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Abstract.  One of the efficient and useful tools to achieve the optimal design of structures is employing the 
sensitivity analysis in the finite element model. In the numerical optimization process, often the semi-analytical 
method is used for estimation of derivatives of the objective function with respect to design variables. Numerical 
methods for calculation of sensitivities are susceptible to the step size in design parameters perturbation and this is 
one of the great disadvantages of these methods. This article uses complex variables method to calculate the 
sensitivity analysis and combine it with discrete sensitivity analysis. Finally, it provides a new method to obtain the 
sensitivity analysis for linear structures. The use of complex variables method for sensitivity analysis has several 
advantages compared to other numerical methods. Implementing the finite element to calculate first derivatives of 
sensitivity using this method has no complexity and only requires the change in finite element meshing in the 
imaginary axis. This means that the real value of coordinates does not change. Second, this method has the lower 
dependency on the step size. In this research, the process of sensitivity analysis calculation using a finite element 
model based on complex variables is explained for linear problems, and some examples that have known analytical 
solution are solved. Results obtained by using the presented method in comparison with exact solution and also finite 
difference method indicate the excellent efficiency of the proposed method, and it can predict the sustainable and 
accurate results with the several different step sizes, despite low dependence on step size. 
 

Keywords:  complex variables method (CVM); discrete sensitivity method (DSM); linear structures; semi-

analytical method 

 
 

1. Introduction 
 

Sensitivity is a calculation of the derivative of the dependent variable with respect to another in 

a problem. Application of sensitivity quantity is when the designer is looking for an optimal design 

for a problem using gradient reduction methods, and in practice, it determines the degree of 

importance of objective function change of the problem respect to design variables change (Choi 

2005, van Keulen et al. 2005). There are many efficient algorithms such as SQP method needing 

calculation of derivatives of objective functions and constraints respect to design parameters for 
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finding direction search in each step of the optimization process. Error in the calculation of the 

derivatives reduces the efficiency of the optimization algorithm and can lead to convergence 

difficulties. Derivatives of objective functions and constraints depend on the sensitivity of 

structural response (such as displacement, strain, stress) with respect to design variables. 

Therefore, using an accurate and efficient solution to perform sensitivity analysis is very important 

for the structural optimization process. In addition, sensitivity analysis has other important 

applications such as parameter identification and analysis of structure reliability. 

The sensitivity calculation methods can be divided into two categories: Analytical methods and 

numerical methods (Hassanzadeh 2016, 2005, Ghoddosian and Sheikhi 2013). Among the 

numerical methods, the most famous of them is the finite difference method. Although this method 

is simple, it requires high computational cost, and it is subject to errors arising from step size 

selection, and it has high complexity for geometrical variables (Vatsa 2000, Anderson et al. 2001, 

Lai and Crassidis 2008). 

Numerical methods that have less sensitivity to step size is complex variables method (Gomez-

Farias et al. 2015, Voorhees et al. 2012). When complex variables method is used properly, it 

calculates design space numerically and accurately. Unfortunately, this method has high 

computational cost, as the finite difference method. Its computational cost is almost the same as 

the analysis of the problem for each design variable (Voorhees et al. 2011). 

Discrete sensitivity analysis method and adjoint variable method are equivalent to 

differentiation from discrete equations for production the equations system to calculate required 

sensitivities (Chung et al. 2009). These two methods are strong since they generate the calculation 

code of sensitivities automatically. In many of the cases, implementation requires human 

intervention to supply effectiveness to final code for sensitivity. 

In semi analytical methods, there are two steps for analysis of problems such as calculating of 

the displacement of the main problem (u) and sensitivity of displacement. A Semi-analytical 

method has been proposed as a tradeoff between accuracy, efficiency, and simplicity because this 

method can be easily implemented and has the accuracy of analytical methods (van Keulen et al. 

2005). To implement a sensitivity analysis in finite element code, sensitivity analysis includes 

calculating derivatives of stiffness matrix, mass matrix, and force vector to design variables of the 

problem. In the analytical method, these derivatives are calculated analytically, but in many cases, 

especially for calculating the derivative relative to geometric variables, it is difficult to calculate 

derivatives. 

In the semi-analytical method, stiffness matrix derivatives, force vector, and other parameters 

are calculated numerically using finite difference, but the final solution is performed by an 

analytical procedure (Ghoddosian and Sheikhi 2010). Thus, we can easily implement the finite 

difference method and achieve desired results with the same accuracy of the analytical method. 

However, the semi-analytical method as the finite difference method is not free from cutting and 

rounding errors, and we should be careful in selecting the step size (Cho and Jung 2003). 

