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Abstract.  In this study, teaching-learning based optimization (TLBO) is improved by incorporating model 

of multiple teachers, adaptive teaching factor, self-motivated learning, and learning through tutorial. 

Modified TLBO (MTLBO) is applied for simultaneous topology, shape, and size optimization of space and 

planar trusses to study its effectiveness. All the benchmark problems are subjected to stress, displacement, 

and kinematic stability constraints while design variables are discrete and continuous. Analyses of 

unacceptable and singular topologies are prohibited by seeing element connectivity through Grubler’s 

criterion and the positive definiteness. Performance of MTLBO is compared to TLBO and state-of-the-art 

algorithms available in literature, such as a genetic algorithm (GA), improved GA, force method and GA, 

ant colony optimization, adaptive multi-population differential evolution, a firefly algorithm, group search 

optimization (GSO), improved GSO, and intelligent garbage can decision-making model evolution 

algorithm. It is observed that MTLBO has performed better or found nearly the same optimum solutions. 
 

Keywords:  meta-heuristic algorithms; truss design; topology; shape, and size optimization; structural 

optimization 

 
 
1. Introduction 
 

A truss is a two or three-dimensional structure composed of linear members connected at nodes 

to sustain load and subjected to tension or compression. Truss optimization has become a fast 

emerging research field of structural optimization (SO) since the last two decades. SO can be 

separated in to three categories: topology, shape, and size (TSS). Size optimization deals with the 

optimum cross-sectional areas of the elements (link, plate, etc.) while shape optimization works by 

varying the positions of nodes or boundary contours. Topology optimization, on the other hand, 

works on addition and removal of elements, nodes, and material (Christensen and Klarbring 2009). 

Due to the presence of stress, displacement, and kinematic stability constraints, SO problems 

become more challenging for optimization methods. Hence, an efficient optimization method is 

required to solve such problems and researchers are continuously investigating in this area. 
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Literature stated two different approaches to response TSS optimization. Hajela et al. (1993) 

used a two-stage approach, while Deb and Gulati (2001) used a single-stage approach to answer 

such problems. Moreover, the two-stage approach reduces search space but may not offer a global 

optimum solution, if the optimum topology does not recognize during the first stage (Wu and 

Tseng 2010). On the other hand, the single stage approach requires more computational efforts 

because it deals with simultaneous TSS, but is capable to achieve a global optimum solution 

(Ahrari et al. 2014). This work also focused on improving the efficiency of TSS by avoiding large 

number of unwanted analysis of kinematic instable and invalid structures. A ground structure 

method is adopted for this study, which is a set of all possible connection between nodes (Dorn 

1964). In this method, the difficulties arise due to matrix singularity and unnecessary analysis, 

FEA model is reformed to resolve these difficulties. In this article, we used the single-stage 

approach, the ground structure method and the restructuring of FEA model for TSS optimization. 

Genetic Algorithm (GA) has been applied to solve SO problems by many researchers such as; 

Grierson and Pak (1993), Rajan (1995), Deb and Gulati (2001), Kawamura et al. (2002), Tang et 

al. (2005), Balling et al. (2006), Richardson et al. (2012) with kinematic stability repair (KSR) and 

Rahami et al. (2008). On the other hand, contemporary and more auspicious meta-heuristic 

algorithms other than GA have been used in considerable ranges of SO. Simulated Annealing (SA) 

(Hasançebi and Erbatur 2002), Ant Colony Optimization (ACO) (Luh and Lin 2008), Group 

Search Optimizer (GSO) and Improved GSO (Li and Liu 2011), Adaptive multi-population 

differential evolution (AMPDE) (Wu and Tseng 2010), Harmony Search (HS) (Martini 2011), An 

Intelligent Garbage Can Decision-Making Model Evolution Algorithm (IGCMEA) (Kuo et al. 

2012), Firefly Algorithm (FA) (Miguel et al. 2013), and Tejani et al. (2016a, 2016b, 2016c) have 

been employed in SO problems. 

Teaching-learning based optimization (TLBO) is a meta-heuristic algorithm developed by Rao 

et al. (2011, 2012a) which is based on the influence of a teacher on the outcomes of learners. Rao 

and Patel (2012), Patel and Savsani (2014), Degertekin and Hayalioglu (2013), Camp and 

Farshchin (2014), Tejani et al. (2016b), and Savsani et al. (2017) introduced some progressive 

improvements in TLBO to enhance its exploration and exploitation capacities. Different 

modifications of TLBO has proved its capabilities for single and multiple objective optimization 

problems. The ability to improve TLBO has encouraged to formulate modified TLBO (MTLBO) 

for TSS problems, so in this article, MTLBO is investigated for the optimization of benchmark SO 

problems from literature. 

The rest of article is articulated as follows: Section 2 presents the brief introduction of TLBO. 

Section 3 contributes improvements proposed in TLBO. Section 4 shows problem formulation. 

Section 5 contains testing of proposed method by series of benchmark problems and Section 6 

concludes this article.  

