
constant with exception of the value that presents the minimum cost, the value of “d” is constant
with exception of the value of p, = 0.00333 that presents the minimum percentage, the value of
“A,” increases until steel area of Ay = 45.19 cm? that presents the minimum cost and subsequently
reduces, the value of “A4,,” is reduced, and the “Cs,” is reduced until percentage of p, = 0.00336
and subsequently increases.

The optimal solutions for the two numerical examples are marked in Tables 3, 4 and 5. The
minimum design cost of the material for the case 1 is 7.859C., and for the case 2 is 6.812C..

Fig. 7 shows the input data and the optimal solution for the numerical example (case 1) for the
circular isolated footing.

Fig. 8 shows the input data and the optimal solution for the numerical example (case 2) for the
circular isolated footing.
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Fig. 7 Input data and the optimal solution (case 1)

Fig. 9 shows the dimensions of the concrete and the steel in general form for the isolated
footings of circular shape.

Now, the examples are developed using the procedure for the classical model and proposed
model presented by Luévanos-Rojas (2014a). First is proposed the minimum thickness “t” of the
footing, which is of 25 cm marking by code ACI, subsequently the thickness is revised to comply
the following conditions: moment, bending shear and punching shear. If such conditions are not
satisfied is proposed a greater thickness until it fulfills the three conditions mentioned. The
thickness that satisfies the three conditions is:

For case 1: the proposed model is of 38.5 cm, and for the classical model is of 57 cm.

For case 2: the proposed model is of 38.5 cm, and for the classical model is of 52 cm.

Table 6 shows the comparison of the classical model and proposed model, and also the
comparison of the classical model and optimal design.

The maximum moment M,-,’ is obtained by the Eq. (5), and the maximum moment M;-.s is
found by the Eq. (6). The bending shear that resists the concrete O,V is obtained by the Eq. (45)
that is presented in appendix. The bending shear acting V' is found by the Eq. (7). The punching
shear that resists the concrete @,V,, is obtained by the Eqgs. (48a), (48b) and (48c) that are
presented in appendix. The punching shear acting V), is found by the Eq. (8). The steel area A,, and
A, are obtained by the Eq. (10).

The results show the following (see Table 6):

For the moments that act on the footing: the moments for the classical model are same in the
two directions because the pressure diagram is uniform for the two cases. Now the highest
percentage is presented with respect to the optimal design for the two cases.

For the bending shear that resists the footing: the highest percentage is presented with respect
to the optimal design for the two cases.
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Fig. 8 Input data and the optimal solution (case 2)

For the bending shear that act on the footing: the highest percentage is presented with respect to
the optimal design for the two cases.

For the punching shear that resists the footing: the highest percentage is presented with respect
to the optimal design for the two cases.

For the punching shear that act on the footing: the highest percentage is presented with respect
to the optimal design for the two cases.

For the steel areas of the footing: the steel areas for the classical model are same in the two
directions because the pressure diagram is uniform for the two cases. For case 1 is presented the
highest percentage with respect to the optimal design. For case 2 the steel areas are equals because
the minimum steel governed in the two directions.

For the minimum cost of the footing: the classical model is larger in a 41% with respect to the
proposed model, and the classical model is larger in a 44% with respect to the optimal design for
the case 1, and for the case 2 the classical model is larger in a 36% with respect to the proposed
model, and the classical model is larger in a 44% with respect to the optimal design.

5. Conclusions

The standard design method (classical method) is obtained in the following way: a radius “R” is
proposed and it must comply with the admissible stress, and then an effective depth or effective
cant is found from the maximum moment and compared with the bending shear (unidirectional
shear) and the punching shear (bidirectional shear) until it meets these conditions, and then the
reinforcing steel is found, but it is not guaranteed that the minimum design cost is obtained.
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Fig. 9 Circular isolated footing

Table 6 Comparison of results

Case 1 Case 2

Concept
CM PM Ob CM/PM CM/OD CM PM OD CM/PM CM/OD

Ma-a (KN-m)  905.01 731.88  725.08 1.24 1.25 74771 59831 597.18 1.25 1.25
Ms-p (KN-m)  905.01 620.05 613.59 1.46 1.47 74771 57564 57451 1.30 1.30

