

Advances in Computational Design, Vol. 2, No. 4 (2017) 293-311

DOI: https://doi.org/10.12989/acd.2017.2.4.293 293

Copyright © 2017 Techno-Press, Ltd.
http://www.techno-press.org/?journal=acd&subpage=7 ISSN: 2283-8477 (Print), 2466-0523 (Online)

Empirical assessment of design patterns’ fault-proneness at
different granularity levels

Mawal A. Mohammed1 and Mahmoud O. Elish*2

1Information and Computer Science Department, King Fahd University of Petroleum and Minerals, Dhahran 31261,
Saudi Arabia

2Computer Science Department, Gulf University for Science and Technology, Mishref, Kuwait

 (Received March 7, 2017, Revised September 14, 2017, Accepted October 1, 2017)

Abstract. There are several claimed benefits for the impact of design patterns (DPs) on software quality.

However, the association between design patterns and fault-proneness has been a controversial issue. In this

work, we evaluate the fault-proneness of design patterns at four levels: the design level, category level,

pattern level, and role level. We used five subject systems in our empirical study. As a result, we found that,

at the design level, the classes that participate in the design patterns are less fault-prone than the non-

participant classes. At the category level, we found that the classes that participate in the behavioral and

structural categories are less fault-prone than the non-participant classes. In addition, we found that the

classes that participate in the structural design patterns are less fault-prone than the classes that participate in

the other categories. At the pattern level, we found that only five patterns show significant associations with

fault-proneness: builder, factory method, adapter, composite, and decorator. All of these patterns except for

builder show that the classes that participate in each one of them are less fault-prone than the non-participant

classes in that pattern. The classes that participate in the builder design pattern were more fault-prone than

the non-participant classes and the classes that participate in several patterns: the adapter, the composite, and

the decorator design patterns. At the role level, the most significant differences were between the classes that

participate in some roles and the non-participant classes. Only three pairs of design pattern roles show

significant differences. These roles are concrete-product vs. concrete-creator, adapter vs. adaptee, and

adapter vs. client. The results recommend the use of design patterns because they are less fault-prone in

general except for the builder design pattern, which should be applied with care and addressed with more

test cases.

Keywords: design patterns; fault-proneness; software quality

1. Introduction

Design patterns are intended to encapsulate solutions to recurring design problems. They

represent valuable design expertise that can be used in documenting and communicating these

solutions. They were first introduced by Alexander et al. in their book Pattern Language in the

context of architecture (Alexander et al. 1977). Later, the notion of design patterns was developed

Corresponding author, E-mail: elish.m@gust.edu.kw

Mawal A. Mohammed and Mahmoud O. Elish

in the context of object-oriented software design by Gamma, Helm, Johnson, and Vlissides (GoF)

(Gamma et al. 1995). In their book, they classified design patterns into three categories: creational,

structural, and behavioral. Each category includes a different set of patterns that share some

common characteristics. Each pattern has one or more classes. Each class in each design pattern

plays a role in that pattern.

Fault-proneness analysis is of a great importance for software quality control and assurance.

The ability to analyze the fault-proneness of design patterns can help in minimizing costs and

increasing the effectiveness of software testing. Some previous studies have suggested that the

majority of faults occur in a few components of the software system (Boehm and Papaccio 1988,

Porter and Selby 1990). This can be applicable to design patterns because the different patterns

have different structures and different behaviors. These differences might have an effect on their

proneness to faults. Some patterns might be more fault-prone than others (Vokac 2004,

Ampatzoglou et al. 2011, Gatrell and Counsell 2011). Therefore, specifying which design patterns

are more fault-prone is of great help for software designers and testers. Analyzing the relationship

between design patterns and fault-proneness can provide designers, implementers, and testers with

valuable knowledge that can eventually lead to less fault-prone software. For example, software

designers and implementers will be able, utilizing this knowledge, to apply design patterns with

care so that the produced design is less fault-prone. Testers, as well, can utilize this knowledge to

target the problematic design patterns with more test cases.

The production of a software with a minimal number of faults is of special interest to the

software community (Pham 2001). As a design construct, design patterns can play an important

role in software fault-proneness. However, the relationship between design patterns and fault-

proneness has not been fully studied, and the obtained results do not give a clear indicator on this

relation. In addition, there is no agreement among the results of previous studies on the tendency

of this relationship. Moreover, not all the design patterns, and not all the levels (design, category,

pattern, and role) are addressed in the literature. In this work, we decided to go deeper in

investigating the relationship between the fault-proneness and the design patterns by addressing

the roles within patterns. Doing this enables us to get a deeper insight into the contribution of each

role in fault-proneness of each pattern.

The main objective of the current study is to measure and compare the fault-proneness of

design patterns on the different levels of design. At the design level, we measure and compare the

fault-proneness of the classes that participate in design patterns versus the classes that do not

participate in design patterns. At the category level, we measure and compare the fault-proneness

among the different categories of design patterns. At the pattern level, we measure and compare

the fault-proneness of each design pattern. Finally, at the role level, we measure and compare the

fault-proneness of the classes that participate in each role in each design pattern.