 

 

2. Teaching-learning based optimization (TLBO)  
 

TLBO was proposed by Rao et al. (2011, 2012a), which is based on the natural wonder of 

teaching and learning philosophy. TLBO algorithm prerequisites only common governing 

parameters like population size and number of generations for its operation unlike GA which 

mutation, crossover, selection rate, etc., Particle swarm optimization (PSO) requiring inertia 

weight, social and cognitive parameters, Artificial bee colony (ABC) depending on number of 

employed and onlooker bees, HS requiring harmony memory rate, pitch adjusting rate and  
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Fig. 1 Schematic diagram of the MTLBO algorithm 

 

 

improvisation rate (Rao et al. 2012b). In this way, TLBO is a parameter-free, population-based 

meta-heuristic algorithm. 

The quality of a teacher has a strong impact on the learners in a class. A good teacher inspires 

the learners and assists them to refine their knowledge. Hence, each learner follows the teacher and 

improves his or her knowledge. Similarly, each learner also interacts with other learners of the 

class to improve knowledge. The functioning of TLBO is alienated into two phases, ‘teacher 

phase’ and ‘learner phase’. TLBO can be summarized as follows:  

Step I: Define the problem and initialize the optimization parameters. 

Step II: Initialize the population and define termination criterion. 

Step III: Teacher phase: Select the best solution as a teacher, who assists the learners in the 

class to improve their performance. 

Step IV: Learner phase: Learners improves their grades by mutual interaction among 

themselves.  

 

 

3. Modified-teaching learning based optimization (MTLBO)  
 

In the TLBO algorithm, a teacher and interactive learners improve knowledge of the learners by 

traditional classroom teaching. Improvements like a number of teachers (NT), an adaptive teaching 

factor, a self-motivated learning, and a learning through tutorial are described as follows: 

 

3.1 Number of teachers (NT)  
 

The original TLBO algorithm is based on a single teacher, who teaches the learners and tries to 

improve their knowledge. It may be possible that the efforts of the teacher scattered or at the other 

end, students might be less responsive, which will decrease the possibility of learning. To response 

this problem, TLBO is improved by introducing multiple teachers for the group of learners. In this 

modification, the entire class is divided into diverse groups of learners based on their grades and a 
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discrete teacher is assigned to each group of learners. Hence, each teacher works to improve the 

grades of assigned learners and if the performance of the group reaches up to the assigned teacher, 

this group is allocated to a superior teacher. Mathematical form of this modification is given in 

Eqs. (1)-(2). 
 

3.2 Adaptive teaching factor  
 

In the basic TLBO, the teaching factor is decided through heuristic step and it can be either one 

or two. This means learners learn nothing or all the things taught by the teacher. However, in 

actual practice learners may learn in any proportion from the teacher. Hence, teaching factor (TF) 

is improved to an adaptive teaching factor, is given by Eq. (4).  
 

3.3 Learning through tutorial 
 

In modern teaching-learning activity, learners assign interactive projects, problems and tutorials 

during the tutorial hours. Accordingly, learners learn by discourse over with their fellow learners 

and even with the teacher while solving it. Since the learners can improve their knowledge by 

discussion with other learners or the teacher, this search mechanism is merged into the teacher 

phase of TLBO. This modification is given in Eq. (5).  
 

3.4 Self-motivated learning  
 

In TLBO, the grades of the learners are improved either by learning from the teacher or by 

interacting with the other learners. However, self-motivated learners may improve their knowledge 

by self-learning. Thus, the self-motivated learning to advance the knowledge of learners is adopted 

in the improved TLBO algorithm, which again upsurges the exploration and exploitation capacity 

of TLBO. This modification is shown by Eq. (6). 

Graphical representation of the MTLBO algorithm is shown in Fig. 1.  

MTLBO can be summarized as follows.  

Step I: Define the problem and initialize the optimization parameters. 

Step II: Initialize the population and define termination criterion. 

Step III: Select the best solution as a chief teacher. 

F(X)best = F(X)1, Hence F(X)chief teacher = F(X)best (1) 

Step IV: Select the other teachers based on the chief teacher and rank them. 

F(X)t = F(X)1 – rand * F(X)1 (2) 

where, other teachers (t) = 2,3,…,NT 

Step V: Assign the group of learners to the teachers according to their fitness value. 

Step VI: Keep the elite solutions of each group. 

Step VII: Determine the mean result of each group of learners in each subject (i.e., (Mu)t), 

where u is subjects offered to each learner. 

Step VIII: For each group, calculate the difference between the current mean (DM) and the 

corresponding result of the teacher of that group for each subject with the use of the adaptive 

teaching factor. 

DMu = r*(Xu – TF*Mu) (3) 
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Where, generation number = g; learners = v; subjects = u 

Step IX: Tutorial hours, each group update the learners’ knowledge with the help of the 

teacher’s knowledge. 
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Where, q is randomly selected learner; q ≠ v  

Step X: For each group, update the learners’ knowledge by utilizing the knowledge of some 

other learners and by self-learning. 
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Where, EF =exploration factor = round (1+rand); p is randomly selected learner; p ≠ v 

Step XI: Replace the worst solution of each group with an elite solution. 

