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Abstract.  There are several claimed benefits for the impact of design patterns (DPs) on software quality. 

However, the association between design patterns and fault-proneness has been a controversial issue. In this 

work, we evaluate the fault-proneness of design patterns at four levels: the design level, category level, 

pattern level, and role level. We used five subject systems in our empirical study. As a result, we found that, 

at the design level, the classes that participate in the design patterns are less fault-prone than the non-

participant classes. At the category level, we found that the classes that participate in the behavioral and 

structural categories are less fault-prone than the non-participant classes. In addition, we found that the 

classes that participate in the structural design patterns are less fault-prone than the classes that participate in 

the other categories. At the pattern level, we found that only five patterns show significant associations with 

fault-proneness: builder, factory method, adapter, composite, and decorator. All of these patterns except for 

builder show that the classes that participate in each one of them are less fault-prone than the non-participant 

classes in that pattern. The classes that participate in the builder design pattern were more fault-prone than 

the non-participant classes and the classes that participate in several patterns: the adapter, the composite, and 

the decorator design patterns. At the role level, the most significant differences were between the classes that 

participate in some roles and the non-participant classes. Only three pairs of design pattern roles show 

significant differences. These roles are concrete-product vs. concrete-creator, adapter vs. adaptee, and 

adapter vs. client. The results recommend the use of design patterns because they are less fault-prone in 

general except for the builder design pattern, which should be applied with care and addressed with more 

test cases. 
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1. Introduction 
 

Design patterns are intended to encapsulate solutions to recurring design problems. They 

represent valuable design expertise that can be used in documenting and communicating these 

solutions. They were first introduced by Alexander et al. in their book Pattern Language in the 

context of architecture (Alexander et al. 1977). Later, the notion of design patterns was developed 
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in the context of object-oriented software design by Gamma, Helm, Johnson, and Vlissides (GoF) 

(Gamma et al. 1995). In their book, they classified design patterns into three categories: creational, 

structural, and behavioral. Each category includes a different set of patterns that share some 

common characteristics. Each pattern has one or more classes. Each class in each design pattern 

plays a role in that pattern. 

Fault-proneness analysis is of a great importance for software quality control and assurance. 

The ability to analyze the fault-proneness of design patterns can help in minimizing costs and 

increasing the effectiveness of software testing. Some previous studies have suggested that the 

majority of faults occur in a few components of the software system (Boehm and Papaccio 1988, 

Porter and Selby 1990). This can be applicable to design patterns because the different patterns 

have different structures and different behaviors. These differences might have an effect on their 

proneness to faults. Some patterns might be more fault-prone than others (Vokac 2004, 

Ampatzoglou et al. 2011, Gatrell and Counsell 2011). Therefore, specifying which design patterns 

are more fault-prone is of great help for software designers and testers. Analyzing the relationship 

between design patterns and fault-proneness can provide designers, implementers, and testers with 

valuable knowledge that can eventually lead to less fault-prone software. For example, software 

designers and implementers will be able, utilizing this knowledge, to apply design patterns with 

care so that the produced design is less fault-prone. Testers, as well, can utilize this knowledge to 

target the problematic design patterns with more test cases.  

The production of a software with a minimal number of faults is of special interest to the 

software community (Pham 2001). As a design construct, design patterns can play an important 

role in software fault-proneness. However, the relationship between design patterns and fault-

proneness has not been fully studied, and the obtained results do not give a clear indicator on this 

relation. In addition, there is no agreement among the results of previous studies on the tendency 

of this relationship. Moreover, not all the design patterns, and not all the levels (design, category, 

pattern, and role) are addressed in the literature. In this work, we decided to go deeper in 

investigating the relationship between the fault-proneness and the design patterns by addressing 

the roles within patterns. Doing this enables us to get a deeper insight into the contribution of each 

role in fault-proneness of each pattern.   

The main objective of the current study is to measure and compare the fault-proneness of 

design patterns on the different levels of design. At the design level, we measure and compare the 

fault-proneness of the classes that participate in design patterns versus the classes that do not 

participate in design patterns. At the category level, we measure and compare the fault-proneness 

among the different categories of design patterns. At the pattern level, we measure and compare 

the fault-proneness of each design pattern. Finally, at the role level, we measure and compare the 

fault-proneness of the classes that participate in each role in each design pattern. 