To improve the accuracy of the semi-analytical method, several studies were performed. 

(Olhoff et al. 1993) and (Cheng and Olhoff 1993) remove the error by means of correction factors 

in the numerical derivative. (Cheng and Olhoff 1993) work on the rigid body motion to reduce the 

error. (Oral 1996) used the Neumann series to improve the accuracy of the semi-analytical method. 

(De Boer and van Keulen 2000) introduced modified semi-analytical design sensitivities and used 

it for structural linear, linear buckling problems and geometric non-linear problems (Deboer and 

van Keulen 2000). This modification is based on accurate differentiation of the rigid body mode. 

(Lund and Olhoff 1994) used accurate numerical differentiation for sensitivity analysis of 
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eigenvalue problems. (Cho and Kim 2005) presented iterative procedure that is the combination of 

mode separation technique and series expansion to eliminate cutting errors caused by large step 

and rounding errors caused by small step. 

Complex variables method (CVM) was developed for the first time by (Lyness and Moler 

1967). Then, (Lyness 1967) used it to determine the derivatives of some complex functions. 

(Squire and Trapp 1998) determined the derivatives of real functions using CVM. (Anderson et al. 

2001) used CVM to determine the sensitivity derivatives for turbulent flows. (Rodriguez 2000) 

used complex variables method to obtain gradients for optimization algorithm for nonlinear 

optimization algorithm coupled with Navier-Stokes equations of flow to design the aircraft inlet 

valve. To date, in finite element structural analysis, CVM has not been used extensively. (Deng et 

al. 2014, Deng and Suresh 2016, Deng and Suresh 2017a, b) were studied topology sensitivity 

analysis for thermo-elastic problems.  

In this paper, an improved semi-analytical method is proposed for calculating the sensitivity 

analysis that in addition to high accuracy and performance, it can be easily implemented, and it is 

not dependent on the size of the step size. In the current study, discrete sensitivity method has been 

combined with complex variables method to reduce the cutting and rounding errors. Accordingly, 

the advantage of analytical method efficiency and accuracy of complex variables method has been 

used so that a simple and reliable method to be obtained in calculating the sensitivity analysis with 

help of finite element code. Then we prove mathematically that this semi-analytical method and 

complex variables method are equivalent. To implement the mentioned method, finite element 

code along with sensitivity analysis was written in MATLAB software, and its accuracy and 

efficiency were applied to several examples that have an analytical solution. Then, it was 

compared with the finite difference method and analytical method. 
 

 

2. Discrete sensitivity analysis 
 

Discrete sensitivity analysis estimates the design space derivatives using the residual vector of 

governing equations, R(u, h). In this expression, u is the vector of field variables and h is the 

vector of design variables. 

The response 𝜙 is a function of the design parameters hp (p = 1,...,P),  and is dependent both 

explicitly and through the displacement (Choi 2005): 

𝜙 = 𝜙(𝑢(ℎ𝑝), ℎ𝑝) (1) 

Where P is the number of total design variables. The dependency of u(hp) is only implicit. In 

other words, it is dependent on design dependency in the coefficients of the equilibrium equations 

system that it is the solution is u. 

The derivative of response 𝜙  to design parameters hp is defined as: 

𝑑𝜙

𝑑ℎ𝑝
=

𝜕𝜙

𝜕ℎ𝑝
+

𝜕𝜙

𝜕𝑢

𝑑𝑢

𝑑ℎ𝑝
 (2) 

All quantities of the above equation, except for du/(dhp) that is unknown, can be explicitly 

calculated. To calculate this expression, additional equations system should be solved. 

Equilibrium equation in the structure design problem assuming linear elastic in finite element 

model is considered: 

𝐾𝑢 = 𝐹 (3) 
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Where K is the global stiffness matrix, u is the nodal displacement vector and F is the nodal 
force vector. 

By implicit differentiation of Equation (3) relative to design variables (hp) and arranging the 
equation, we will have (Bakshi and Pandey 2000): 

𝐾
𝜕𝑢

𝜕ℎ𝑝
= −

𝜕𝐾

𝜕ℎ𝑝
𝑢 +

𝜕𝐹

𝜕ℎ𝑝
 (4) 

Equation (4) is similar to Equation (3). In this equation, only the right side of the vector called 
as a pseudo-force vector should be calculated. 

Stiffness matrix element is given by the following formula (Lund and Olhoff 1994). 