Step XII: Remove the identical solutions randomly. 

Step XIII: Merge all the groups.  

Step XIV: Termination criterion: Repeat the procedure from Step III until the termination 

criterion is satisfied. 

 

 

4. Problem formulation  
 

The objective of this study is to minimize the weight of a truss, f(X) by satisfying all stated 

constraints. In addition, a constraint removal method is applied to handle impact of the removed 

elements on constraints. Formulation of an optimization problem employed by Deb and Gulati 

(2001) is adopted in this study for rational comparison. SO problem is formulated as follows 
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Where, Ai, ρi, Li, Ei, and σi denote cross-sectional area, density, length, modules of elasticity  
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(a) (b) 

Fig. 2 10-bar truss: (a) Ground structure, (b) Size and topology optimized truss, and (c) TSS optimized truss 

 

 

and stress of element ‘i’ respectively. δj and ξj are real value of nodal displacements and 

coordinates of node ‘j’ respectively. Bi is a topological bit, which is 0 for absence and 1 for 

presence of an element ‘i’. The superscript, ‘max’ and ‘min’ signifies maximum and minimum 

allowable values respectively. The upper and lower bond of the design variables are selected in 

such a way that, Alower = –Amax and Aupper = Amax to offer equal probability for the element existence 

and the critical area is a user-defined term, which is used to eliminate the element if the area is less 

than critical area. While the discrete design variables may take any integer values within [–D, D], 

where, D = total available discrete areas, the positive integer of design variable denotes element 

cross-sectional number and zero or negative integer of design variable signifying removal of the 

element.  

A truss structure is called invalid (g1) if truss is having the absence of loaded nodes, support 

nodes, and undeleted nodes (Li and Liu 2011). In this article, kinematic stability (g2) is reviewed in 

two steps as per Deb and Gulati (2001) and the steps of this method are listed as follows:  

Step (I). Grubler's criterion (Ghosh and Mallik 1986) to examine Degree of Freedom (DOF) of 

the truss and  

Step (II). Positive definiteness of global stiffness matrix to examine singularity of the truss.  

Penalty function approach is applied to handle all stated constraints. For no violation of the 

constraints, the penalty becomes zero; otherwise, penalty is intended by following criteria 

 











 



otherwise  )()(10

 ssdefinitene posit ive with  violatedis  if 10

 DOF with  violatedis  if 10

 violatedis  if 10

)(

43
5
2

7
2

8
1

9

XgXgf(X)

g

g

g

XfPenalized
 (8) 

 

 

5. Benchmark problems  
 

This section introduces eight widely studied benchmark problems to evaluate the effectiveness  
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Table 1 Design parameters of the 10-bar truss 

Design variables: Ai, y1, y3, y5; where i=1,2,…,10 

Loading condition: Py2 = –100 Klb, Py4 = –100 Klb 

Stress and displacement constraints: σi
max = 25 Ksi, δj

max= 2 in Where j =1, 2, 3, and 4 

Shape constrains: 180 in ≤ y1, y3, y5 ≤ 1000 in 

Size variables: Continuous area: (0.09, 30) in2; 

Discrete area: (1, 30) in2 in increments of 1 in2 

 
Table 2 Sensitivity analysis of the population size and maximum number of generations 

Method Population size 

Maximum 

number of 

generations 

Min Max Mean SD 

MTLBO 20 100 4898.7570 7998.3790 5248.5116 759.9478 

MTLBO 25 80 4899.1370 7654.6020 5318.3561 766.3081 

MTLBO 50 40 4898.4330 6259.4960 4960.1750 267.8459 

MTLBO 100 20 4906.2140 7024.8300 5006.3941 241.7650 

 

 

of MTLBO algorithm. Material properties such as modulus of elasticity (E) and weight density (ρ) 

of the elements are assumed as 104 Ksi and 0.1 lb in-3 respectively for all problems. MTLBO and 

TLBO algorithms are functioned for 100 independent runs to consider stochastic nature of a meta-

heuristic and the best results are stated. All problems are optimized by doing comparison among 

the combinations of the population size, number of generations and NT to find the best 

combination in the proposed algorithms. All computer-generated results are compared with state-

of-the-art algorithms reported in the literature. The programs are coded in MATLAB (R2013a) 

software and the FEM. A quad core 2 GHz CPU is used to quantify the computational effort in 

terms of CPU time in seconds (s) for this work. 

 

5.1 10-bar truss  
 

The ground structure of the first benchmark truss with load and boundary conditions is 

presented in Fig. 2(a). The design parameters such as design variables, loading condition, 

constraints and design variable bond are tabulated in Table 1. This is a well-known benchmark 

problem in this field and has been studied by many researchers by considering continuous and 

discrete areas. Moreover, this work considered three independent conditions for this problem 

described as follows. 

 

5.1.1 Size and topology optimization of 10-bar truss using continuous design variables  
In this problem, the aim is to do size and topology optimization of the 10-bar truss using ten 

contentious size variables. The best suited population size and maximum number of generations 

are investigated based on sensitivity analysis. Thus, the 10-bar truss problem is analysed for 

population size as 20, 25, 50, 100 and maximum number of generations as 100, 80, 40, 20 by 

assuming NT as 5. The results shown in Table 2 revels the proposed algorithm performs the best 

with the population size and the maximum number of generations being 50 and 40 respectively. 