 

 

2. Literature review 
 

The relationship between the design patterns and the software quality has been discussed in a 

comparative literature survey in the literature (Ali and Elish 2013). Four quality attributes are 

addressed in the literature: maintainability (Prechelt et al. 2001, Vokac et al. 2004, Garzás and 

Piattini 2009, Juristo and Vegas 2011, Krein et al. 2011, Nanthaamornphong and Carver 2011, 

Prechelt and Liesenberg 2011, Hegedűs et al. 2012), change-proneness (Bieman et al. 2003, 

Aversano et al. 2007, Gatrell et al. 2009), performance (Rudzki 2005, Afacan 2011), and faults  
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Table 1 Summary of our work compared to the existing works in the literature 

Work 
Faults  

Aspect 

# of  

Patterns 

Subject 

Systems 
Granularity level 

(Vokac 2004) 
Fault 

frequency 
5 C++ system Pattern level 

(Ampatzoglou et 

al. 2011) 

Fault 

frequency 
11 Java systems Pattern level 

(Gatrell and 

Counsell 2011) 
Fault-

proneness 
13 C# system Design level and pattern level 

This work 
Fault-

proneness 
17 Java systems 

Four levels: design level, category level,  

pattern level, and role level 

 

 

(Vokac 2004, Ampatzoglou et al. 2011, Gatrell and Counsell 2011). In this study, we will discuss 

works that have addressed the relationship between the design patterns and faults (Vokac 2004, 

Ampatzoglou et al. 2011, Gatrell and Counsell 2011). (Mayvan et al. 2017) conducted a recent 

systematic mapping of the literature on the state of the art on design patterns. They observed 

primary studies that have assessed the impact of applying DPs on the quality of the software 

systems, rather than the quality of DPs themselves, which include (Ampatzoglou et al. 2015, 

Scanniello et al. 2015, Jaafar et al. 2016). (Vokac 2004) conducted a case study that compared the 

defect frequency of the classes that participate in five design patterns in a large commercial C++ 

project: singleton, template method, decorator, observer, and abstract factory. He found that there 

are significant differences in the defect rates among the different patterns that range from 63% to 

154% on average. It was concluded that the complexity of the context is a major factor in the 

association between the defect rates and the design patterns. Some design patterns, such as 

singleton and observer tends mostly to be used in complex contexts. This leads the classes that 

participate in such patterns to be associated with more faults. In contrast, the abstract factory and 

template method design patterns are associated with less complex contexts, so they are associated 

with lower fault rates.  

(Ampatzoglou et al. 2011) compared open-source Java projects with respect to defect 

frequency and debugging efficiency. The comparison was conducted at the system level. The 

authors addressed 11 patterns. Overall, they found no correlation between design pattern instances 

and defect frequency. However, two patterns showed a significant impact: adapter and observer. 

The adapter pattern had a negative impact on fault frequency. Their explanation was that the 

adapter pattern is used often in reuse activities. In such activity, the developers reuse pieces of 

code that they might not fully understand. This can result in faults in the system under 

development. In contrast, the observer pattern showed a positive impact on fault frequency.  

(Gatrell and Counsell 2011) compared the fault-proneness of the classes that participate in the 

design patterns and the non-participant classes. The subject system was a C# industrial system 

consisting of 7,439 classes. They addressed 13 patterns and found a marginal difference between 

the classes that participate in the design patterns and the non-participant classes. In addition, they 

found that the adapter, factory method, and singleton patterns tended to be the most fault-prone 

among the studied patterns. Moreover, they found that the classes associated with more faults tend 

to be more change-frequent. They concluded that the propensity of the classes that participate in 

the design patterns to change is the reason that the classes that participate in some design patterns 

are more fault-prone than others.   
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Table 1 shows a comparison among the works existing in the literature and our work. The 

comparison was conducted in four aspects: the aspect of the faults addressed in the literature, the 

number of patterns addressed, the type of the subject systems, and the granularity level. 

This paper differs from previous works in many ways. In the literature, the fault-proneness of 

design patterns is investigated in only one study, as far as we know. That study used only one 

subject system. In our study, we used five subject systems. In addition, their subject system was a 

C# system. In our study, we used Java systems. Moreover, we covered 17 patterns, more than all 

the other studies. Furthermore, we addressed the different levels (the design, category, pattern, and 

role levels), but other researchers have covered only one level. 