2. Literature review

The relationship between the design patterns and the software quality has been discussed in a

comparative literature survey in the literature (Ali and Elish 2013). Four quality attributes are

addressed in the literature: maintainability (Prechelt et al. 2001, Vokac et al. 2004, Garzás and

Piattini 2009, Juristo and Vegas 2011, Krein et al. 2011, Nanthaamornphong and Carver 2011,

Prechelt and Liesenberg 2011, Hegedűs et al. 2012), change-proneness (Bieman et al. 2003,

Aversano et al. 2007, Gatrell et al. 2009), performance (Rudzki 2005, Afacan 2011), and faults

294

Empirical assessment of design patterns’ fault-proneness at different granularity levels

Table 1 Summary of our work compared to the existing works in the literature

Work
Faults

Aspect

of

Patterns

Subject

Systems
Granularity level

(Vokac 2004)
Fault

frequency
5 C++ system Pattern level

(Ampatzoglou et

al. 2011)

Fault

frequency
11 Java systems Pattern level

(Gatrell and

Counsell 2011)
Fault-

proneness
13 C# system Design level and pattern level

This work
Fault-

proneness
17 Java systems

Four levels: design level, category level,

pattern level, and role level

(Vokac 2004, Ampatzoglou et al. 2011, Gatrell and Counsell 2011). In this study, we will discuss

works that have addressed the relationship between the design patterns and faults (Vokac 2004,

Ampatzoglou et al. 2011, Gatrell and Counsell 2011). (Mayvan et al. 2017) conducted a recent

systematic mapping of the literature on the state of the art on design patterns. They observed

primary studies that have assessed the impact of applying DPs on the quality of the software

systems, rather than the quality of DPs themselves, which include (Ampatzoglou et al. 2015,

Scanniello et al. 2015, Jaafar et al. 2016). (Vokac 2004) conducted a case study that compared the

defect frequency of the classes that participate in five design patterns in a large commercial C++

project: singleton, template method, decorator, observer, and abstract factory. He found that there

are significant differences in the defect rates among the different patterns that range from 63% to

154% on average. It was concluded that the complexity of the context is a major factor in the

association between the defect rates and the design patterns. Some design patterns, such as

singleton and observer tends mostly to be used in complex contexts. This leads the classes that

participate in such patterns to be associated with more faults. In contrast, the abstract factory and

template method design patterns are associated with less complex contexts, so they are associated

with lower fault rates.

(Ampatzoglou et al. 2011) compared open-source Java projects with respect to defect

frequency and debugging efficiency. The comparison was conducted at the system level. The

authors addressed 11 patterns. Overall, they found no correlation between design pattern instances

and defect frequency. However, two patterns showed a significant impact: adapter and observer.

The adapter pattern had a negative impact on fault frequency. Their explanation was that the

adapter pattern is used often in reuse activities. In such activity, the developers reuse pieces of

code that they might not fully understand. This can result in faults in the system under

development. In contrast, the observer pattern showed a positive impact on fault frequency.

(Gatrell and Counsell 2011) compared the fault-proneness of the classes that participate in the

design patterns and the non-participant classes. The subject system was a C# industrial system

consisting of 7,439 classes. They addressed 13 patterns and found a marginal difference between

the classes that participate in the design patterns and the non-participant classes. In addition, they

found that the adapter, factory method, and singleton patterns tended to be the most fault-prone

among the studied patterns. Moreover, they found that the classes associated with more faults tend

to be more change-frequent. They concluded that the propensity of the classes that participate in

the design patterns to change is the reason that the classes that participate in some design patterns

are more fault-prone than others.

295

Mawal A. Mohammed and Mahmoud O. Elish

Table 1 shows a comparison among the works existing in the literature and our work. The

comparison was conducted in four aspects: the aspect of the faults addressed in the literature, the

number of patterns addressed, the type of the subject systems, and the granularity level.

This paper differs from previous works in many ways. In the literature, the fault-proneness of

design patterns is investigated in only one study, as far as we know. That study used only one

subject system. In our study, we used five subject systems. In addition, their subject system was a

C# system. In our study, we used Java systems. Moreover, we covered 17 patterns, more than all

the other studies. Furthermore, we addressed the different levels (the design, category, pattern, and

role levels), but other researchers have covered only one level.

3. The empirical study

This section describes the empirical study that was conducted. First, the research hypotheses

are stated. Then the data collection process is described, followed by a discussion of the data

analysis techniques used in this work. The results are then reported and analyzed. Finally, threats

to validity are discussed.

3.1 Research hypotheses

In this study, we test the following hypotheses. For each hypothesis, H0 represents the null

hypothesis and H1 represents the alternative hypothesis of the null hypothesis:

• Hypothesis 1

- H0: There is no significant difference in fault-proneness between the classes that participate in

design patterns (as a whole) and those that do not participate in any pattern

- H1: There is a significant difference in fault-proneness between the classes that participate in

design patterns (as a whole) and those that do not participate in any pattern

• Hypothesis 2

- H0: There is no significant difference in fault-proneness among the classes that participate in

the different categories of design patterns.

- H1: There is a significant difference in fault-proneness among the classes that participate in

the different categories of design patterns.

• Hypothesis 3

- H0: There is no significant difference in fault-proneness between the classes that participate in

each single pattern and those that do not participate in that pattern.

- H1: There is a significant difference in fault-proneness between the classes that participate in

each single pattern and those that do not participate in that pattern.

• Hypothesis 4

- H0: There is no significant difference in fault-proneness among the classes that participate in

the different roles of each design pattern.

- H1: There is a significant difference in fault-proneness among the classes that participate in

the different roles of each design pattern.

3.2 Data collection and description

In the area of empirical software engineering, data collection is the grand challenge that hinders

296

Empirical assessment of design patterns’ fault-proneness at different granularity levels

Table 2 Summary of subject systems information

Systems
JHotDraw

v5.1
JUnit v3.7

Lexi v0.1.1

alpha
Nutch v0.4 PMD v1.8

Size in classes 155 78 24 165 446

% of faulty classes 29% 11.5% 44% 44.8% 52.2%

% of the classes that participate in

design patterns
74% 57.6% 28% 13.3% 10.6%

the development of this area. There are three reasons for this problem. First, software development

organizations are more concerned with getting the software system working and delivering it to the

customers. They are not concerned with collecting data for research purposes. Second, the data-

collection process is time-consuming and costly. Third, even if the development organization

collects data, the data are mostly kept private within the organization for security purposes

(Wohlin 2013) (Bosu and MacDonell 2013).