Therefore, the population size and the maximum number of generations are considered as 50 and  
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Table 3 Comparison of optimized designs found for size and topology of the 10-bar truss with continuous 

size variables 

 Proposed work 
Deb and Gulati 

(2001) 

Luh and Lin 

(2008) 

Kuo et al.  

(2012) 

Design variable MTLBO TLBO GA ACO IGCMEA 

A1 29.9996 29.9675 29.68 29.81 27.98 

A3 22.3087 22.1303 22.07 22.24 22.21 

A4 15.1592 15.0880 15.3 15.15 15.58 

A7 6.0709 6.0817 6.09 6.08 5.93 

A8 21.1883 21.3281 21.44 21.329 22.65 

A9 21.2484 21.2972 21.29 21.24 21.14 

Weight (lb) 4898.4330 4898.4412 4899.15 4899.11 4899.12 

Max stress (ksi) 23.295 23.2535 23.222 23.26 24.37 

Max disp. (in) 2 2 1.9999 1.9999 1.99 

FE 4000 4000 49500 41000 270000 

 
Table 4 Statistical results of the 10-bar truss with continuous size variables 
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Fig. 3 Schematic diagram of MTLBO algorithm 

 

 

40 respectively. In this problem, the effect of NT is investigated by considering the values from 1 

to 5. The results are obtained for 100 independent runs and the best result obtained in these runs 

are displayed in Table 3. The result table summarizes that MTLBO and TLBO designed the 

optimum weight of 4898.433 lb and 4898.4412 lb respectively. The results show that MTLBO and  

Method NT Min Max Mean SD Mean Time (s) 

TLBO - 4898.4410 7997.3330 5166.0800 681.0892 10.6085 

MTLBO 1 4898.4830 6260.5640 4930.7950 173.0177 13.9259 

MTLBO 2 4898.5200 6272.8820 4947.6170 227.8065 13.5532 

MTLBO 3 4898.5970 6741.4430 4948.9930 263.4199 13.6562 

MTLBO 4 4898.6680 7490.7220 5011.0960 446.3459 13.4585 

MTLBO 5 4898.4330 6259.4960 4960.1750 267.8459 13.1733 
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Table 5 Comparison of optimized designs found for size and topology of the 10-bar truss with continuous 

size variables 

 Proposed work 
Hajela and Lee 

(1995) 

Deb and Gulati 

(2001) 

Richardson  

et al. (2012) 

Miguel et al. 

(2013) 

Design 

variable 
MTLBO TLBO GA GA KSR & GA FA 

A1 30 30 28 30 30 30 

A3 24 24 24 24 24 24 

A4 16 16 16 16 16 16 

A7 6 6 6 6 6 6 

A8 20 20 21 20 20 20 

A9 21 21 22 21 21 21 

Weight (lb) 4912.849 4912.849 4942.7 4912.849 4912.849 4912.85 

FE 1500 3100 - 49500 15400 30000 

 

Table 6 Comparison of optimized designs found for TSS of the 10-bar truss 

 Proposed work 
Tang et al.  

(2005) 

Rahami et al. 

(2008) 

Miguel et al. 

(2013) 

Design variable MTLBO TLBO Improved GA 
Force method  

& GA 
FA 

A1 11.1443 11.9136 13.5 11.5 11.5 

A3 9.9176 9.2231 7.97 11.5 11.5 

A4 7.1067 6.1069 7.22 5.74 7.22 

A5 - - 1.62 - - 

A7 5.8943 5.9454 4.49 5.74 5.74 

A8 3.4374 3.6882 3.13 3.84 2.88 

A9 12.6447 12.8588 13.5 13.5 13.5 

y3 520.1796 551.0741 527.9 506.42.3  

y5 828.7986 826.7102 888.8 789.7306  

Weight (lb) 2691.283 2727.159 2813.8 2723.05 2705.16 

Max stress 

(Ksi) 
18.497 18.3453 18.5 19.1463 19.1 

Max disp. (in) 2 2 1.9998 2 2 

FE 5000 5000 4400 4000 50000 

 

 

TLBO reported better results than former results reported in the literature with no violation of 

constraints. In addition, MTLBO and TLBO consumed only 4000 FE, which is much lesser 

compared with references shown in Table 3. Moreover, MTLBO shown better results than TLBO. 

It should be noted that all approaches have identified the same topology as depicted in Fig. 2(b). 