 

 

3. The empirical study 
 

This section describes the empirical study that was conducted. First, the research hypotheses 

are stated. Then the data collection process is described, followed by a discussion of the data 

analysis techniques used in this work. The results are then reported and analyzed. Finally, threats 

to validity are discussed.   

 

3.1 Research hypotheses  
 

In this study, we test the following hypotheses. For each hypothesis, H0 represents the null 

hypothesis and H1 represents the alternative hypothesis of the null hypothesis: 

• Hypothesis 1 

- H0: There is no significant difference in fault-proneness between the classes that participate in 

design patterns (as a whole) and those that do not participate in any pattern 

- H1: There is a significant difference in fault-proneness between the classes that participate in 

design patterns (as a whole) and those that do not participate in any pattern 

• Hypothesis 2 

- H0: There is no significant difference in fault-proneness among the classes that participate in 

the different categories of design patterns. 

- H1: There is a significant difference in fault-proneness among the classes that participate in 

the different categories of design patterns. 

• Hypothesis 3 

- H0: There is no significant difference in fault-proneness between the classes that participate in 

each single pattern and those that do not participate in that pattern. 

- H1: There is a significant difference in fault-proneness between the classes that participate in 

each single pattern and those that do not participate in that pattern. 

• Hypothesis 4 

- H0: There is no significant difference in fault-proneness among the classes that participate in 

the different roles of each design pattern. 

- H1: There is a significant difference in fault-proneness among the classes that participate in 

the different roles of each design pattern. 

 

3.2 Data collection and description 
  

In the area of empirical software engineering, data collection is the grand challenge that hinders  
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Table 2 Summary of subject systems information 

Systems 
JHotDraw 

v5.1 
JUnit v3.7 

Lexi v0.1.1 

alpha 
Nutch v0.4 PMD v1.8 

Size in classes 155 78 24 165 446 

% of faulty classes 29% 11.5% 44% 44.8% 52.2% 

% of the classes that participate in 

design patterns 
74% 57.6% 28% 13.3% 10.6% 

 

 

the development of this area. There are three reasons for this problem. First, software development 

organizations are more concerned with getting the software system working and delivering it to the 

customers. They are not concerned with collecting data for research purposes. Second, the data-

collection process is time-consuming and costly. Third, even if the development organization 

collects data, the data are mostly kept private within the organization for security purposes 

(Wohlin 2013) (Bosu and MacDonell 2013).  

The previously stated reasons are common in the area of empirical software engineering 

research. In our case, we found that only three works have investigated the relationship between 

faults and design patterns (Vokac 2004, Ampatzoglou et al. 2011, Gatrell and Counsell 2011). The 

data used in two of these works are industrial data. These data sets are private. This gives another 

indication of the scarcity of pattern data. This scarcity was the reason that we restricted our work 

to Java systems. We could not find systems written in different programming languages with 

pattern and fault data. We also restricted our work to 17 of the 23 GoF patterns for the same 

reason. We could not find systems that implemented the other six patterns with pattern and fault 

data.   

Data were collected from five open-source Java systems (JHotDraw v5.1, JUnit v3.7, Lexi 

v0.1.1 alpha, Nutch v0.4, and PMD v1.8). These systems are of different domains and sizes. The 

size of each system is 155, 78, 24, 165, and 446 classes, respectively. The percentages of faulty 

classes in each system are 29%, 11.5%, 44%, 44.8%, and 52.2%, respectively. The percentages of 

pattern classes in each system are 74%, 57.6%, 28%, 13.3%, and 10.6%, respectively. A summary 

of this information is shown in Table 2. 

We collected the pattern data from the P-Mart repository (Guéhéneuc 2007) and the fault data 

from the Concurrent Versions System (CVS).  

The process of preparing the data for analysis is as follows: First, all the classes that belong to 

each system are listed. Then we label each class as faulty or not. After that, we label each class as 

participating in a design pattern or not. If it participates, we state its categories, patterns, and roles.   