The previously stated reasons are common in the area of empirical software engineering

research. In our case, we found that only three works have investigated the relationship between

faults and design patterns (Vokac 2004, Ampatzoglou et al. 2011, Gatrell and Counsell 2011). The

data used in two of these works are industrial data. These data sets are private. This gives another

indication of the scarcity of pattern data. This scarcity was the reason that we restricted our work

to Java systems. We could not find systems written in different programming languages with

pattern and fault data. We also restricted our work to 17 of the 23 GoF patterns for the same

reason. We could not find systems that implemented the other six patterns with pattern and fault

data.

Data were collected from five open-source Java systems (JHotDraw v5.1, JUnit v3.7, Lexi

v0.1.1 alpha, Nutch v0.4, and PMD v1.8). These systems are of different domains and sizes. The

size of each system is 155, 78, 24, 165, and 446 classes, respectively. The percentages of faulty

classes in each system are 29%, 11.5%, 44%, 44.8%, and 52.2%, respectively. The percentages of

pattern classes in each system are 74%, 57.6%, 28%, 13.3%, and 10.6%, respectively. A summary

of this information is shown in Table 2.

We collected the pattern data from the P-Mart repository (Guéhéneuc 2007) and the fault data

from the Concurrent Versions System (CVS).

The process of preparing the data for analysis is as follows: First, all the classes that belong to

each system are listed. Then we label each class as faulty or not. After that, we label each class as

participating in a design pattern or not. If it participates, we state its categories, patterns, and roles.

The reason for choosing the aforementioned subject systems is the availability of their pattern

information in the P-Mart repository (Guéhéneuc 2007). The P-Mart repository is a reliable source

of pattern data. It has been used by researchers for different purposes (Arcelli Fontana et al. 2011),

(De Lucia et al. 2009), (De Lucia, Deufemia et al. 2010), (Bernardi, Cimitile et al. 2013),

(Guéhéneuc, Guyomarc'H et al. 2010). Before considering this option, the literature was surveyed

to check the availability of pattern detection tools. We found ten tools (Guéhéneuc and Antoniol

2008), (Jing et al. 2007), (Lucia et al. 2009), (Niere et al. 2002), (Arcelli Fontana and Zanoni

2011), (Nija and Olsson 2006), (Guéhéneuc 2005), (Tsantalis et al. 2006), (Smith and Stotts 2003),

(Dietrich and Elgar 2007). However, none of them was suitable for our work. For example, some

of these tools either provide poor performance or performance evaluations are absent. Some other

tools are not capable of detecting all the roles of design patterns. Other tools are only capable of

297

Mawal A. Mohammed and Mahmoud O. Elish

Table 3 Number of instances of each design patterns

Category Pattern #

Creational patterns

Abs. factory 0

Builder 3

Factory method 6

Prototype 2

Singleton 7

Structural patterns

Adapter 4

Bridge 2

Composite 4

Decorator 2

Facade 0

Flyweight 0

Proxy 1

Behavioral patterns

Chain of resp. 0

Command 3

Interpreter 0

Iterator 3

Mediator 0

Memento 2

Observer 9

State 2

Strategy 6

Template 6

Visitor 1

Total # of instances 63

Table 4 Descriptive statistics for faulty and participant classes

Systems # of classes Total LOC # of faulty classes
of participating classes

in DPs

All systems 868 85,702 372 (42.8%) 238 (27.4%)

detecting a small set of design patterns.

Given the limitations of design patterns detection tools, we decided to search for another source

of pattern data. This led us to the P-Mart repository, a reliable source of pattern data that has been

used in several works (Arcelli Fontana et al. 2011), (De Lucia et al. 2009), (De Lucia et al. 2010),

(Bernardi et al. 2013), (Guéhéneuc et al. 2010). The P-Mart repository contains design pattern data

for nine systems. We considered five of them because we could not find fault data for the other

four.

We collected fault data from the development CVS files associated with each subject system.

All five subject systems are hosted with their CVS files on the Sourceforge website for open-

source projects. CVS files contain the commit entries associated with each system. Each class file

298

Empirical assessment of design patterns’ fault-proneness at different granularity levels

in the system has a section in the CVS file, which documents the different commits made to that

file. We collected the fault data by examining each commit for each class in each subject system

searching for keywords such as “fault,” “bug,” “defect,” etc. The fault density of each class was

then computed by dividing the number of class faults by kilo lines of code (KLOC) in each class.

The number of instances of each design pattern in our dataset is shown in Table 3. There are 63

instances of design patterns.

To calculate the descriptive statistics in Table 4, we used the understand tool (SciTools 2014)

and Microsoft Excel. The Understand tool is used to calculate executable LOC, and Microsoft

Excel is used to calculate the percentages of faulty classes and the percentage of the classes that

participate in the design patterns. To calculate the percentages of faulty classes, we divide the

number of classes that have one or more faults by the number of all classes. The same procedure is

done in calculating the percentage of the classes that participate in the design patterns. We divide

the number of classes that participate in one or more design patterns by the number of all classes.

The number of classes that participate in these instances is 238 (27.4%), as shown in Table 4. In

addition, the faulty classes constitute 42.8% of the total number of classes.