Fig. 3 equates the convergence graph of best and mean weight obtained using MTLBO and 

TLBO. It is observed from the convergence graph of MTLBO that the min and mean results of the 

objective function converge nearly within 2000 FE and 3000 FE respectively. It also indicates that 

MTLBO converges much faster than TLBO. Table 4 presents the relative statistical results of  
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Fig. 4 14-bar planar truss: (a) Ground structure and (b) Size and topology optimized truss 

 
Table 7 Comparison of optimized designs found for size and topology of the 14-bar truss 

 Proposed work Deb and Gulati (2001) 
Luh and Lin 

(2008) 

Wu and Tseng 

(2010) 

Design 

variable 
MTLBO TLBO GA GA ACO AMPDE 

A1 28.8651 28.8651 28.286 28.189 28.876 29.046 

A3 5.4346 5.4346 5.172 5.219 5.428 5.533 

A7 7.6126 7.6126 7.821 7.772 7.617 7.545 

A8 20.3519 20.3519 20.054 20.31 20.549 20.549 

A9 20.3241 20.3241 20.446 20.65 20.265 20.65 

A12 14.4055 14.4055 14.845 14.593 14.308 14.342 

Weight (lb) 4730.438 4730.5099 4733.443 4731.65 4730.824 4730.68 

Max stress 

(Ksi) 
18.5773 18.7117 - 19.161 18.423 18.701 

Max disp. 

(in) 
2 2 - 2 2 2 

FE 10000 10000 - 85050 41000 40000 

 

 

MTLBO and TLBO obtained. It is identified from the assessment that all statistical results of 

MTLBO are superior to TLBO. However, TLBO required less computational time than MTLBO. 

In this investigation, best solutions (min), worst solutions (max), average solutions (mean) and 

standard deviation (SD) are nearly similar, however optimal value of NT is empirical in nature.  

 
5.1.2 Size and topology optimization of 10-bar truss using discrete design variables  
In this problem, the aim is to do size and topology optimization of the 10-bar truss using ten 

discrete size variables as shown in Table 1. The results are obtained for 100 independent runs and 

the best results obtained in these runs are shown in Table 5 and compared with those found in the 

previous studies. The results illustrate that MTLBO and TLBO required 1500 FE (only 5.86% FE 

used by Deb and Gulati 2001) and 3100 FE respectively with similar optimum weight of 4912.849 

lb. Topology obtained using the proposed method is depicted in Fig. 2(b), which is similar to the 

previous study. 

 

5.1.3 TSS optimization of 10-bar truss  
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Fig. 5 39-bar truss: (a) Ground structure, (b) Size and topology optimized truss and (c) TSS optimized truss 

 
Table 8 Design parameters of the 39-bar two-tier truss 

Design variables: Gi, x6 = –x9, y6 = –y9, x7 = –x8, y7 = –y8, x10 = –x12, y10 = –y12, y11; where i=1,2,…,21 

Loading condition: Py2 = –20 Klb, Py3 = –20 Klb, Py4 = –20 Klb 

Stress and displacement constraints: σi
max = 20 Ksi, δj

max = 2 in 

Shape constrains: –120 in ≤ ξ(x, y) ≤ 120 in for nodes 6 to 12 with respect to the origin. 

Size variables: Continuous area: (0.05, 2.25) in2 

 

 

In this problem, the 10-bar truss is considered for TSS using ten continuous size and three 

continuous shape variables as depicted in Table 1. In this problem, proposed algorithms are 

measured for population size and maximum generations as 50. Table 6 compares the final structure 

found by different methods together with the corresponding weight for 100 independent runs. 

Table 6 summarizes that MTLBO and TLBO give trusses with optimum weight of 2691.283 lb and 

2727.159 lb respectively. The results show that MTLBO and TLBO reported better results than the 

former results reported in literature with no violation of constraints. However, the results of TLBO 

is slightly heavier than results of Force method & GA and FA. In addition, MTLBO and TLBO 

used 5000 FE. MTLBO and TLBO have identified the same topology as depicted in Fig. 2(c). 

 

5.2 14-bar truss  
 

The ground structure of the second benchmark truss is presented in Fig. 4(a). This problem is 

considered for size and topology optimization using fourteen continuous size variables. In this problem, 

population size and maximum generations are considered as 50 and 100 respectively, this results in 

10000 FE. Table 7 compares the best designs found for 100 independent runs. Table 7 shows that 

MTLBO and TLBO give the best weight of 4730.438 lb and 4730.5099 lb respectively. The results 

show that MTLBO and TLBO reported better results than the former results reported in literature 

without violation of the constraints. It should be noted that all approaches reported identical topology as 

depicted in Fig. 4(b). 

 

5.3 39-bar two-tier truss  
 

The ground structure of the third benchmark truss with loads and boundary conditions is shown  
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Table 9 Comparison of optimized designs found for size and topology of the 39-bar truss 

 Proposed work Deb and Gulati (2001) Luh and Lin (2008) 

Wu and 

Tseng 

(2010) 

Miguel 

 et al. 

