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1. Introduction  
 

The phenomenal development of nano science and nano 

technology is seen with an increase of its application in 

scientific research. Carbon nanotubes (CNTs) is such 

discovery by Iijima (1991) that may be used in a variety of 

fields like material reinforcement, aerospace, medicine, 

defense and microelectronic devices (Sosa et al. 2014, 

Soldano 2015, Fakhrabadiet al. 2015, Bouadi et al. 2018). 

Owing the striking mechanical properties through the 

cylindrical mechanism CNTs hold purposeful role in 

conveying fluid and gas. With a vast area of potential 

innovation, however CNTs demands more understanding to 

investigate its mechanical properties. Free vibration 

analysis of CNTs have been influential aspect in dynamical 

science for the last one decade. Vibration characteristics are 

investigated using thin shell theory by Yakobson et al. 

1996), beam theory by Wang et al. (2006) and nonlocal 

beam theory (Zermi et al. 2015, Youcef et al. 2018).  

An eminent study found in based upon ring theory by 

Vodenitcharova and Zhang (2003) whereas theories of 

continuum models developed by Li and chou (2003) in 

literature. Well known two main classes of models used to 

analyze the theoretical aspects of CNTs have been atomic 
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model and other is continuum model. The classical 

molecular dynamics (MD) has shown to exceed those of 

other techniques such as ab initio and tight-binding MD 

included in class of atomic modeling (Iijima et al. 1996, 

Yakobson et al. 1997, Hernandez et al. 1998, Sanchez et al. 

1999, Qian et al. 2002). The main reason continuum 

mechanics (Yoon et al. 2003, Fu et al. 2006, Ansari et al. 

2011) turned noticeable tool is its computational capability 

to generate results of large range system in nanometer 

range. The nonlocal elasticity introduced by Eringen (1983, 

2002) becomes a turning point as small scale effect was 

inculcated in to fundamental equations as simply material 

parameter. Therefore, scientific community now propose to 

apply nonlocal continuum models to investigate nano-

structured materials (Sudak 2003, Wang et al. 2006, 

Pradhan and Phadikar 2009, Ansari et al. 2010, Hao et al. 

2010, Amara et al. 2010, Shen and Zhang 2010). The first 

ever work presented on use of nonlocal elasticity was by 

Peddieson et al. (2003). Prominent computational 

competence and accuracy makes nonlocal models an 

attractive choice for further advancements in field. Donnell 

(1996) and Flügge (1962) have been two substantial shell 

theories practiced extensively in study of static and dynamic 

characteristics of CNTs. Flügge shell theory takes 

promising place to generate remarkably accurate 

developments to examine the CNTs. Dehsaraji et al. (2020) 

used higher-order shear and normal deformation theory to 

account thickness stretching effect for free vibration 

analysis of the cylindrical micro/nano shell subjected to an 

applied voltage and uniform temperature rising. Size 
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Abstract.  In this paper, vibration attributes of chiral double-walled carbon nanotubes (CNTs) based on nonlocal elastic shell 

model have been investigated. The impact of small scale is being perceived by establishing Flügge shell model. The wave 

propagation is engaged to frame the ruling equations as eigen value system. The influence of nonlocal parameter subjected to 

different end supports has been overtly examined. A suitable choice of material properties and nonlocal parameter been focused 

to analyze the vibration characteristics. The new set of inner and outer tubes radii investigated in detail against aspect ratio and 

length. The dominance of boundary conditions via nonlocal parameter is shown graphically. Whereas for lower aspect ratio the 

frequencies coincide but as it continues to expand the difference between all respective boundary conditions slightly tend to 

increase. The results generated furnish the evidence regarding applicability of nonlocal shell model and also verified by earlier 

published literature. 
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dependency is included in governing equations based on the 

modified couple stress theory. Natuski and Qing et al. 

(2007) adopted wave propagation approach to investigate 

single- and double-walled CNTs brimming with fluids. 