3.3 Data analysis procedure

In this study, we evaluate the association between design patterns and fault-proneness. The

dependent variable is the fault proneness (faulty or not), and the independent variable is a Boolean

variable (participant in a design pattern or not). The independent variable is evaluated at four

levels: the design, category, pattern, and role level. We evaluate the significant difference in fault-

proneness between the classes that participate in design patterns and the non-participant classes at

the design, category, pattern, and role levels.

For the data analysis, we used two non-parametric tests: the Mann-Whitney U test (Mann and

Whitney 1947) and the Kruskal-Wallis test (Kruskal and Wallis 1952). To perform these tests, we

used the SPSS software. The Mann-Whitney test is used to compare differences between two

groups, whilst the Kruskal-Wallis test is used to compare differences among more than two

groups. In our case, the Mann-Whitney test was used to compare the differences in fault-proneness

between two groups, and the Kruskal-Wallis was used to compare the differences in fault-

proneness among more than two groups.

At the design level, the Mann-Whitney test was used to compare the difference in fault-

proneness between the classes that participate in design patterns and non-participant classes. In

addition, we used the Mann-Whitney test to compare the difference in fault-proneness between the

classes that participate in each design pattern and the classes that do not participate in that pattern.

At the category level, we used the Kruskal-Wallis test to compare differences in fault-proneness

among the classes that participate in the different categories of design patterns. The Kruskal-

Wallis test was also used to compare differences among the different roles in each design pattern.

The obtained p-values associated with comparing more than two groups using the Kruskal-Wallis

test is corrected using the Bonferroni method.

4. Results and discussion

The results of the measurement and comparison of the fault-proneness of design patterns are

presented in this section. The investigation of fault-proneness was conducted at four levels as

299

Mawal A. Mohammed and Mahmoud O. Elish

Fig. 1 Fault-proneness comparison of participant vs. non-participant classes

follows.

4.1 Design level

At the design level, we evaluated the difference in fault-proneness between the classes that

participate in any design pattern and the classes that do not participate in any design pattern (i.e.,

participant vs. non-participant). This evaluation gives general insight on the association between

design patterns and class fault-proneness.

As Fig. 1 shows, the participant classes were less fault-prone, as a percentage, than the non-

participant classes. The p-value of the significance of the difference in the fault-proneness of the

participating versus the non-participating classes is 0.000080. Thus, the obtained p-value is

significant (<0.05), so we reject the null hypothesis of Hypothesis 1 and accept its alternative

hypothesis.

The obtained results say, in other words, that using design patterns improve the quality of

software systems by reducing the faults. This might be due to the fact that the design patterns are

documented and well-known solutions to design problems. This makes their application and

modification safer in terms of introduction of faults compared to the application of ad hoc

solutions. In addition to that, the design patterns provide a language for communication among the

system’s developers and maintainers making understandability of the design and the code easier.

However, this depends on the experience of the system developers and implementers with the

design patterns.

4.2 Category level

At the level, we measured and compared the fault-proneness of the different categories of

design patterns. In addition, we measured and compared the different categories of design patterns

to the classes that do not participate in any design pattern. We found that the classes that

participate in structural and behavioral design patterns are less fault-prone than the non-participant

classes and the classes that participate in the creational design patterns, as shown in Table 5 and

300

Empirical assessment of design patterns’ fault-proneness at different granularity levels

Table 5 P-values associated with evaluating the fault-proneness of the different categories

All systems Creational Structural Behavioral

Non-participant 0.1714 0.0000 0.0080

Creational - 0.0000 0.0020

Structural - - 1

Fig. 2 Fault-proneness comparison of the different categories

Fig. 2. For those cases, we reject the null hypothesis of Hypothesis 2 and accept its alternative

hypothesis. The results suggest that structural design patterns tend to be less fault-prone. This

might result from the fact that structural design patterns are easier to understand or that structural

design patterns are clearer.

The obtained results say in other words that the structural design patterns improve the quality

of software by reducing the introduction of faults in the software systems. This might due to that

the structural design patterns are solutions to structural problems that considered good and known

solutions to such problems. These solutions lead to an overall improved structure. A good structure

leads to easier to change systems which leads to less number of faults. The obtained results also

suggest that the application of behavioral design patterns leads to fewer faults. This might be due

to that the behavioral design patterns work on the behavioral aspects of the system which is

difficult to understand. This difficulty might be lowered by characterizing some parts of the

behavioral as patterns. These patterns encapsulate the characteristics of the design problems and

the solutions making their sharing among the developing and the maintenance teams easier.

4.3 Pattern and role levels

At the pattern level, we evaluated the difference in fault-proneness between the classes that

participate in each design pattern and the classes that do not participate. At the role level, we

evaluated the difference in fault-proneness among the classes that participate in the different roles

of each design pattern.

301

Mawal A. Mohammed and Mahmoud O. Elish

Table 6 Evaluation results for the creational patterns and their roles

Builder

Builder classes vs. Non-builder classes 0.0090

Overall role comparison 0.0220

Concrete-builder vs. non-participant 0.0090

Factory Method

Factory method classes vs. non-factory classes 0.0284

Overall role comparison 0.0110

Concrete-product vs. non-participant 0.0010

Concrete-product vs. concrete-creator 0.0130

Prototype

Prototype classes vs. non-prototype classes 0.6373

Overall role comparison 0.8910

Singleton classes vs. non-singleton classes 0.9951

Fig. 3 Comparison of the fault-proneness of the creational design patterns and their roles

4.3.1 Creational design patterns
The evaluation of the difference in fault-proneness between the builder classes and the non-

builder classes, and the factory method and the non-factory method classes resulted in significant

302

Empirical assessment of design patterns’ fault-proneness at different granularity levels