(2013) 

Design 

variable 
MTLBO TLBO GA GA ACO ACO AMPDE FA 

A1, A22 0.0502 0.1652 0.050 - 0.051 0.050 0.05 0.0500 

A2, A23 0.7501 0.7720 1.001 0.751 0.751 1.001 0.750 0.7524 

A3, A24 - - 0.050 0.051 - - - - 

A5, A26 1.5000 1.4424 1.501 1.502 1.502 1.500 1.500 1.5001 

A7, A28 - - - 0.052 - - - - 

A8, A29 0.2501 0.3079 - 0.251 0.250 - 0.250 0.2504 

A9, A30 - - 0.052 0.051 - - - - 

A10, A31 1.0607 1.0062 1.416 1.061 1.062 1.415 1.060 1.0647 

A11, A32 1.0607 1.0180 - 1.063 1.063 - 1.060 1.0612 

A12, A33 - - - - - 0.053 - - 

A13, A34 - - 0.050 - - - - - 

A14, A35 0.5591 0.5594 - 0.559 0.560 - 0.559 0.5604 

A15, A36 - 0.1136 - - - - - - 

A16, A37 - - 1.118 - - 1.119 - - 

A19 - - 1.002 - - 1.002 - - 

A21 1.0000 1.0071 - 1.005 1.000 - 1.000 1.0016 

Weight (lb) 193.22 200.883 198 196.546 193.474 196.195 193.199 193.547 

Max stress 

(Ksi) 
19.9997 19.9869 20 20 20 20 20 19.999 

Max disp. 

(in) 
1.4400 1.4427 - - - - - - 

FE 20000 20000 - - 303600 303600 32300 50000 

 

 

in Fig. 5(a). The design parameters are tabulated in Table 8. The elements are grouped into 21 

groups (G) by considering symmetry about the middle vertical plane. In this problem, the proposed 

algorithms consider controlling parameters are as population size of 100 and the maximum number 

of generations is 100. To check effectiveness of MTLBO on this large-scale problem, two 

independent conditions considered as described below: 
 

5.3.1 Size and topology optimization of 39-bar two-tier truss  
In this problem, the 39-bar truss considered for size and topology optimization by considering 

twenty-one continuous size variables. Table 9 shows the design variables and corresponding truss 

weights for the best designs over 100 runs obtained by this study. Table 9 illustrates that that 

MTLBO and TLBO ending the best weight of 193.22 lb and 200.883 lb respectively. The results 

show that MTLBO reported better results than the former results reported in literature without 

violation of the constraints; however, the MTLBO result is a bit heavier than the results of 

AMPDE. Moreover, TLBO generated heavies truss among the tabulated results. MTLBO and 

TLBO consumed only 20000 FE, while AMPDE used 32300 FE. Final topology generated using  
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Table 10 Comparison of optimized designs found for TSS for the 39-bar truss with continuous size variables 

 

 

MTLBO is illustrated in Fig. 5(b). 
 

5.3.2 TSS optimization of 39-bar two-tier truss  
In this problem, the aim is to perform TSS optimization of the two-tire truss by means of 

twenty-one continuous size and seven shape variables. Table 10 illustrates the results obtained by 

the proposed algorithms and those of the previously reported results. The results signify that 

MTLBO and TLBO designed the optimum weight of 188.6255 lb and 206.494 lb respectively. The 

results show that MTLBO reported better results than the former results reported in literature with  

 Proposed work 
Deb and 

Gulati (2001) 

Luh and Lin 

(2008) 

Wu and Tseng 

(2010) 

Miguel et al. 

(2013) 

Design 

variable 
MTLBO TLBO GA ACO AMPDE FA 

A1, A22 0.2670 0.3803 0.595 0.327 0.163 0.2947 

A2, A23 0.9485 1.1110 1.166 1.095 1.509 1.0648 

A3, A24 1.1413 1.1220 - - - - 

A4, A25 - - - - - 1.1914 

A5, A26 1.5330 1.6524 1.615 1.538 0.895 - 

A6, A27 0.1116 - - - - - 

A7, A28 - 1.9231 - - - - 

A8, A29 - - 0.051 0.081 0.170 1.2555 

A10, A31 1.1383 1.2475 1.155 1.221 1.123 - 

A11, A32 - 0.0661 0.504 1.259 1.135 - 

A12, A33 - 0.0523 - - - - 

A13, A34 0.5376 0.5405 - - - - 

A14, A35 - - 1.293 0.525 0.543 0.0505 

A15, A36 - - - - - 1.5324 

A19 - - - - - 0.9609 

A20 1.1478 1.8097 - - - - 

A21 - 0.9586 1.358 1.256 1.106 - 

A6 21.7303 26.8357 49.05 24.02 12.804  

y6 124.5157 127.1930 124.11 111.53 118.052  

x7 157.2741 238.3424 - - -  

y7 209.9612 238.0225 - - -  

x10 - 238.3456 183.54 179.38 155.519  

y10 - 231.6299 177.43 191.77 216.909  

Weight (lb) 188.6255 206.494 192.19 188.732 188.426 191.304 

Max stress 

(Ksi) 
19.9968 19.9072 19.989 19.992 20 19.983 

Max disp. 