Flügge shell theory was proposed to form governing 

equations of motion for CNTs. Arefi et al. (2019) studied 

the size dependent thermal buckling analysis of composite 

micro plate based on modified couple stress theory (MCST) 

and sinusoidal shear deformation theory. Arefi et al. (2019) 

studied the thermal and mechanical buckling analysis of 

micro plate reinforced with functionally graded (FG) 

graphene nanoplatelets based on modified strain gradient 

theory (MSGT Jamili et al. (2019) devoted to study post-

buckling analysis of functionally graded carbon nanotubes 

reinforced composite (FG-CNTRC) micro plate with cut out 

subjected to magnetic field and resting on elastic medium. 

The basic formulation of plate is based on first order shear 

deformation theory (FSDT) and the material properties of 

FG-CNTRCs are presumed to be changed through the 

thickness direction. Rouhi and Ansari (2012) executed the 

axial buckling of double-walled CNTs subject to various 

layer-wise conditions by using Rayleigh-Ritz based upon 

nonlocal Flügge shell theory. Their study showed that the 

number of different layer-wise boundary conditions 

dominates the choice of values for nonlocal parameter. 

Dehsaraji et al. (2020) presented a new three-dimensional 

framework for thermo-electro-mechanical buckling analysis 

of functionally graded piezoelectric cylindrical nano/micro-

shells subjected to axial mechanical compression, an 

external applied voltage and uniform temperature rising. To 

account thickness stretching effect, three-dimensional shear 

and normal deformation theory is employed. In another 

paper, Natuski et al. (2006) carried out the vibration 

analysis of nested CNTs in elastic matrix. Flügge shell 

theory again had been engaged to establish administrative 

shell equations while proposed method was wave 

propagation. Usuki and Yogo (2009) formed beam 

equations again based on Flügge shell theory, they 

concluded that if nonlocality and refined model are ignored 

then the generalized Beam theory and Flügge theory 

produce alike results. Arefi et al. (2019) presented the paper 

presents a large parametric investigation on the bending 

response of Functionally Graded (FG) polymer composite 

curved beams reinforced by graphene nanoplatelets resting 

on a Pasternak foundation. The theoretical framework is 

based on the First-order Shear Deformation Theory (FSDT) 

and the nonlocal elasticity theory. Sedighi (2020) performed 

the basis of finite element analysis, an eigenvalue problem 

to examine the vibrational characteristics of a hetero-

nanotube made of carbon (C) and boron nitride (BN) 

nanotubes in magnetic and thermal environment. By 

incorporating the assumption of nonlocal elasticity theory, 

the size-dependent behavior of the considered structure is 

also taken into account. Further Wang and Zhang (2007) 

examined the bending and torsional stiffness of single-

walled CNTs applying the Flügge shell equations. They 

presented three-dimensional model of single-walled CNTs 

in their work with effect of thickness. Arefi et al. (2018) 

applied a two-variable sinusoidal shear deformation theory 

(SSDT) and a nonlocal elasticity theory to analyze the free 

vibration behavior of functionally graded (FG) polymer 

composite nanoplates reinforced with graphene 

nanoplatelets (GNPs), resting on a Pasternak foundation 

Ansari and Rouhi (2013) summarized the effect of small 

scale, geometrical parameter and layer-wise end conditions 

of double-walled CNTs by adopting Flügge shell model 

(FSM).They depicted that the continuum model considering 

the nonlocal effect compels the short double-walled CNTs 

more flexible. Further Rouhi et al. (2015) worked on the 

multi-walled CNTs by developing nonlocal FSM and 

presented the frequency spectrum against layerwise 

boundary conditions. Recently Hussain and Naeem (2019a, 

b) performed the vibration of single-walled CNTs based on 

wave propagation approach and Galerkin’s method. Arefi et 

al. (2016) presented an analytical method for the three-

dimensional vibration analysis of a functionally graded 

cylindrical shell integrated by two thin functionally graded 

piezoelectric (FGP) layers. The first-order shear 

deformation theory is used to model the electromechanical 

system.  