𝑘 = ∫𝐵𝑇𝐸 𝐵|𝐽|𝑑𝛺
 

𝛺

 (5) 

Where E and Ω are modulus of elasticity and the domain of finite element in the coordinates of 

the curve and without dimension ξ-η-ζ respectively, | J | is determinant of the Jacobian J which at 

each point defines the transformation of differentials dξ, dη, dζ to dx, dy, dz, B is strain-

displacement matrix defined as follows. 

𝐵 = [𝑏1 𝑏2 … 𝑏𝑖 … 𝑏𝑛] (6) 

Where, 

𝑏𝑖 =

[
 
 
 
 
 
 
𝑁𝑖,𝑥 0 0

0 𝑁𝑖,𝑦 0

0 0 𝑁𝑖,𝑧

𝑁𝑖,𝑦 𝑁𝑖,𝑥 0

0 𝑁𝑖,𝑧 𝑁𝑖,𝑦

𝑁𝑖,𝑧 0 𝑁𝑖,𝑥]
 
 
 
 
 
 

.   𝑖 = 1,… , 𝑛 (7) 

Where N and n are the shape functions and the number of nodes in each element respectively. 

Finite element vector f is given by the following equation. 

𝑓 = ∫ 𝑁𝑇𝐹𝐵|𝐽|𝑑𝛺

𝛺

+ ∫ 𝑁𝑇𝐹𝑠|𝐽|𝑑𝜔

𝜔

 (8) 

Where FB indicates that the body forces, ω is the surface described in the coordinates of the 
curve and without dimensions of ξ-η, η-ζ or ξ-ζ for the element that forces FS have been applied to 
it, N includes shape functions Ni and J calculate on surface ω. 

The greatest challenge here is to calculate the stiffness matrix derivatives and force vector 
relative to the design parameters. 

Derivatives ∂F/∂hp and ∂K/∂hp are generally calculated on each element (Bakshi and Pandey 
2000).  

{
𝜕𝐹

𝜕ℎ𝑝
} = ∑ {

𝜕𝐹𝑒

𝜕ℎ𝑝
}

𝑁𝐸

𝑒=1

 (9) 

{
𝜕𝐾

𝜕ℎ𝑝
} = ∑ [

𝜕𝐾𝑒

𝜕ℎ𝑝
]

𝑁𝐸

𝑒=1

 (10) 
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In the above equations, Ke is the element stiffness matrix and NE is the total number of 

elements. Therefore, the right side of equation (4) is calculated on each element as Equation (11): 

−
𝜕𝐾

𝜕ℎ𝑝
𝑢 +

𝜕𝐹

𝜕ℎ𝑝
= ∑ (−

𝜕𝐾𝑒

𝜕ℎ𝑝
𝑢𝑒 +

𝜕𝐹𝑒

𝜕ℎ𝑝
)

𝑁𝐸

𝑒=1

 (11) 

 

 

3. Differential of stiffness matrix  
 

Derivatives required for discrete sensitivity analysis are calculated analytically or numerically. 

In an analytical method, finite element equations are differentiated exactly. The implementation of 

this method is difficult but very efficient and calculated sensitivities are exact. On the other hand, 

in the numerical methods, some or all derivatives required are calculated by numerical techniques 

such as finite difference. Numerical methods itself can be subdivided into local finite difference 

method and semi-analytical method.  

In the local finite difference method, the response of sensitivities to special design parameter is 

obtained by changing that design parameter several times (depending on the finite difference 

technique), and equilibrium analysis is performed for any change. Responses to each analysis are 

kept and they are subtracted so that response sensitivity to be obtained. Although this method is 

implemented easily, it is costly computationally since the total equilibrium problem should be 

solved for each change. 

In the conventional semi-analytical method that it can be considered as the tradeoff between 

analytical method and finite difference methods, pseudo-force vectors are obtained by the finite 

difference method. However, the final solution is obtained by analytical equation (Equation 2) 

similar to an analytical method of discrete sensitivity analysis solution. 

𝜕𝐹

𝜕ℎ𝑝
=

𝐹(ℎ𝑝 + ∆ℎ𝑝) − 𝐹(ℎ𝑝 − ∆ℎ𝑝)

2∆ℎ𝑝
 (12) 

𝜕𝐾

𝜕ℎ𝑝
=

𝐾(ℎ𝑝 + ∆ℎ𝑝) − 𝐾(ℎ𝑝 − ∆ℎ𝑝)

2∆ℎ𝑝
 (13) 

The advantage of the semi-analytical method over the analytical method is that it can be easily 

implemented, and it has higher efficiency than the finite difference method. However, results are 

sensitive to step size still, and they are not free from cutting and rounding errors. However, as this 

paper uses the complex variables for numerical calculation of these parameters, the sensitivity of 

results with respect to step size is eliminated.  