The reason for choosing the aforementioned subject systems is the availability of their pattern 

information in the P-Mart repository (Guéhéneuc 2007). The P-Mart repository is a reliable source 

of pattern data. It has been used by researchers for different purposes (Arcelli Fontana et al. 2011), 

(De Lucia et al. 2009), (De Lucia, Deufemia et al. 2010), (Bernardi, Cimitile et al. 2013), 

(Guéhéneuc, Guyomarc'H et al. 2010). Before considering this option, the literature was surveyed 

to check the availability of pattern detection tools. We found ten tools (Guéhéneuc and Antoniol 

2008), (Jing et al. 2007), (Lucia et al. 2009), (Niere et al. 2002), (Arcelli Fontana and Zanoni 

2011), (Nija and Olsson 2006), (Guéhéneuc 2005), (Tsantalis et al. 2006), (Smith and Stotts 2003), 

(Dietrich and Elgar 2007). However, none of them was suitable for our work. For example, some 

of these tools either provide poor performance or performance evaluations are absent. Some other 

tools are not capable of detecting all the roles of design patterns. Other tools are only capable of  

297



 

 

 

 

 

 

Mawal A. Mohammed and Mahmoud O. Elish 

Table 3 Number of instances of each design patterns 

Category Pattern # 

Creational patterns 

Abs. factory 0 

Builder 3 

Factory method 6 

Prototype 2 

Singleton 7 

Structural patterns 

Adapter 4 

Bridge 2 

Composite 4 

Decorator 2 

Facade 0 

Flyweight 0 

Proxy 1 

Behavioral patterns 

Chain of resp. 0 

Command 3 

Interpreter 0 

Iterator 3 

Mediator 0 

Memento 2 

Observer 9 

State 2 

Strategy 6 

Template 6 

Visitor 1 

Total # of instances 63 

 

Table 4 Descriptive statistics for faulty and participant classes 

Systems # of classes Total LOC # of faulty classes 
# of participating classes  

in DPs 

All systems 868 85,702 372 (42.8%) 238 (27.4%) 

 

 

detecting a small set of design patterns. 

Given the limitations of design patterns detection tools, we decided to search for another source 

of pattern data. This led us to the P-Mart repository, a reliable source of pattern data that has been 

used in several works (Arcelli Fontana et al. 2011), (De Lucia et al. 2009), (De Lucia et al. 2010), 

(Bernardi et al. 2013), (Guéhéneuc et al. 2010). The P-Mart repository contains design pattern data 

for nine systems. We considered five of them because we could not find fault data for the other 

four.  

We collected fault data from the development CVS files associated with each subject system. 

All five subject systems are hosted with their CVS files on the Sourceforge website for open-

source projects. CVS files contain the commit entries associated with each system. Each class file 
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in the system has a section in the CVS file, which documents the different commits made to that 

file. We collected the fault data by examining each commit for each class in each subject system 

searching for keywords such as “fault,” “bug,” “defect,” etc. The fault density of each class was 

then computed by dividing the number of class faults by kilo lines of code (KLOC) in each class.  

The number of instances of each design pattern in our dataset is shown in Table 3. There are 63 

instances of design patterns.  

To calculate the descriptive statistics in Table 4, we used the understand tool (SciTools 2014) 

and Microsoft Excel. The Understand tool is used to calculate executable LOC, and Microsoft 

Excel is used to calculate the percentages of faulty classes and the percentage of the classes that 

participate in the design patterns. To calculate the percentages of faulty classes, we divide the 

number of classes that have one or more faults by the number of all classes. The same procedure is 

done in calculating the percentage of the classes that participate in the design patterns. We divide 

the number of classes that participate in one or more design patterns by the number of all classes. 

The number of classes that participate in these instances is 238 (27.4%), as shown in Table 4. In 

addition, the faulty classes constitute 42.8% of the total number of classes.  

 

3.3 Data analysis procedure 
 

In this study, we evaluate the association between design patterns and fault-proneness. The 

dependent variable is the fault proneness (faulty or not), and the independent variable is a Boolean 

variable (participant in a design pattern or not). The independent variable is evaluated at four 

levels: the design, category, pattern, and role level. We evaluate the significant difference in fault-

proneness between the classes that participate in design patterns and the non-participant classes at 

the design, category, pattern, and role levels.  

For the data analysis, we used two non-parametric tests: the Mann-Whitney U test (Mann and 

Whitney 1947) and the Kruskal-Wallis test (Kruskal and Wallis 1952). To perform these tests, we 

used the SPSS software. The Mann-Whitney test is used to compare differences between two 

groups, whilst the Kruskal-Wallis test is used to compare differences among more than two 

groups. In our case, the Mann-Whitney test was used to compare the differences in fault-proneness 

between two groups, and the Kruskal-Wallis was used to compare the differences in fault-

proneness among more than two groups.  