Table 7 Evaluation results for the structural design patterns and their roles

Adapter

Adapter classes vs. non-adapter classes 0.0054

Overall role comparison 0.0020

Adapter vs. non-participant 0.0000

Adapter vs. adaptee 0.0370

Adapter vs. client 0.0080

Composite

Composite classes vs. non-composite classes 0.0032

Overall role comparison 0.0090

Leaf vs. non-participant 0.0030

Decorator

Decorator classes vs. non-decorator classes 0.0008

Overall role comparison 0.0030

Concrete-decorator vs. non-participant 0.0290

Concrete-component vs. non-participant 0.0010

Bridge

Bridge classes vs. non-bridge classes 0.8672

Overall role comparison 0.1960

Proxy

Proxy classes vs. non-proxy classes 0.1323

Overall role comparison 0.5190

p-values, as reported in Table 6. The obtained results suggest that there is a significant difference

in fault-proneness between the builder classes and the non-builder classes, and the factory method

and the non-factory method classes. Therefore, for these two patterns, we reject the null hypothesis

of Hypothesis 3 and accept its alternative hypothesis. As shown in Fig. 3, the classes that

participate in the builder design pattern are more fault-prone than the non-builder classes and the

classes that participate in the factory method design pattern are less fault-prone than the non-

factory method classes. The situation was different for the prototype and the singleton patterns.

The p-values associated with evaluating differences in fault-proneness between the participant and

the non-participant classes of the prototype and the singleton patterns are insignificant, as reported

in Table 6. As indicated, the obtained results indicate that there are no significant differences in the

fault-proneness at the pattern level. Therefore, for these two patterns, we accept the null hypothesis

of Hypothesis 3.

Evaluating the difference in fault-proneness among the different roles of builder classes, and

among the different roles of the factory method classes result in significant differences, as shown

in Table 6. For the builder pattern, only one pair of roles results in a significant difference:

concrete-builder vs. non-participant. For the factory method, only two pairs of roles show

significant differences: concrete-product vs. non-participant and concrete-product vs. concrete-

creator. Therefore, for these three pairs of roles, we reject the null hypothesis of Hypothesis 4 and

accept its alternative hypothesis. As shown in Fig. 3, the concrete builder classes are more fault-

303

Mawal A. Mohammed and Mahmoud O. Elish

Fig. 4 Comparison of the fault-proneness of the structural design patterns and their roles

prone than the non-participant classes in builder patterns we can also see that the classes that

participate in the concrete-product role are less fault-prone than those that participate in the

concrete-creator role and less fault-prone than the non-participant classes. For the prototype design

pattern, there is no significant difference among the different roles. For the singleton, it has only

one role.

4.3.2 Structural design patterns
The p-values associated with the fault-proneness evaluation of the structural design patterns

304

Empirical assessment of design patterns’ fault-proneness at different granularity levels

Table 8 Evaluation results for the behavioral design patterns and their roles

Command

Command classes vs. non-command classes 0.5772

Overall role comparison 0.0920

Iterator

Iterator classes vs. non-iterator classes 0.8155

Overall role comparison 0.6120

Memento

Memento classes vs. non-memento classes 0.1949

Overall role comparison 0.1490

Observer

Observer classes vs. non-observer classes 0.6258

Overall role comparison 0.4670

State

State classes vs. non-state classes 0.5430

Overall role comparison 0.2630

Strategy

Strategy classes vs. non-strategy classes 0.5130

Overall role comparison 0.3090

Template Method

Template method classes vs. non-template classes 0.5812

Overall role comparison 0.2180

Visitor

Visitor classes vs. non-visitor classes 0.8930

Overall role comparison 0.4270

reveal that there are significant differences in fault-proneness at the pattern level and at the role

level for the adapter, composite, and composite design patterns, as reported in Table 7. As shown

in Fig. 4, the participant classes are less fault-prone than the nonparticipant classes in all of these

patterns. Therefore, for these patterns, we reject the null hypothesis of Hypothesis 3 and accept its

alternative hypothesis. For the bridge and the proxy patterns, the p-values associated with

evaluating the difference between the participating and the non-participating classes are not

significant. Therefore, we accept the null hypothesis of Hypothesis 3 for these two patterns.

In evaluating the difference among the classes that participate in the different roles, we found

that three pairs of roles are associated with significant differences: adapter vs. non-participant,

adapter vs. adaptee, and adapter vs. client. As shown in Fig. 4, the classes that participate in the

adapter design pattern are less fault-prone than those that participate in the non-participant,

adaptee, and client roles. For the composite pattern, only one pair of roles shows significant

difference: leaf vs. non-participant. As shown in Fig. 4, the classes that participate in the leaf role

are less fault-prone than the non-participant classes. For the decorator design pattern, two pairs of

roles show significant differences: concrete-decorator vs. non-participant, and concrete-component

vs. non-participant. As shown in Fig. 4, the classes that participate in the concrete-decorator and

305

Mawal A. Mohammed and Mahmoud O. Elish

Table 9 comparison of the fault-proneness of the different patterns comparison

Pair p-value

Decorator vs. Builder 0.011

Adapter vs. Builder 0.035

Composite vs. Builder 0.035

Fig. 5 Comparison of the fault-proneness of the different patterns

concrete-component classes are less fault-prone than the non-participant classes. Therefore, for

these pairs of roles, we reject the null hypothesis of Hypothesis 4 and accept its alternative

hypothesis. For the bridge and proxy patterns, there is no significant difference in fault-proneness

among their roles. Therefore, for these two patterns, we accept the null hypotheses of Hypothesis

4.