In complex variables method (CVM), the calculation of total variables such as global stiffness 

matrix and global force vector is performed in the complex numerical system. So, this method is 

required to high the occupied memory and time solving the problem (CVM is the high 

computational method). In the proposed method, complex numerical system is used only at the 

local stiffness matrix and don’t require to high the occupied memory and time solving the problem. 

The advantage of CVM is the calculation of the derivatives of displacement, strain and, stress 

simultaneously. But if these parameters weren’t required, this case can be considered to the 

weakness of CVM. The advantage of the proposed method, the design derivatives are calculated 
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exactly where it is needed. 

In fact, this paper combines the semi-analytical method with the complex variable method to 

achieve the advantages and efficiency of semi-analytical methods and accuracy of the complex 

variables method in the finite element method. 

  To extract finite difference approximation to calculate the derivatives, Taylor’s series of 

function can be expanded at the point x using forward step and backward step. Then, by 

subtracting them, the following formula is obtained. 

𝑑𝑓

𝑑𝑥
≈

𝑓(𝑥 + ∆𝑥) − 𝑓(𝑥 − ∆𝑥)

2∆𝑥
 (14) 

In equation (14), the order error of first derivative calculation is two (O (∆𝑥 2)). The 

disadvantage of this method is its high computational time and the possible imprecision of 

derivatives. 

The first disadvantage is since equations (12) and (13) need two solutions with good conversion 

to calculate its functions. The second disadvantage is because derivatives are sensitive to step size. 

To minimize the cutting error, step size should be selected small. However, the too small step may 

lead to the error of meaningful figures removing. The optimal value for step size is not pre-

determined, and it may vary from one function to the other one and from one design variable to 

another one. 

Conversely, if the Taylor series of the function is expanded using a complex step in the form of 

Equation (15) (Voorhees, Millwater and Bagley 2011) the above-mentioned disadvantages are 

removed. 

𝑓(𝑥 + 𝑖∆𝑥) = 𝑓(𝑥) + 𝑖∆𝑥
𝑑𝑓

𝑑𝑥
−

∆𝑥2

2

𝑑2𝑓

𝑑𝑥2
−

𝑖∆𝑥3

6

𝑑3𝑓

𝑑𝑥3
+

∆𝑥4

24

𝑑4𝑓

𝑑𝑥4
+ ⋯ (15) 

Resolving this equation result for the imaginary part of a function and three first terms of 

equation (15) give: 

𝑑𝑓

𝑑𝑥
≈

𝐼𝑚[𝑓(𝑥 + 𝑖∆𝑥)]

∆𝑥
 (16) 

Symbol “Im” is the imaginary part of each component. This expression has the second-order 

error for the derivative (O (h2)) too. Therefore, by calculation of function through complex 

argument, its function and derivative can be obtained without subtraction error. In this equation, a 

real part is function value. The disadvantage of complex variable approximation is that runtime 

program increases by calculation of the program through complex argument. However, as this 

article limits the use of complex variables only to calculate ∂F/ (∂hp) and ∂K/(∂hp), the runtime 

does not increase so much. Calculation of ∂F/(∂hp) and ∂K/(∂hp) is according to following 

equations. 

𝜕𝐹

𝜕ℎ𝑝
=

𝐼𝑚[𝐹(ℎ𝑝 + 𝑖∆ℎ𝑝)]

∆ℎ𝑝
 (17) 

𝜕𝐾

𝜕ℎ𝑝
=

𝐼𝑚[𝐾(ℎ𝑝 + 𝑖∆ℎ𝑝)]

∆ℎ𝑝
 (18) 

20



 

 

 

 

 

 

Sensitivity analysis based on complex variables in FEM for linear structures 

In other words, it is enough that design parameter to be changed in an imaginary way as much 

as step size. When displacement the sensitivity was calculated, the sensitivity of main function 

dφ/(dhp) is obtained using equation (2) or the following formula. 

𝑑𝜙

𝑑ℎ𝑝
=

𝐼𝑚[𝜙(𝑢 + 𝑖∆𝑢, ℎ𝑝 + 𝑖∆ℎ𝑝)]

∆ℎ𝑝
 (19) 

Where, 

∆𝑢 =
𝑑𝑢

𝑑ℎ𝑝
∆ℎ𝑝 (20) 

The results of the proposed method and CVM are similar. To prove this, CVM can apply to 

solve systems of partial differential equations. In CVM imaginary perturbation is applied in global 

code and after the solution of the equations system, the real part is the field responded, and the 

imaginary part is related to sensitivities. For this purpose, solving of a problem by combining the 

finite element method and CVM is presented. After consideration of the imaginary step in equation 

(3), equation (21) is obtained. 