At the design level, the Mann-Whitney test was used to compare the difference in fault-

proneness between the classes that participate in design patterns and non-participant classes. In 

addition, we used the Mann-Whitney test to compare the difference in fault-proneness between the 

classes that participate in each design pattern and the classes that do not participate in that pattern. 

At the category level, we used the Kruskal-Wallis test to compare differences in fault-proneness 

among the classes that participate in the different categories of design patterns. The Kruskal-

Wallis test was also used to compare differences among the different roles in each design pattern. 

The obtained p-values associated with comparing more than two groups using the Kruskal-Wallis 

test is corrected using the Bonferroni method. 

 

 

4. Results and discussion 
 

The results of the measurement and comparison of the fault-proneness of design patterns are 

presented in this section. The investigation of fault-proneness was conducted at four levels as  
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Fig. 1 Fault-proneness comparison of participant vs. non-participant classes 

 

 

follows. 

 

4.1 Design level  
 
At the design level, we evaluated the difference in fault-proneness between the classes that 

participate in any design pattern and the classes that do not participate in any design pattern (i.e., 

participant vs. non-participant). This evaluation gives general insight on the association between 

design patterns and class fault-proneness. 

As Fig. 1 shows, the participant classes were less fault-prone, as a percentage, than the non-

participant classes. The p-value of the significance of the difference in the fault-proneness of the 

participating versus the non-participating classes is 0.000080. Thus, the obtained p-value is 

significant (<0.05), so we reject the null hypothesis of Hypothesis 1 and accept its alternative 

hypothesis.  

The obtained results say, in other words, that using design patterns improve the quality of 

software systems by reducing the faults. This might be due to the fact that the design patterns are 

documented and well-known solutions to design problems. This makes their application and 

modification safer in terms of introduction of faults compared to the application of ad hoc 

solutions. In addition to that, the design patterns provide a language for communication among the 

system’s developers and maintainers making understandability of the design and the code easier.  

However, this depends on the experience of the system developers and implementers with the 

design patterns.  

 

4.2 Category level 
 
At the level, we measured and compared the fault-proneness of the different categories of 

design patterns. In addition, we measured and compared the different categories of design patterns 

to the classes that do not participate in any design pattern. We found that the classes that 

participate in structural and behavioral design patterns are less fault-prone than the non-participant 

classes and the classes that participate in the creational design patterns, as shown in Table 5 and  
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Table 5 P-values associated with evaluating the fault-proneness of the different categories 

All systems Creational Structural Behavioral 

Non-participant 0.1714 0.0000 0.0080 

Creational - 0.0000 0.0020 

Structural - - 1 

 

 
Fig. 2 Fault-proneness comparison of the different categories 

 

 

Fig. 2. For those cases, we reject the null hypothesis of Hypothesis 2 and accept its alternative 

hypothesis. The results suggest that structural design patterns tend to be less fault-prone. This 

might result from the fact that structural design patterns are easier to understand or that structural 

design patterns are clearer. 

The obtained results say in other words that the structural design patterns improve the quality 

of software by reducing the introduction of faults in the software systems. This might due to that 

the structural design patterns are solutions to structural problems that considered good and known 

solutions to such problems. These solutions lead to an overall improved structure. A good structure 

leads to easier to change systems which leads to less number of faults. The obtained results also 

suggest that the application of behavioral design patterns leads to fewer faults. This might be due 

to that the behavioral design patterns work on the behavioral aspects of the system which is 

difficult to understand. This difficulty might be lowered by characterizing some parts of the 

behavioral as patterns. These patterns encapsulate the characteristics of the design problems and 

the solutions making their sharing among the developing and the maintenance teams easier. 