4.3.3 Behavioural design patterns
The p-values associated with evaluating the differences in the fault-proneness of all the

behavioral design patterns are insignificant at the pattern level and at the role level, as shown in

Table 8. These values suggest that there are no significant differences in the fault-proneness of the

classes that participate in each design pattern and the non-participant classes in that pattern.

Therefore, we accept the null hypothesis of Hypothesis 3 for all the behavioral design patterns. In

addition, the results suggest that there are no significant differences in the fault-proneness among

the different roles of each pattern. Therefore, we accept the null hypothesis of Hypothesis 4 as well

for these cases.

4.4 Design patterns comparison

In this section, we compare the difference in fault-proneness among the different design

patterns. We found that, among 136 pairwise tests, only three pairs of patterns show significant

difference: Decorator vs. Builder, Adapter vs. Builder, and Composite vs. Builder. In Table 9, we

presented the results associated with these pairs. We can see in Fig. 5 that the classes associated

306

Empirical assessment of design patterns’ fault-proneness at different granularity levels

with the builder design pattern are more fault-prone than the classes that participate in the

decorator, the adapter, and the composite design patterns.

The previous few sub-sections presented the results associated with evaluating the difference in

fault-proneness in the pattern level and in the role level. The obtained results suggest that the use

of 4 design patterns improve the quality of software systems by reducing faults. These patterns are:

adapter, composite, decorator, and factory method. The first three patterns are structural patterns.

The obtained improvement might be due to the improvement in the structure of the software

system as we mentioned in section 4.2. The improvement associated with the fourth pattern, the

factory method, might be due to the context in which the factory method pattern works. The

factory method pattern eases the creation of objects by defining an interface for creating objects

but the instantiation of the class is let to the subclasses. The situation was different with the builder

pattern, the builder pattern classes were more fault-prone than the non-participant classes and also

than the classes that participate in several patterns: the adapter, the composite, and the decorator

design patterns. we think the reason for that might stem from the context of the builder pattern.

The builder pattern work with the construction of complex objects. This complexity might be the

reason that increases the faults of the builder classes. The roles that show significant difference

were mostly concrete roles. These roles implement functionality which makes them subject to

change which is different from the abstract roles that define interfaces only. This might be the

reason for the concrete classes to be more fault-prone than the other roles. However, this was not

general conclusion since that some of the concrete classes were less fault-prone than the other

roles and less than the non-participant classes.

4.5 Threats to validity

Construct validity. The threat to the construct validity of this experiment is associated with the

fault collection. We know that discovering all faults in a system seems impossible. There might be

some other faults that have not been discovered in the subject systems. However, in our case, the

subject systems are popular and widely used open-source systems. They have been also used in

several empirical studies in the literature. We thus believe that the data sets that were collected

from them are reliable.

Internal validity. Internal validity is the degree to which the observed effects depend only on

the intended experimental variables. The major threat to the internal validity of this work stems

from the developer background. In fact, we are not sure whether the developers of these systems

are well trained to work with design patterns. This could be a serious threat to the validity of the

work in case we were studying a cause-and-effect relationship. In such a case, we would be

required to control every variable. Since we are not studying a cause-and-effect relationship, we do

not need to control every variable. In fact, we cannot control every variable. For example, the level

of experience of the developers of the subject systems, this variable can influence the faults that

can occur later in the systems. However, it is difficult, if not impossible, to control such variable.

In our case, we are investigating whether there is an association between fault-proneness (the

dependent variable) and design patterns (independent variables). That is not a cause-and-effect

relationship. This kind of studies can serve as a precursor for deeper investigations such as

controlled experiments.

External validity. The generalizability of this work is another concern. The ability to generalize

the results of such a study-an investigation of the relationship between the design patterns and

fault-proneness in object-oriented systems-requires the consideration of many factors. First,

307

Mawal A. Mohammed and Mahmoud O. Elish

systems from different programming languages and/or of different sizes and complexities should

be considered. In our study, the subject systems were all written in Java and they are small-

medium size systems. Second, we used open-source systems in our experiment. We did not

consider commercial systems. To increase the generalizability of the work, commercial systems

should be considered as well. However, the obtained results can be considered one step on the

road, given the scarcity of pattern data.

5. Conclusions

In this study, we measure and compare the fault proneness of design patterns at four granularity

levels: the design, category, pattern, and role levels. We found that the participant classes in the

design patterns are less fault-prone than the non-participant classes at the design level. At the

category level, we found that the classes that participate in the structural and behavioral categories

are less fault-prone than the non-participant classes in these categories and the classes that

participate in the creational design patterns. At the pattern level, we found that the classes that

participate in the factory method, adapter, composite, and decorator patterns are less fault-prone

than the classes that do not participate in these patterns. In the case of the builder design pattern,

the classes that participate in it are more fault-prone than the non-participant classes. All of these

five patterns are either creational or structural patterns. None of the behavioral patterns shows an

association with fault-proneness.

We also found that only these five patterns (i.e., builder, factory method, adapter, composite,

and decorator) show significant differences in fault-proneness among their roles. In examining

their roles, we found that the concrete-builder role is significantly more fault-prone than the non-

participant classes. We think this is the case because the role includes detailed implementations of

the methods of the abstract class. For the factory method, the classes that participate in the

concrete-product role tend to be significantly less fault-prone than those that participate in the

concrete-creator role and the non-participant classes. For the roles of the adapter design pattern,

the classes that participate in the adapter role tend to be significantly less fault-prone than those

that participate in the adaptee or the client roles. In addition, we found that the classes that

participate in the adapter role tend to be significantly less fault-prone than the non-participant

classes as well. For the composite pattern, the classes that participate in the leaf role tend to be

significantly less fault-prone than the non-participant classes. Finally, the classes that participate in

the concrete-decorator and the concrete-component roles in the decorator design pattern are

significantly less fault-prone than the non-participant classes.