Salah et al. (2019) presented a simple four-variable 

integral plate theory for examining the thermal buckling 

properties of functionally graded material (FGM) sandwich 

plates. The proposed kinematics considers integral terms 

which include the effect of transverse shear deformations.  

Dehsaraji et al. (2020) studied the vibration analysis of 

functionally graded nanoshell based on the sinusoidal 

higher-order shear and normal deformation theory to 

account thickness stretching effect. To account size-

dependency, Eringen nonlocal elasticity theory is used. For 

more accurate modeling the problem and corresponding 

numerical results, sinusoidal higher-order shear and normal 

deformation theory including out of plane normal strain. 

Zhang et al. (2018) studied an ultrathin flexible film but 

tends to buckle when subjected to compression and 

temperature variation. The buckling behavior will adversely 

affect its mechanical performance, therefore, it should be 

accurately evaluated and under controlled. Accordingly, it is 

vital to study thermal buckling behavior of ultrathin films. 

In the present work, thermal buckling of bilayer graphene 

sheets (GSs) embedded in Pasternak-type foundations is 

studied based on the nonlocal elastic theory. 

In recent studies double-walled CNTs have been 

intensively attracted as that of single- walled CNTs due to 

its effectively applicable thermal, mechanical and electronic 

features. Hu et al. (2008) reported a study on the transverse 

and torsion waves based on nonlocal shell model for single-

walled and double-walled CNTs. Xu et al. (2008) modeled 

the nested tubes of double-walled CNTs as separate elastic 

beam. Their work revealed that double-walled CNTs had no 

change for a particular invariable frequency subject to 

distinct edge conditions. Using nonlocal Timoshenko beam 

theory, Ke et al. (2009) investigated free nonlinear 

vibrations of double-walled CNT and applied differential 

quadrature technique to derive frequency equations. After 

wards Khosrozadeh and Hajabasi (2012) carried out 

vibration analysis of double-walled CNTs subject to 

nonlinear van der Waals forces. Aimed focus on values of 

nonlocal parameter, length of tube and surrounding elastic 

medium. Rouhi et al. (2013) adapted new numerical 
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approach with nonlocal Donnell shell theory to inquire the 

small-scale effect on double walled-CNTs depending upon 

boundary conditions. Narwariya et al. (2018) presented the 

vibration and harmonic analysis of orthotropic laminated 

composite plate. The response of plate is determined using 

Finite Element Method. The eight noded shell 281 elements 

are used to analyze the orthotropic plates and results are 

obtained so that the right choice can be made in applications 

such as aircrafts, rockets, missiles, etc. to reduce the 

vibration amplitudes. Moreover, Benguidiab et al. (2014) 

explored the mechanical buckling features of zigzag 

double-walled CNT.A comprehensive research presented by 

Salvatore Brischetto (2015) to analyze the vibration 

characteristic of double-walled CNTs by considering shell 

continuum model. The findings of article were evolved 

around effects of van der Waals effect with regard to 

frequency ratio. Ayat  et al. (2018) studied the use of 

optimum content of supplementary cementing materials 

(SCMs) such as limestone filler (LF) to blend with Portland 

cement such as increase in physical properties, 

enhancement of sustainability in concrete industry and 

reducing CO2 emission are well known. Vibration analysis 

of chiral double-walled CNTs are rarely done in recent past. 

A limited number of researchers performed analysis first 

time to investigate the vibration of double-walled CNTs 

(Wang et al. 2006, Natuski et al. 2007, Shen and Zhang 

2010, Ansari and Rouhi 2012, Ansari et al. 2013). So far as 

reviewed from the literature, vibration response of chiral 

double-walled CNT using wave propagation approach 

based on nonlocal FSM has not been investigated/assumed. 