    

4.3 Pattern and role levels 

 
At the pattern level, we evaluated the difference in fault-proneness between the classes that 

participate in each design pattern and the classes that do not participate. At the role level, we 

evaluated the difference in fault-proneness among the classes that participate in the different roles 

of each design pattern. 
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Table 6 Evaluation results for the creational patterns and their roles 

Builder 

Builder classes vs. Non-builder classes 0.0090 

Overall role comparison 0.0220 

Concrete-builder vs. non-participant 0.0090 

Factory Method 

Factory method classes vs. non-factory classes 0.0284 

Overall role comparison 0.0110 

Concrete-product vs. non-participant 0.0010 

Concrete-product vs. concrete-creator 0.0130 

Prototype 

Prototype classes vs. non-prototype classes 0.6373 

Overall role comparison 0.8910 

Singleton classes vs. non-singleton classes 0.9951 

 

  

  
Fig. 3 Comparison of the fault-proneness of the creational design patterns and their roles 

 

 

4.3.1 Creational design patterns 
The evaluation of the difference in fault-proneness between the builder classes and the non-

builder classes, and the factory method and the non-factory method classes resulted in significant  
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Table 7 Evaluation results for the structural design patterns and their roles 

Adapter 

Adapter classes vs. non-adapter classes 0.0054 

Overall role comparison 0.0020 

Adapter vs. non-participant 0.0000 

Adapter vs. adaptee 0.0370 

Adapter vs. client 0.0080 

Composite 

Composite classes vs. non-composite classes 0.0032 

Overall role comparison 0.0090 

Leaf vs. non-participant 0.0030 

Decorator 

Decorator classes vs. non-decorator classes 0.0008 

Overall role comparison 0.0030 

Concrete-decorator vs. non-participant 0.0290 

Concrete-component vs. non-participant 0.0010 

Bridge 

Bridge classes vs. non-bridge classes 0.8672 

Overall role comparison 0.1960 

Proxy 

Proxy classes vs. non-proxy classes 0.1323 

Overall role comparison 0.5190 

 

 

p-values, as reported in Table 6. The obtained results suggest that there is a significant difference 

in fault-proneness between the builder classes and the non-builder classes, and the factory method 

and the non-factory method classes. Therefore, for these two patterns, we reject the null hypothesis 

of Hypothesis 3 and accept its alternative hypothesis. As shown in Fig. 3, the classes that 

participate in the builder design pattern are more fault-prone than the non-builder classes and the 

classes that participate in the factory method design pattern are less fault-prone than the non-

factory method classes. The situation was different for the prototype and the singleton patterns. 

The p-values associated with evaluating differences in fault-proneness between the participant and 

the non-participant classes of the prototype and the singleton patterns are insignificant, as reported 

in Table 6. As indicated, the obtained results indicate that there are no significant differences in the 

fault-proneness at the pattern level. Therefore, for these two patterns, we accept the null hypothesis 

of Hypothesis 3.   

Evaluating the difference in fault-proneness among the different roles of builder classes, and 

among the different roles of the factory method classes result in significant differences, as shown 

in Table 6. For the builder pattern, only one pair of roles results in a significant difference: 

concrete-builder vs. non-participant. For the factory method, only two pairs of roles show 

significant differences: concrete-product vs. non-participant and concrete-product vs. concrete-

creator.  Therefore, for these three pairs of roles, we reject the null hypothesis of Hypothesis 4 and 

accept its alternative hypothesis. As shown in Fig. 3, the concrete builder classes are more fault- 
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Fig. 4 Comparison of the fault-proneness of the structural design patterns and their roles 

 

 

prone than the non-participant classes in builder patterns we can also see that the classes that 

participate in the concrete-product role are less fault-prone than those that participate in the 

concrete-creator role and less fault-prone than the non-participant classes. For the prototype design 

pattern, there is no significant difference among the different roles. For the singleton, it has only 

one role.  

 

4.3.2 Structural design patterns 
The p-values associated with the fault-proneness evaluation of the structural design patterns  
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Table 8 Evaluation results for the behavioral design patterns and their roles 

Command 

Command classes vs. non-command classes 0.5772 

Overall role comparison 0.0920 

Iterator 

Iterator classes vs. non-iterator classes 0.8155 

Overall role comparison 0.6120 

Memento 

Memento classes vs. non-memento classes 0.1949 

Overall role comparison 0.1490 

Observer 

Observer classes vs. non-observer classes 0.6258 

Overall role comparison 0.4670 

State 

State classes vs. non-state classes 0.5430 

Overall role comparison 0.2630 

Strategy 

Strategy classes vs. non-strategy classes 0.5130 

Overall role comparison 0.3090 

Template Method 

Template method classes vs. non-template classes 0.5812 

Overall role comparison 0.2180 

Visitor 

Visitor classes vs. non-visitor classes 0.8930 

Overall role comparison 0.4270 

 

 

reveal that there are significant differences in fault-proneness at the pattern level and at the role 

level for the adapter, composite, and composite design patterns, as reported in Table 7. As shown 

in Fig. 4, the participant classes are less fault-prone than the nonparticipant classes in all of these 

patterns. Therefore, for these patterns, we reject the null hypothesis of Hypothesis 3 and accept its 

alternative hypothesis. For the bridge and the proxy patterns, the p-values associated with 

evaluating the difference between the participating and the non-participating classes are not 

significant. Therefore, we accept the null hypothesis of Hypothesis 3 for these two patterns.  