(in) 
1.3777 1.5141 - - - - 

FE 20000 20000 504000 453600 137200 50000 
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Table 11 Design parameters of the 25-bar truss  

Design variables: Gi, x4, y4, z4, x8, y8 where i=1,2,…,8 

Loading condition: Px1 = 1 Klb, Py1 = Pz1 = Py2 = Pz2 –10 Klb, Px3 = 0.5 Klb, Px6 = 0.6 Klb 

Stress and displacement constraints: σi
max = 40 Ksi, δj

max = 0.35 in of nodes 1,2,…,6 in all directions 

Shape constrains: 

20 in ≤ x4 = x5 = –x3 = –x6 ≤ 60 in 

40 in ≤ y3 = y4 = –y5 = –y6 ≤ 80 in 

90 in ≤ z3 = z4 = z5 = z6 ≤ 130 in 

40 in ≤ x8 = x9 = –x7= –x10 ≤ 80 in 

100 in ≤ y7 = y8 = –y9 = –y10 ≤ 140 in 

Size variables: Discrete area: [0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0, 1.1, 1.2, 1.3, 1.4, 1.5, 1.6, 1.7, 1.8, 

1.9, 2.0, 2.1, 2.2, 2.3, 2.4, 2.5, 2.6, 2.8, 3.0, 3.2, 3.4] in2 

 
Table 12 Element grouping and nodal coordinates of the 25-bar and 39-bar trusses  

Node numbers (coordinates) 

1(-37.5,0,200), 2(37.5,0,200), 3(-37.5,37.5,100), 4(37.5,37.5,100), 5(37.5,-37.5,100), 6(-37.5,-37.5,100),  

7(-100,100,0), 8(100,100,0), 9(100,-100,0), 10(-100,-100,0) in 

Member (end nodes) 

Groups Member (end nodes) 

G1 1(1-2) 

G2 2(1-4), 3(2-3), 4(1-5), 5(2-6) 

G3 6(2-5), 7(2-4), 8(1-3), 9(1-6) 

G4 10(3-6), 11(4-5), 12(3-4), 13(5-6) 

G5 14(3-10), 15(6-7), 16(4-9), 17(5-8) 

G6 18(3-8), 19(4-7), 20(6-9), 21(5-10) 

G7 22(3-7), 23(4-8), 24(5-9), 25(6-10) 

G8 26(5-7), 27(6-8), 28(3-9), 29(4-10) 

G9 30(3-5), 31(4-6) 

G10 32(1-7), 33(1-10), 34(2-9), 35(2-8) 

G11 36(2-7), 37(2-10), 38(1-8), 39(1-9) 

 

 

no violation of the constraints; however, truss generated using MTLBO is a bit heavier than 

AMPDE. It should be noted that MTLBO and TLBO consumed only 20000 FE, while AMPDE 

used 137200 FE. The optimized truss by using MTLBO is depicted in Fig. 5(c). 
 

5.4 25-bar 3-D truss  
 

A 25-bar space truss is considered as the fourth benchmark truss. The ground structure of this 

truss is displayed in Fig. 6(a). This truss is considered for TSS optimization using eight discrete 

size and five continuous shape variables. The design parameters are presented in Table 11. The 

element are clustered into eight groups (Gi,i=1,2,…,8) by considering symmetry in both the x-z 

and y-z planes as specified in Table 12. MTLBO and TLBO are functioned for population size and 

number of generations as 50 and 100 respectively. Therefore, the maximum number of FE is of 

10000. The results are obtained for 100 independent runs and best results obtained in this runs are  
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Fig. 6 25-bar space truss: (a) Ground structure and (b) TSS optimized truss 

 

 
Fig. 7 39-bar space truss: (a) Ground structure and (b) Size and topology optimized truss 

 

 

tabulated in Table 13. The results state that MTLBO and TLBO designed the optimum weight of 

114.3473 lb and 117.5496 lb respectively. It shows that MTLBO reported better results than 

former results reported in literature without violation of the constraints. The final geometry from 

using MTLBO is illustrated in Fig. 6(b). 

 

5.5 39-bar 3-D truss  
 

For the fifth benchmark truss, the 39-bar 3-D truss is considered for size and topology 

optimization. The ground structure of this truss is shown in Fig. 7(a). The design parameters are 

presented in Table 14. The elements of the space truss are clustered into 11 groups 

(G_i,i=1,2,…,11) by considering symmetry in both the x-z and y-z planes as specified in Table 12. 

MTLBO and TLBO are functioned for population size and number of generations of 50, thus FE is 

5000. Table 15 compares the final trusses found by the different methods. As per the result table, it 

is observed that MTLBO and TLBO designed the optimum weight of 2.3759 lb and 2.4534 lb 

respectively. The results show that MTLBO reported better results than the former results reported 

in literature without constraints violation. The final geometry from using MTLBO is illustrated in 

Fig. 7(b). 
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Table 13 Comparison of optimized designs found for TSS of the 25-bar truss 

 Proposed work 
Tang et al. 

(2005) 
Li and Liu (2011) 

Rahami et al. 