Many material researchers calculated the frequency of 

CNTs using different techniques, for example, structural 

mechanics approach (Li and Chou 2003, Tahouneh 2017, 

Moradi and Payganeh 2017, Shafiei and Setoodeh 2017), 

shear deformation theory (Arefi et al. 2018, Lei and Zhang 

2018), nonlocal continuum models (Sudak 2003, Wang et 

al. 2006, Pradhan and Phadikar 2009, Ansari et al. 2010, 

Hao et al. 2010, Amara et al. 2010, Shen and Zhang 2010, 

She et al. 2019), shell theory (Yakobson et al. 1996), beam 

theory (Wang et al. 2006), atomic modeling (Iijima et al. 

1996, Yakobsonet al. 1997, Hernandez et al. 1998, Sanchez 

et al. 1999, Qian et al. 2002), Rayleigh-Ritz (Ansari and 

Rouhi 2012), Galerkin method (Do et al. 2019) and axially 

loaded double beam system (Xiaobin et al. 2014). 

Moreover, the existing peculiar theoretical model 

contributes inventive numerical outputs for the vibration of 

CNTs as compare to prior models presented (Iijima et al. 

1996, Qian et al. 2002, Peddison et al. 2003, Sudak 2003, 

Natuski et al. 2006, Shen and Zhang 2010, Ansari and  

Rouhi 2012, Yazdani and Mohammadimehr 2019, Sedighi 

and Yaghootian 2016, Sedighi et al. 2011, Behera and 

Kumari 2018, Batou et al. 2019, Zhang et al. 2018, Arefi et 

al. 2019, Arefi et al. 2019, Arefi et al. 2018, Arefi and 

Zenkour 2018). 
The foremost intension of this paper to investigate 

vibrations characteristics of chiral double-walled CNTs by 
means of nonlocal elasticity shell model. The nonlocal shell 
model is established by inferring the nonlocal elasticity 
equations in to Flügge shell theory, which is our particular 
motivation. The suggested method to investigate the 
solution of fundamental eigen relations is wave 

propagation, which is a well-known and efficient technique 
to develop the fundamental frequency equations. It is 
carefully observed from the literature, no information is 
seen regarding present established model where such 

problem has been considered so it became an incentive to 
conduct current study. Whereas for lower aspect ratio the 
frequencies coincide but as it continues to expand the 
difference between all respective boundary conditions 
slightly tend to increase. The specific influence of four 
different end supports based on nonlocal FSM such as 

clamped-clamped (FSM-CC), clamped-simply supported 
(FSM-CS), simply supported-simply supported (FSM-SS) 
and clamped-free (FSM-CF) with assorted values of 
nonlocal parameter and distinguish inner tube radii are 
examined in detail. 

 
 
2. Formation of nonlocal Flügge shell equations 
 

Eringen (1983, 2002) acquainted the nonlocal elasticity 

theory as the stress on a given specific point x is a function 

of strain field at each point x/ in the body. This is how 

simply scale effect is treated as material parameter in 

fundamental equations of problem. On the other hand, 

because of unique dependence of stress state on strain state, 

classical elasticity cannot be useful for the scale effect. The 

basic expression in terms of the nonlocal stress tensor  𝜎 is 

written as follows (Eringen 1983, 2002) 

/ / /( ) ( , ) ( ) ( ).
V

x x x t x dV x x V   = −      (1) 

where λ(|xx′|, µ) stands for attenuation function/ nonlocal 

modulus with arguments as the Euclidean distance and 𝑡 

for macroscopic stress tensor. In 𝜇 = 𝑒0𝑎 𝑙⁄  as 𝑎 is the 

interior distinctive length ( length of C-C bond / lattice 

parameter / granular bond), 𝑙 an exterior distinctive length 

( crack length/ wave length) and 𝑒𝑜𝑎 be pertinent material 

parameter. The differential equivalent form of the equation 

1 in two-dimension nonlocal elasticity theory can be written 

as   

2 2(1 ( ) )oe a t−  =
 

(2) 

The term 𝑒0𝑎 describes the characteristic length known 

as nonlocal parameter. The stress and strain relationship is 

presented by generalized Hooke’s law 

𝑡 = 𝑆: 𝜖                    (3) 

Here 𝑆 reads as fourth order elasticity tensor and “:” as 

double dot product.Thus, the relationship between stress 

and strain is expressed (Hussain and Naeem, 2019a, b). 
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Fig. 1 A geometrical diagram of double-walled CNT 

 

 

Here E symbolize as material’s Young Modulus and v 

known as Poisson ratio. 