[𝐾(ℎ𝑝 + i∆ℎ)](𝑢𝑅 + i𝑢𝐼) = 𝐹(ℎ𝑝 + i∆ℎ) (21) 

Where ∆ℎ  input data, 𝑢𝐼  and  𝑢𝑅  are obtained. These expressions are exactly used in 

coding. K stiffness matrix is n × n where n is the number of degrees of freedom. The real and 

imaginary part of a matrix is assembled thus: 

[𝐾𝑅 + i𝐾𝐼](𝑢𝑅 + i𝑢𝐼) = (𝐹𝑅 + i𝐹𝐼) (22) 

Where subscribe R and I are represented of real and imaginary part of each component. By 

extending the above equations and considering the real and imaginary expressions by apart we 

obtain: 

[𝐾𝑅]𝑢𝑅 − [𝐾𝐼]𝑢𝐼 = 𝐹𝑅 (23) 

[𝐾𝐼]𝑢𝑅 + [𝐾𝑅]𝑢𝐼 = 𝐹𝐼 (24) 

By consideration of equation (16), [𝐾𝐼], 𝑢𝐼and 𝐹𝐼are equivalent to equation (25-27) 

[𝐾𝐼] = [
𝜕𝐾𝑅

𝜕ℎ
]∆ℎ (25) 

𝑢𝐼 =
𝑑𝑢

𝑑ℎ
∆ℎ (26) 

𝐹𝐼 = (
𝜕𝐹

𝜕ℎ
)
𝑅
∆ℎ (27) 

By substituting the equations (25-27) into equations (23) and (24), we have  
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[𝐾𝑅]𝑢𝑅 − [
𝜕𝐾𝑅

𝜕ℎ
]
𝑑𝑢

𝑑ℎ
∆ℎ2 = 𝐹𝑅 (28) 

[
𝜕𝐾𝑅

𝜕ℎ
]∆ℎ𝑢𝑅 + [𝐾𝑅]

𝑑𝑢

𝑑ℎ
∆ℎ = (

𝜕𝐹

𝜕ℎ
)
𝑅

∆ℎ (29) 

In equation (28), if ∆ℎ was considered small, [
𝜕𝐾𝑅

𝜕ℎ
]

𝑑𝑢

𝑑ℎ
∆ℎ2 can neglect thus we have: 

[𝐾𝑅]𝑢𝑅 = 𝐹𝑅 (30) 

In the other words, we obtained equation (3) and the real part gives the response of problem. 

Equation (29) was simplified as below. 

[𝐾𝑅]
𝑑𝑢

𝑑ℎ
= (

𝜕𝐹

𝜕ℎ
)
𝑅

− [
𝜕𝐾𝑅

𝜕ℎ
]𝑢𝑅 (31) 

Equation (31) is similar to equation (4). We can prove that equations (4) and (22) are equivalent 

to and get the same answer. 

 

 

4. Numerical examples  
 

In this section, some examples that have analytical solutions are used to validate the method 

mentioned throughout this article to calculate the sensitivity of linear structures. 

As rounding error for calculating, the sensitivity analysis has the direct relationship with the 

rigid rotation of an element to reveal the efficiency of the presented method, the examples were 

used in which element rotation value was significant. To implement the mentioned method, two-

dimensional finite element program is written with formulation and assumptions mentioned in 

previous sections for linear problems analysis in MATLAB software. Shape function’s equation 

can be found in almost all of the finite element references. Problem geometry and its meshing are 

created in ABAQUS software and then imported into MATLAB software. MATLAB’s solver was 

used for solving the equations systems. In the finite element program, four-nodal linear square 

shape functions and three-nodal shape functions are used for the two-dimensional mesh. After 

solving the system of equations for obtaining the displacements, stresses in each node element are 

calculated in the form of element-to-element and by using the elasticity equations, values of shape 

functions and displacement of nodes. As the calculated stresses of one element may not match with 

stresses calculated in other elements, averaging was used for smoothing the stress field at the nodal 

points. For calculating of shape sensitivity, the small step should be applied at appropriate nodal 

coordinates, while this step should be imaginary. For this purpose, the first node placed in the 

considered parameter is selected. Relative perturbation for X and Y coordinates depends upon the 

sensitivity that is supposed to be calculated. All other nodes in the model remain unchanged (the 

similar process that is applied for the finite difference method, but perturbation is the image not 

real). If the purpose is the calculation of a parameter sensitivity respect to material properties, for 

the same studied property, change step is considered. To calculate the sensitivity, the equation (19) 

has been used due to the simplicity. The obtained results are compared with the sensitivity 

obtained from analytical solutions. Additionally, sensitivities were compared with central finite 

difference method. In the finite difference method for analyzing the problems, finite element 

program without the complex variables was used. 