(C%) 380 380 37636 1.00  1.01 360 355 35436 101  1.02
(C‘:n) 57 385 3843 148  1.48 52 385 3824 135  1.36
(C:n) 65 465 4643 140  1.40 60 465 4624 129  1.30
(xg) 7.37 5.27 5.17 140 143 6.11 4.60 4.56 133 134
@Wer (kN) 131122 92171 91032 142 144 113612 85447 84742 133 134
vV
(kl\fl) 727.92 71300 711.90 1.00  1.02 65272 61424 61548 1.06  1.06
. 4393.45 240154 239465 183 183 380146 240154 237724 158 160
(;N;” 5631.64 2698.53 268891 2.09  2.09 4734.16 269853 2664.63 175  1.78
284282 1553.94 154948 1.83  1.83 245977 155394 153821 158  1.60
V,
(klfl) 2678.15 1550.89 154933 1.73  1.73 2371.80 1537.90 153821 154 154
A
(cns]yz) 7173 5252 5216  1.37 138  61.95 4522 4519 137  1.37
A
(cns;) 7173 4845 4793  1.48 150 6195 4522 4519  1.37 1.37
C
(s‘;)” 11.28C. 8.00C. 7.86Cc 141 144 935C. 6.86C. 6.81Cc 1.36  1.37

Where: CM is classical model, PM is the proposed model, OD is the optimal design
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The optimal design presented in this document is formulated from an analytical approach based
on a minimum cost design criteria and a set of constraints in accordance with the requirements of
the construction code for structural concrete and comments (ACI 318S-14 2014). The constant
parameters (independent variables) are: c;, ¢z, H, P, My, M,, g4, ye, V5 V0, f ¢y f,. The decision
variables (dependent variables) are: R, d, p,, px, 1y, By, Sy, Sy, Asy and Ay

The minimum cost design from the optimization technique presented that is lower than the cost
obtained from the standard design method (classical method). Furthermore both techniques were
verified. This comparison showed the superiority of the optimization technique over the standard
design method (classical method).

It can be said that the investigations carried out to find the optimal design of concrete structures
are of great value for the practice of engineers. The optimal solution satisfies the provisions of the
code and minimizes the cost of the structure.

Using the optimal design, this document successfully acquires a model to predict the
proportions of reinforcing steel p, and p., the optimal areas of steel reinforcement Ay, and A, the
optimum radius of the footing R, the optimum effective depth d and the lowest cost for the
reinforced concrete circular isolated footings under to a concentrated load and moments in two
generalized directions.
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Appendix

Equations for moment in both axes are considered at the face of the column are (ACI 318S-14
2014, Luévanos-Rojas 2016a):

M, =@M, (35)
0.59
M, = @¢b,d’pf, <1 - f,pfy ) (36)
A
== 37
P=%a (37)
_0.85B:f'c( 600
Pp=""f <600 n fy> (38)
0.65 < p; = 105—f,C < 0.85 (39)
R ' 140) =
Pmax = 0.75pp (40)
0.25\/f¢
] b
pmln - ﬁ (41)
fy
Age = 0.0018b,,t (42)

where: M, is the factored maximum moment, @, is the strength reduction factor by bending and its
value is 0.90, b,, is analysis width in structural member, p is ratio of 4 (steel area) to bd, f; is the
factor relating depth of equivalent rectangular compressive stress block to neutral axis depth, f; is
the specified yield strength of reinforcement of steel, /. is the specified compressive strength of
the concrete at 28 days, Ay is the steel area by temperature, ¢ is the total thickness of the footing.

The values of b, and b, are the analysis widths for moments on both sides of the column and
these are obtained as follows (Luévanos-Rojas 2014a, 2016b):

byx = VAR — ¢12; by, = \J4RZ — ;2 (43)

Required strength U to resist factored loads or related internal moments and forces is (ACI
318S-14 2014):

U=12D+1.6L (44)

where: D is the dead load and L is the live load of the internal moments and forces.
The bending shear (unidirectional shear force) that must resist the concrete provided by the
code is obtained by the following equation (ACI 318S-14 2014):
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0,Ver = 0170,/ F cbyyed (45)

where: V.ris bending shear that must resist the concrete, &, = 0.85 is the strength reduction factor
for the shear, by, is the analysis width for the bending shear and this is obtained as follows
(Luévanos-Rojas, 2014):

bys = /4R? — (¢; + 2d)? (46)

For bending shear that acts on the footing J; must be compared against the bending shear that
must be resisted by the concrete V.4, and this must comply with the following equation (ACI 318S-
14 2014):

Ve < 0,V (47)

The punching shear (shear force bidirectional) that must resist the concrete provided by the
code is obtained by the following equations (ACI 318S-14 2014):

2
B,V = 0170, (1 + F) JFobod (484)

where: V, is punching shear that must resist the concrete, /. is the long side between the short side
of the column, by is the perimeter where the punching is presented.

asd
0,V = 0.0830, (bL + 2) JF obyd (48h)
0
where: a; is 20 for corner columns, 30 for edge columns, and 40 for interior columns.

0,Vep = 0.330,y/f chod (48c)

Note: 9,V., must be the smallest value of Eqs. (48a), (48b) and (48c).

For punching shear that acts on the footing ¥, must be compared against the bending shear that
must be resisted by the concrete V,, and this must comply with the following equation (ACI 318S-
14 2014):

V, < 0,V (49)