We recommend the use of design patterns in software design with respect to fault-proneness.

However, the builder pattern has a negative association with fault-proneness, which suggests that it

should be applied carefully. For patterns that do not show a significant association with fault-

proneness, we recommend their application as well since these patterns have other benefits, such

as improving programmers’ productivity and promoting best practices, and at the same time, they

do not seem to be negatively associated with faults.

This work can be extended further by including more patterns and more systems. In addition to

that, the work can be extended by including systems developed with different programming

languages. Moreover, more quality attributes can be addressed in the future. Design patterns

developed with other paradigms, such as aspect-oriented patterns, can be investigated in future

works as well.

308

Empirical assessment of design patterns’ fault-proneness at different granularity levels

Acknowledgments

The authors would like to acknowledge the support provided by the Deanship of Scientific

Research at King Fahd University of Petroleum & Minerals (KFUPM) under Research Grant

IN121056. We also would like to thank the anonymous reviewers for their insightful comments

and suggestions.

References

Afacan, T. (2011), “State design pattern implementation of a DSP processor: A case study of TMS5416C”,

Proceedings of the 6th IEEE International Symposium on Industrial Embedded Systems (SIES).

Alexander, C., Ishikawa, S., Silverstein, M., Jacobson, M., Fiksdahl-King, I. and Angel, A.S. (1977), A

Pattern Language, Oxford University Press, New York, U.S.A.

Ali, M. and Elish, M. (2013), “A comparative literature survey of design patterns impact on software

quality”, Proceedings of the 4th International Conference on Information Science and Applications

(ICISA).

Ampatzoglou, A., Chatzigeorgiou, A., Charalampidou, S. and Avgeriou, P. (2015), “The effect of GoF

design patterns on stability: A case study”, IEEE Trans. Softw. Eng., 41(8), 781-802.

Ampatzoglou, A., Kritikos, A., Arvanitou, E.M., Gortzis, A., Chatziasimidis, F. and Stamelos, I. (2011),

“An empirical investigation on the impact of design pattern application on computer game defects”,

Proceedings of the 15th International Academic MindTrek Conference, Tampere, Finland.

Arcelli Fontana, F., Maggioni, S. and Raibulet, C. (2011), “Understanding the relevance of micro-structures

for design patterns detection”, J. Syst. Softw., 84(12), 2334-2347.

Arcelli Fontana, F. and Zanoni, M. (2011), “A tool for design pattern detection and software architecture

reconstruction”, Informat. Sci., 181(7), 1306-1324.

Aversano, L., Canfora, G., Cerulo, L., Grosso, C.D. and Penta, M.D. (2007), “An empirical study on the

evolution of design patterns”, Proceedings of the the 6th Joint Meeting of the European Software

Engineering Conference and the ACM SIGSOFT Symposium on the Foundations of Software

Engineering, Dubrovnik, Croatia.

Bernardi, M.L., Cimitile, M. and Di Lucca, G.A. (2013), “A model-driven graph-matching approach for

design pattern detection”, Proceedings of the 20th Working Conference on Reverse Engineering (WCRE).

Bieman, J.M., Straw, G., Wang, H., Munger, P.W. and Alexander, R.T. (2003), “Design patterns and change

proneness: An examination of five evolving systems”, Proceedings of the 9th International Software

Metrics Symposium.

Boehm, B.W. and Papaccio, P.N. (1988), “Understanding and controlling software costs”, IEEE Trans.

Softw. Eng., 14(10), 1462-1477.

Bosu, M.F. and MacDonell, S.G. (2013), “A taxonomy of data quality challenges in empirical software

engineering”, Proceedings of the Software Engineering Conference (ASWEC).

De Lucia, A., Deufemia, V., Gravino, C. and Risi, M. (2009), “Behavioral pattern identification through

visual language parsing and code instrumentation”, Proceedings of the 13th European Conference on

Software Maintenance and Reengineering.

De Lucia, A., Deufemia, V., Gravino, C. and Risi, M. (2010), “Improving behavioral design pattern

detection through model checking”, Proceedings of the 14th European Conference on Software

Maintenance and Reengineering (CSMR).

Dietrich, J. and Elgar, C. (2007), “Towards a web of patterns”, Web Semant.: Sci. Serv. Agent. World Wide

Web, 5(2), 108-116.

Gamma, E., Helm, R., Johnson, R. and Vlissides, J. (1995), Design Patterns: Elements of Reusable Object-

Oriented Software, Addison-Wesley.

Garzás, J. and Piattini, M. (2009), “Do rules and patterns affect design maintainability?”, J. Comput. Sci.

309

Mawal A. Mohammed and Mahmoud O. Elish

Technol., 24(2), 262-272.

Gatrell, M. and Counsell, S. (2011), “Design patterns and fault-proneness a study of commercial C#

software”, Proceedings of the 5th International Conference on Research Challenges in Information

Science (RCIS).

Gatrell, M., Counsell, S. and Hall, T. (2009), “Design patterns and change proneness: A replication using

proprietary C# software”, Proceedings of the 16th Working Conference on Reverse Engineering.

Guéhéneuc, Y.G. (2005), “Ptidej: Promoting patterns with patterns”, Proceedings of the 1st ECOOP

workshop on Building a System using Patterns, Glasgow, U.K.

Guéhéneuc, Y.G. (2007), “P-mart: Pattern-like micro architecture repository”, Proceedings of the 1st

EuroPLoP Focus Group on Pattern Repositories.