22



 

 

 

 

 

 

Sensitivity analysis based on complex variables in FEM for linear structures 

Table 1 problem parameters of the cantilever beam 

Problem parameters Input data 

Moment M 100 units 

Beam length L 10 units 

Height of beam section w 1 unit 

With of beam section t 0.5 unit 

Young’s modulus E 2000 units 

 

 
Fig. 1 Cantilever beam with the rectangular section 

 

 
4.1 Cantilever beam 
 

In this example, a cantilever beam with the rectangular section under moment at the free end 

that is shown in fig 1. has been considered. The characteristics of it presented in Table 1. Using 

Euler’s theory, we can calculate the beam tip displacement according to Equation (32) (Beer and 

DeWolf 2002). 

𝑢 =  
𝑀𝐿2

2𝐸𝐼
 (32) 

Where M is applied moment, L length of the beam, E is the modulus of elasticity, and I is 

bending moment of beam cross-section. By differentiating from the above expression with respect 

to L, the amount of displacement sensitivity to beam length is obtained according to Equation (33). 

𝑑𝑢

𝑑𝐿
=

𝑀𝐿

𝐸𝐼
=

𝑀𝐿

𝐸 (
1
12𝑤3𝑡)

 (33) 

Where w is the width and t is the thickness of the beam. This equation is used to compare the 

results obtained from the semi-analytical method based on complex variables and finite difference 

method by applying the finite element method. Clearly, the objective function φ, is the vertical 

displacement of beam tip (u) and design parameters (hp) is the beam length (L). 

In this example, beam meshing has been considered for two types of the triangle and square 

elements. For triangular mesh, 2356 elements were used and 1000 elements were considered for 

square mesh (100 × 10). In Tables 2 and 3, sensitivity values of displacement for various values of 

step size have been presented using semi-analytical and finite difference method. Numerical 

results for the triangle and square element have been presented respectively in Figures 2 and 3. As 
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Table 2 Calculations of displacement sensitivity respect to the length for triangular elements 

Step size (h) 

𝑑𝑢

𝑑𝐿
 

(FDM) 

𝑑𝑢

𝑑𝐿
 

(SAM) 

10−2 11.6845462590199 -22.3371517514557 

10−3 11.6851673008718 11.3415818970966 

10−4 11.6851779533533 11.6817367355095 

10−5 11.6851763568349 11.6851386278959 

10−6 11.6851043934219 11.6851726411320 

10−7 11.6741590971969 11.6851729843137 

10−8 11.6478314993174 11.6851729816150 

10−9 12.1984129464181 11.6851729856973 

10−10 12.0473586662229 11.6851729837083 

10−11 46.7210270471696 11.6851729864456 

10−12 -151.860746200327 11.6851729843966 

10−13 -5007.65651167967 11.6851729857735 

10−14 -20128.9651613479 11.6851729864039 

10−15 -158767.221591916 11.6851729790985 

10−16 0 11.6851729851719 

10−17 0 11.6851729849670 

10−18 0 11.6851729860968 

10−19 0 11.6851729820022 

10−20 0 11.6851729846447 

exact 12 

 

 

it can be seen in these figures, a good efficiency is seen to calculate the sensitivity design using the 

combined method of semi-analytical and complex variables. The results show that there is good 

convergence regardless of the size of the step. There are similar results from both types of 

elements, triangle, and square. However, the performance of the finite difference method is highly 

dependent on the selected step size. In the step size less than 10-9, the dramatic increase is seen in 

the error. In addition, the average time to implement the program (Tav) is less for semi-analytical 

methods compared to the finite difference. 