In evaluating the difference among the classes that participate in the different roles, we found 

that three pairs of roles are associated with significant differences: adapter vs. non-participant, 

adapter vs. adaptee, and adapter vs. client. As shown in Fig. 4, the classes that participate in the 

adapter design pattern are less fault-prone than those that participate in the non-participant, 

adaptee, and client roles. For the composite pattern, only one pair of roles shows significant 

difference: leaf vs. non-participant. As shown in Fig. 4, the classes that participate in the leaf role 

are less fault-prone than the non-participant classes. For the decorator design pattern, two pairs of 

roles show significant differences: concrete-decorator vs. non-participant, and concrete-component 

vs. non-participant. As shown in Fig. 4, the classes that participate in the concrete-decorator and  
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Table 9 comparison of the fault-proneness of the different patterns comparison 

Pair p-value 

Decorator vs. Builder 0.011 

Adapter vs. Builder 0.035 

Composite vs. Builder 0.035 

 

 
Fig. 5 Comparison of the fault-proneness of the different patterns 

 

 

concrete-component classes are less fault-prone than the non-participant classes. Therefore, for 

these pairs of roles, we reject the null hypothesis of Hypothesis 4 and accept its alternative 

hypothesis. For the bridge and proxy patterns, there is no significant difference in fault-proneness 

among their roles. Therefore, for these two patterns, we accept the null hypotheses of Hypothesis 

4. 

 

4.3.3 Behavioural design patterns 
The p-values associated with evaluating the differences in the fault-proneness of all the 

behavioral design patterns are insignificant at the pattern level and at the role level, as shown in 

Table 8. These values suggest that there are no significant differences in the fault-proneness of the 

classes that participate in each design pattern and the non-participant classes in that pattern. 

Therefore, we accept the null hypothesis of Hypothesis 3 for all the behavioral design patterns. In 

addition, the results suggest that there are no significant differences in the fault-proneness among 

the different roles of each pattern. Therefore, we accept the null hypothesis of Hypothesis 4 as well 

for these cases.  

 

4.4 Design patterns comparison  

 
In this section, we compare the difference in fault-proneness among the different design 

patterns. We found that, among 136 pairwise tests, only three pairs of patterns show significant 

difference: Decorator vs. Builder, Adapter vs. Builder, and Composite vs. Builder. In Table 9, we 

presented the results associated with these pairs. We can see in Fig. 5 that the classes associated 
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with the builder design pattern are more fault-prone than the classes that participate in the 

decorator, the adapter, and the composite design patterns.  

The previous few sub-sections presented the results associated with evaluating the difference in 

fault-proneness in the pattern level and in the role level. The obtained results suggest that the use 

of 4 design patterns improve the quality of software systems by reducing faults. These patterns are: 

adapter, composite, decorator, and factory method. The first three patterns are structural patterns. 

The obtained improvement might be due to the improvement in the structure of the software 

system as we mentioned in section 4.2. The improvement associated with the fourth pattern, the 

factory method, might be due to the context in which the factory method pattern works. The 

factory method pattern eases the creation of objects by defining an interface for creating objects 

but the instantiation of the class is let to the subclasses. The situation was different with the builder 

pattern, the builder pattern classes were more fault-prone than the non-participant classes and also 

than the classes that participate in several patterns: the adapter, the composite, and the decorator 

design patterns. we think the reason for that might stem from the context of the builder pattern. 

The builder pattern work with the construction of complex objects. This complexity might be the 

reason that increases the faults of the builder classes. The roles that show significant difference 

were mostly concrete roles. These roles implement functionality which makes them subject to 

change which is different from the abstract roles that define interfaces only. This might be the 

reason for the concrete classes to be more fault-prone than the other roles. However, this was not 

general conclusion since that some of the concrete classes were less fault-prone than the other 

roles and less than the non-participant classes.   