Guéhéneuc, Y.G., Guyomarc’H, J.Y. and Sahraoui, H. (2010), “Improving design-pattern identification: A

new approach and an exploratory study”, Softw. Qualit. Contr., 18(1), 145-174.

Guéhéneuc, Y.G. and Antoniol, G. (2008), “DeMIMA: A multilayered approach for design pattern

identification”, IEEE Trans. Softw. Eng., 34(5), 667-684.

Hegedűs, P., Bán, D., Ferenc, R. and Gyimóthy, T. (2012), Myth or Reality? Analyzing the Effect of Design

Patterns on Software Maintainability, Computer Applications for Software Engineering, Disaster

Recovery, and Business Continuity, Springer Berlin Heidelberg, 340, 138-145.

Jaafar, F., Guéhéneuc, Y.G., Hamel, S., Khomh, F. and Zulkernine, M. (2016), “Evaluating the impact of

design pattern and anti-pattern dependencies on changes and faults”, Empir. Softw. Eng., 21(3), 896-931.

Jing, D., Lad, D.S. and Yajing, Z. (2007), “DP-Miner: Design pattern discovery using matrix”, Proceedings

of the 14th Annual IEEE International Conference and Workshops on the Engineering of Computer-Based

Systems.

Juristo, N. and Vegas, S. (2011), “Design patterns in software maintenance: An experiment replication at

UPM-experiences with the RESER’11 joint replication project”, Proceedings of the 2nd International

Workshop on Replication in Empirical Software Engineering Research (RESER).

Krein, J.L., Pratt, L.J., Swenson, A.B., MacLean, A.C., Knutson, C.D. and Eggett, D.L. (2011), “Design

patterns in software maintenance: An experiment replication at brigham young university”, Proceedings

of the 2nd International Workshop on Replication in Empirical Software Engineering Research (RESER).

Kruskal, W.H. and Wallis, W.A. (1952), “Use of ranks in one-criterion variance analysis”, J. Am. Stat.

Assoc., 47, 583-621.

Lucia, A.D., Deufemia, V., Gravino, C. and Risi, M. (2009), “Design pattern recovery through visual

language parsing and source code analysis”, J. Syst. Softw., 82(7), 1177-1193.

Mann, H.B. and Whitney, D.R. (1947), On a Test of Whether One of Two Random Variables is

Stochastically Larger Than the Other, Institute of Mathematical Statistics.

Mayvan, B.B., Rasoolzadegan, A. and Yazdi, Z.G. (2017), “The state of the art on design patterns: A

systematic mapping of the literature”, J. Syst. Softw., 127, 93-118.

Nanthaamornphong, A. and Carver, J.C. (2011), “Design patterns in software maintenance: An experiment

replication at university of alabama”, Proceedings of the 2nd International Workshop on Replication in

Empirical Software Engineering Research (RESER).

Niere, J., Schafer, W., Wadsack, J.P., Wendehals, L. and Welsh, J. (2002), “Towards pattern-based design

recovery”, Proceedings of the 24th International Conference on Software Engineering.

Nija, S. and Olsson, R.A. (2006), “Reverse engineering of design patterns from java source code”,

Proceedings of the 21st IEEE/ACM International Conference on Automated Software Engineering.

Pham, H. (2001), Software Reliability, Wiley Encyclopedia of Electrical and Electronics Engineering, John

Wiley & Sons, Inc.

Porter, A.A. and Selby, R.W. (1990), “Empirically guided software development using metric-based

classification trees”, Softw. IEEE, 7(2), 46-54.

Prechelt, L. and Liesenberg, M. (2011), “Design patterns in software maintenance: An experiment

replication at freie university; Berlin”, Proceedings of the 2nd International Workshop on Replication in

Empirical Software Engineering Research (RESER).

Prechelt, L., Unger, B., Tichy, W.F., Brossler, P. and Votta, L.G. (2001), “A controlled experiment in

310

Empirical assessment of design patterns’ fault-proneness at different granularity levels

maintenance: Comparing design patterns to simpler solutions”, IEEE Trans. Softw. Eng., 27(12), 1134-

1144.

Rudzki, J. (2005), “How design patterns affect application performance-a case of a multi-tier J2EE

application”, Proceedings of the 4th international conference on Scientific Engineering of Distributed

Java Applications, Luxembourg-Kirchberg, Luxembourg.

Scanniello, G., Gravino, C., Risi, M., Tortora, G. and Dodero, G. (2015), “Documenting design-pattern

instances: A family of experiments on source-code comprehensibility”, ACM Trans. Softw. Eng. Meth.,

24(3), 1-35.

SciTools (2014), http://www.scitools.com/download/.

Smith, J.M. and Stotts, D. (2003), SPQR: Flexible Automated Design Pattern Extraction from Source Code.

Tsantalis, N., Chatzigeorgiou, A., Stephanides, G. and Halkidis, S.T. (2006), “Design pattern detection using

similarity scoring”, IEEE Trans. Softw. Eng., 32(11), 896-909.

Vokac, M. (2004), “Defect frequency and design patterns: An empirical study of industrial code”, IEEE

Trans. Softw. Eng., 30(12), 904-917.

Vokac, M., Tichy, W., Sjoberg, D., Arisholm, E. and Aldrin, M. (2004), “A controlled experiment

comparing the maintainability of programs designed with and without design patterns-a replication in a

real programming environment”, Empir. Softw. Eng., 9(3), 149-195.

Wohlin, C. (2013), “Empirical software engineering research with industry: Top 10 challenges”,

Proceedings of the 1st International Workshop on Conducting Empirical Studies in Industry.

TK

311