The percentage of relative error of displacement sensitivity obtained by the presented method is 

very small compared to its exact value at measure steps size 10-4 and smaller than it, and it is about 

2.65% for triangular element and 0.28% for the square element. However, this error value is not 

caused by differentiation method, and it is due to the error arising from the finite element model 

solving (Voorhees, Millwater and Bagley 2011). The presented method is sensitive to greater step 

size (cutting error) since calculating sensitivity in the method is dependent on function (in this 

example, displacement) and as the step is greater, the calculated displacement would have the 

error. Therefore, it causes the error in the displacement sensitivity. The reason for the dependency 

of displacement to step is that the program code written on this paper, stiffness matrix and its 

derivation are calculated simultaneously due to reduced program runtime. 
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Table 3 Calculations of displacement sensitivity respect to the length for square elements 

Step size 

(h) 

𝑑𝑢

𝑑𝐿
 

(FDM) 

𝑑𝑢

𝑑𝐿
 

(SAM) 

10−2 11.9701739802025 -24.4536719441518 

10−3 11.9701749737189 11.6023302825188 

10−4 11.9701947586037 11.9664955415641 

10−5 11.9701120588900 11.9701375486135 

10−6 11.9724634828344 11.9701739721297 

10−7 11.9727328495856 11.9701743304791 

10−8 11.7898792950655 11.970174337300 

10−9 8.77438566249111 11.9701743389902 

10−10 -0.264677169070637 11.9701743375128 

10−11 -167.503344528086 11.9701743387048 

10−12 3751.23931917187 11.9701743409468 

10−13 -758.859641791786 11.9701743382964 

10−14 -575216.319020910 11.9701743432354 

10−15 0 11.9701743423267 

10−16 0 11.9701743410797 

10−17 0 11.9701743353410 

10−18 0 11.9701743457464 

10−19 0 11.9701743428501 

10−20 0 11.9701743387371 

Exact 12 

 

 
Fig. 2 Vertical displacement sensitivity of the beam tips for triangular elements 
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Fig. 3 Vertical displacement sensitivity of the beam tips for square elements 

 

Table 4 Problem parameters in finite element modeling for the curved cantilever beams 

Problem parameters Input data 

Force F 10 units 

Inner radius Ri 90 units 

outer radius Ro 100 units 

Beam thickness t 5 units 

Beam width w 10 units 

Poisson’s ratio v 0.3 unit 

Young’s modulus E 2000 units 

 

 
Fig. 4 Curved cantilever beam 
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Fig. 5 Meshing of the curved cantilever beam 
 

 

4.2 Curved cantilever beam 
 

In this section, a curved beam has been considered as shown in Figure 4. Parameters of finite 

element modeling are shown in Table 4. In this example, the objective is calculating the sensitivity 

of vertical and horizontal displacement of the beam tip respect to its thickness. Using the classical 

theory of elasticity for curved beams, horizontal and vertical displacement of values’ beam tip can 

be obtained. Then, they can be differentiated with respect to thickness. Horizontal and vertical 

displacement (respectively u and v) are analytically obtained along with its derivatives as Equation 

(34) and (35) (Beer and DeWolf 2002).  

𝑢 =
1

2

𝐹𝑅3

𝐸𝐼
=

1

2

𝐹𝑅3

𝐸 (
1
12 𝑡𝑤2)

 ⇒    
𝜕𝑢

𝜕𝑡
= −

1

2

𝐹𝑅3

𝐸 (
1
12 𝑡2𝑤2)

 (34) 

𝑣 =
𝜋

4

𝐹𝑅3

𝐸𝐼
=

𝜋

4

𝐹𝑅3

𝐸(
1
12 𝑡𝑤2)

 ⇒    
𝜕𝜈

𝜕𝑡
= −

𝜋

4

𝐹𝑅3

𝐸(
1
12 𝑡2𝑤2)

 (35) 

In the aforementioned equations; F is applied force, R is the average radius of the beam; E is 

the modulus of elasticity, I the moment inertia of the beam cross-section, w is the width of the 

beam, and t is beam thickness. The above equations are used to calculate the sensitivity of the 

analytical method. To analyze the problem, 894 square elements (149 × 6) are used (Figure 5). 

In Tables 5 and 6, results related to sensitivity calculation using semi-analytical and finite 

difference methods has been provided. Numerical results of vertical and horizontal displacement 

sensitivity calculation to beam thickness is shown in Figures 6 and 7, respectively. As it can be 

seen in these Figures, using a combination of the semi-analytic method with complex variables, 

the sensitivity of design parameters can be calculated with high efficiency. The results show that 

there is good convergence regardless of the step size and performance of finite difference is highly 

dependent on the selected step size. There is the sharp increase in error at the step size than 10-9. In 

addition, program runtime for the semi-analytical method is less than finite difference. 
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Table 5 Calculations of vertical displacement sensitivity respect to the thickness 

Step size 

(h) 

𝑑𝑢

𝑑𝐿
 

(FDM) 

𝑑𝑢

𝑑𝐿
 

(SAM) 