 

4.5 Threats to validity  
 

Construct validity. The threat to the construct validity of this experiment is associated with the 

fault collection. We know that discovering all faults in a system seems impossible. There might be 

some other faults that have not been discovered in the subject systems. However, in our case, the 

subject systems are popular and widely used open-source systems. They have been also used in 

several empirical studies in the literature. We thus believe that the data sets that were collected 

from them are reliable. 

Internal validity. Internal validity is the degree to which the observed effects depend only on 

the intended experimental variables. The major threat to the internal validity of this work stems 

from the developer background. In fact, we are not sure whether the developers of these systems 

are well trained to work with design patterns. This could be a serious threat to the validity of the 

work in case we were studying a cause-and-effect relationship. In such a case, we would be 

required to control every variable. Since we are not studying a cause-and-effect relationship, we do 

not need to control every variable. In fact, we cannot control every variable. For example, the level 

of experience of the developers of the subject systems, this variable can influence the faults that 

can occur later in the systems. However, it is difficult, if not impossible, to control such variable. 

In our case, we are investigating whether there is an association between fault-proneness (the 

dependent variable) and design patterns (independent variables). That is not a cause-and-effect 

relationship. This kind of studies can serve as a precursor for deeper investigations such as 

controlled experiments.  

External validity. The generalizability of this work is another concern. The ability to generalize 

the results of such a study-an investigation of the relationship between the design patterns and 

fault-proneness in object-oriented systems-requires the consideration of many factors. First, 
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systems from different programming languages and/or of different sizes and complexities should 

be considered. In our study, the subject systems were all written in Java and they are small-

medium size systems. Second, we used open-source systems in our experiment. We did not 

consider commercial systems. To increase the generalizability of the work, commercial systems 

should be considered as well. However, the obtained results can be considered one step on the 

road, given the scarcity of pattern data. 

 

 

5. Conclusions  
 

In this study, we measure and compare the fault proneness of design patterns at four granularity 

levels: the design, category, pattern, and role levels. We found that the participant classes in the 

design patterns are less fault-prone than the non-participant classes at the design level. At the 

category level, we found that the classes that participate in the structural and behavioral categories 

are less fault-prone than the non-participant classes in these categories and the classes that 

participate in the creational design patterns. At the pattern level, we found that the classes that 

participate in the factory method, adapter, composite, and decorator patterns are less fault-prone 

than the classes that do not participate in these patterns. In the case of the builder design pattern, 

the classes that participate in it are more fault-prone than the non-participant classes. All of these 

five patterns are either creational or structural patterns. None of the behavioral patterns shows an 

association with fault-proneness.  

We also found that only these five patterns (i.e., builder, factory method, adapter, composite, 

and decorator) show significant differences in fault-proneness among their roles. In examining 

their roles, we found that the concrete-builder role is significantly more fault-prone than the non-

participant classes. We think this is the case because the role includes detailed implementations of 

the methods of the abstract class. For the factory method, the classes that participate in the 

concrete-product role tend to be significantly less fault-prone than those that participate in the 

concrete-creator role and the non-participant classes. For the roles of the adapter design pattern, 

the classes that participate in the adapter role tend to be significantly less fault-prone than those 

that participate in the adaptee or the client roles. In addition, we found that the classes that 

participate in the adapter role tend to be significantly less fault-prone than the non-participant 

classes as well. For the composite pattern, the classes that participate in the leaf role tend to be 

significantly less fault-prone than the non-participant classes. Finally, the classes that participate in 

the concrete-decorator and the concrete-component roles in the decorator design pattern are 

significantly less fault-prone than the non-participant classes. 

We recommend the use of design patterns in software design with respect to fault-proneness. 

However, the builder pattern has a negative association with fault-proneness, which suggests that it 

should be applied carefully. For patterns that do not show a significant association with fault-

proneness, we recommend their application as well since these patterns have other benefits, such 

as improving programmers’ productivity and promoting best practices, and at the same time, they 

do not seem to be negatively associated with faults.     

This work can be extended further by including more patterns and more systems. In addition to 

that, the work can be extended by including systems developed with different programming 

languages. Moreover, more quality attributes can be addressed in the future. Design patterns 

developed with other paradigms, such as aspect-oriented patterns, can be investigated in future 

works as well.  
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