(2008) 

Miguel et 

al. (2013) 

Design 

variable 
MTLBO TLBO 

Improved 

GA 
DT and GSO DT and IGSO 

Force 

method  

and GA 

FA 

G1 - 0.1 - 0.1 - - - 

G2 0.1 0.1 0.1 0.1 0.1 0.1 0.1 

G3 0.9 1.0 0.9 1.1 1 0.9 1.1 

G6 0.1 0.1 0.1 0.1 0.1 0.1 0.1 

G7 0.1 0.1 0.1 0.2 0.2 0.1 0.1 

G8 1.0 1.0 1 0.9 0.9 1 0.9 

x4 38.7715 37.4817 39.91 33.743 36.026 38.7913 38.5 

y4 48.4319 47.0827 61.99 50.597 59.044 66.111 64.35 

z4 112.3517 109.9540 118.23 128.847 20.085 112.9787 112.87 

x8 66.5760 65.1895 53.13 42.5 46.717 48.7924 49.13 

y8 139.0357 132.6323 138.49 128.956 134.817 138.891 134.94 

Weight (lb) 114.3473 117.5496 114.74 120.455 118.2341 114.3701 116.58 

Max stress 

(Ksi) 
17.52 15.5879 17.353 - 15.7831 17.7531 19.7911 

Max disp. 

(in) 
0.35 0.35 0.35 - 0.35 0.35 0.35 

FE 10000 10000 6000 - - 10000 60000 

 
Table 14 Design parameters of the 39-bar 3-D truss 

Design variables: Gi, where i=1,2,…,11 

Loading condition: Pz1 = Pz2 = –0.5 Klb 

Stress and displacement constraints: σi
max = 40 Ksi, δj

max = 0.35 in of nodes 1,2,…,6 in all directions 

Size variables: Continuous area: (0.005, 3) in2 

 
Table 15 Comparison of optimized designs found for size and topology of the 39-bar 3-D truss  

 Proposed work 
Deb and Gulati 

(2001) 
Luh and Lin (2008) 

Design variable MTLBO TLBO GA ACO 

G1 0.0065 - 0.166 0.005 

G10 0.0191 0.0166 0.409 0.015 

G11 0.0053 0.0087 0.071 0.015 

Weight (lb) 2.3759 2.4534 47.93 2.82 

Max stress (Ksi) 12.5215 12.0139 0.625 13.05 

Max disp. (in) 0.3499 0.3499 0.0175 0.3397 

FE 5000 5000 - 303600 
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Table 16 Statistical results of MTLBO and TLBO for 100 independent runs 

Truss Optimization 
Size 

variables 
Method NT Min Max Mean SD 

Mean Time 

(s) 

10- 

bar 

2D 

Topology and 

size 
Discrete 

TLBO - 4912.849 286880.1 8128.279 28162.66 4.7643 

MTLBO 2 4912.849 8000.553 5026.289 396.7332 6.4794 

TSS Continuous 
TLBO - 2727.159 4235.037 3183.984 351.4563 5.7146 

MTLBO 5 2691.283 3842.735 2909.567 219.5284 7.8409 

14- 

bar 

2D 

Topology and 

size 
Continuous 

TLBO - 4730.51 7402.702 5409.697 773.9349 12.7786 

MTLBO 4 4730.438 7257.155 5071.669 628.528 17.5099 

39- 

bar 

2D 

Topology and 

size 
Continuous 

TLBO - 200.8831 324.5473 244.9857 28.1407 32.2087 

MTLBO 5 193.2200 274.3575 218.3570 17.2825 41.9073 

TSS Continuous 
TLBO - 206.494 365.0063 247.9759 28.2394 34.5491 

MTLBO 4 188.6255 274.2484 216.6767 18.1232 43.3672 

25- 

bar 

3D 

TSS Discrete 
TLBO - 117.5496 170.4828 136.9960 10.9735 15.7981 

MTLBO 2 114.3473 150.3912 121.7046 6.6813 18.8152 

39- 

bar 

3D 

Topology and 

size 
Continuous 

TLBO - 2.4534 26.8657 7.6158 4.9813 8.2861 

MTLBO 3 2.3759 7.5490 3.4994 1.1824 9.1693 

 

 

Table 16 shows comparative statistical results of weight for MTLBO and TLBO. It is observed 

from the results that all statistical results of MTLBO in terms of best solution (min), worst solution 

(max), average solution (mean) and standard deviation (SD) are better than TLBO. However, 

TLBO required less computational time than MTLBO. This study indicates that results of MTLBO 

are reliable and overall better than the results of TLBO. 

 

 

6. Conclusions 
 

This article presented four effective advances in TLBO to speed up the search procedure and to 

improve its convergence rate. Multiple teachers, adaptive teaching factor, self-motivated learning 

and learning through tutorial are incorporated to improve the effectiveness of TLBO in the search 

procedure. It is observed that selection of NT, population size and the maximum number of 

generations play a significant role for the best performance of the algorithm. The effectiveness of 

MTLBO is demonstrated by considering the benchmark structural optimization problems to design 

planner and space trusses subjected to stresses, displacement and kinematic stability constraints. 

The results illustrate that min, max, mean and SD of weight achieved by using MTLBO are 

superior to TLBO. Moreover, extra computational time needed due to this improvement is 

negligible. Results by using MTLBO are observed better or nearly equal as compared to results of 

literature, with fewer FE and without violation of constraints. The fast convergence rate of 

MTLBO concludes the high proficiency and stability for simultaneous TSS optimization of 

trusses. 
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