10−2 1.60641458426127 1.60640817996036 

10−3 1.60640815829005 1.60640817995965 

10−4 1.60640723506411 1.60640817996744 

10−5 1.60639448063549 1.60640817990789 

10−6 1.60641987889676 1.6064081799321 

10−7 1.60498026424705 1.6064081800330 

10−8 1.60558011330636 1.6064081799450 

10−9 1.60953383954165 1.60640817991017 

10−10 2.11750617040707 1.60640817983094 

10−11 -18.7790227812457 1.60640817990765 

10−12 -196.472171865025 1.60640817994555 

10−13 -1039.35526851728 1.60640817994889 

10−14 6518.16378649528 1.60640817995388 

10−15 -216330.9531511 1.60640817996601 

10−16 0 1.60640817988663 

10−17 0 1.60640817998013 

10−18 0 1.60640817993936 

10−19 0 1.60640817990344 

10−20 0 1.60640817988717 

Exact 1.62 

 

 
Fig. 6 Calculations of vertical displacement sensitivity respect to the thickness 
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Fig. 7 Horizontal displacement sensitivity respect to the beam thickness 

 
Table 6 Calculation of horizontal displacement sensitivity respect to the thickness 

Step size 

(h) 

𝑑𝑢

𝑑𝐿
 

(FDM) 

𝑑𝑢

𝑑𝐿
 

(SAM) 

10−2 1.02278621492213 1.02278213856483 

10−3 1.02278212932916 1.02278213856101 

10−4 1.02278142379841 1.02278213856685 

10−5 1.02277216753599 1.02278213852045 

10−6 1.02279012059725 1.02278213853955 

10−7 1.02170208737817 1.02278213861228 

10−8 1.02382169409054 1.02278213854993 

10−9 1.01917096984039 1.02278213852365 

10−10 1.43828948750979 1.02278213846956 

10−11 -13.671730414444 1.02278213852174 

10−12 -143.014933229324 1.02278213855027 

10−13 -696.624979923399 1.02278213855312 

10−14 4808.77559994042 1.02278213855639 

10−15 -147414.969120518 1.02278213856389 

10−16 0 1.02278213850949 

10−17 0 1.02278213857545 

10−18 0 1.02278213854806 

10−19 0 1.02278213852158 

10−20 0 1.02278213850857 

Exact 1.03 
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Relative error percentage of vertical and horizontal displacement sensitivity obtained by the 

presented method to its exact value is very little for steps size of 10-2 and smaller, and it is 

approximately %0.84 and %0.70, respectively.  

 

 

5. Conclusions 
 

This paper provides a robust and accurate method to calculate sensitivity using the combination 

of discrete sensitivity method with complex variables method in structural problems. Discrete 

sensitivity method is an efficient method that saves time in calculation compared to other methods, 

and thereby it is a fast method, as it calculates the sensitivity values only where analysts wanted to 

calculate. However, common methods use an accurate procedure for stiffness matrix and mass 

matrix differentiation. Differentiation in this procedure in a precise way for any finite element type 

can be cumbersome. 

To improve the efficiency of the discrete sensitive method, exact differentiation can be replaced 

by a finite difference method. However, conventional sensitivity calculation methods are highly 

dependent on step size values. Therefore, this paper provides a new computational procedure to 

calculate numerical sensitivity based on discrete sensitivity method by using advantages of 

discrete sensitivity method and complex variables that are not affected by the step size.  

In this paper, by solving several examples, advantage and superiority of the proposed method 

compared to the conventional computational methods have been shown. If only step size is 

selected small, rounding error would be negligible and this method would provide the stable 

solution for structure sensitivity. Advantages of the proposed method can be listed as follows: 

•  In larger steps, calculation of sensitivity analysis error by the proposed method is a little 

more compared to finite difference method, but it includes the small range and by choosing the 

smaller step as much as you like, it can be achieved with a high precision sensitivity analysis.  

•  The proposed method is not sensitive to small steps size, and it means that step size can be 

considered as small as you want, while the finite difference method is highly dependent on step 

size. Therefore, there is a limit to select the step size in this method.   

•  Program runtime for the proposed method is almost half of program runtime for the finite 

difference method. 

•  The proposed method is stable at the very high range, and it reaches to convergence with 

high accuracy quickly. 

Finally, sensitivity errors generated in conventional the computational methods can be reduced 

significantly by using complex variables. Numerical sensitivity in the framework of discrete 

sensitivity method can be improved by using complex variables. Compared with conventional 

methods, the computational method presented in this paper has high precision and accuracy and 

ensures good performance at all step size values. 
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