The longitudinal and angular circumferential 

coordinates are shown by x and θ. Whereas σxx, σθθ and σxθ 

are normal and shear stress terms, εxx, εθθ and εxθ present the 

normal and shear strains .double-walled CNT comprised of 

two embedded tubes in which each tube is regarded as 

autonomous cylindrical shell assumes radius 𝑅, length 𝐿 

and thickness h shown in Fig. 1. The displacement 

components ux, uy and uz in three directions x, θ and z 

according to classical shell theory are as (Hussain and 

Naeem 2019a, b)  

( , , , ) ( , , ) ( , , )x

w
u x z t u x t z x t

x
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
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
 (5b) 

( , , , ) ( , , )zu x z t w x t =  (5c) 

Where u, v and z signify surface displacements. The 

relations of middle surface strains and middle surface 

curvatures are symbolized as 
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The kinematics expressions are written as 
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o
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o
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(7)
 

By utilizing stress factors in Eq. (4), stress resultant and 

moment resultant are derived and formulated in terms of 

kinematic relation in Flügge shell theory. 
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Bending rigidity is presented by D and the fundamental 

equations are established on Flügge shell theory written as 

(Ansari and Arash 2013). 
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(9) 

Where p denotes the exerted pressure on i tube through 

van der Waals (vdW) interaction forces. The proposed vdW 

model accounts the effects of interrelation force/pressure 

between the tubes of double-walled CNTs. 
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cij is vdW coefficient, depicting the pressure increment 

contributing from ith to jth tube.  
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Here C-C bond length is given by 1.42a A= , depth of 

potential by ε, σ as parameter concluded by  equilibrium 

distance, Rj as radius of jth tube and Eij
m be as elliptic 

integral which is given as  
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being m as integer and coefficient Kij is defined by 

2

4

( )

j i

ij

j i

R R
K

R R
=

+
 (13) 

By incorporating Eqs. (8) into (9), developed the set of 

partial differential equations written in terms of three field 

variables ui, vi, wi (i=1,2) for the ith tube of double-walled 

CNTs. 
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where gpq=(p,q=1,2,3) serve as the partial operators and can 

be seen in Appendix-I. 

 
 
3. Solution using the wave propagation approach 

 

Over the past several years, many theories of vibration 

of tube/shell structures of various configurations and 

boundary conditions have been extensively studied (Iijima 

et al.1996, Natuski et al. 2006, Shen and Zhang 2010, 

Ansari and Rouhi 2012). One of the major numerical 

techniques is the wave propagation that is broadly and 

effectively applied by researchers to perform the free 

vibrations of single-walled CNTs problems (Hussain and 

Naeem 2019a)..The three modal displacement functions of 

the shell for ith tube can be regarded as  

( )( ) ( , , ) cos( ) mt k xi

mu x t a n e
   −

=  (15a)
 

 

 

( )( ) ( , , ) sin( ) mt k xi

mv x t b n e
   −

=  (15b) 

( )( ) ( , , ) cos( ) mt k xi

mw x t c n e
   −

=  (15c) 

The displacement amplitude in x, θ and z directions are 

defined by am, bm, cm respectively. Angular frequency is 

denoted by ω, circumferential wave number by n and km 

regarded as axial wave number related with end supports 

imposed on double-walled CNTs. On substituting the 

functions and derivatives into the field equations, hence 

obtained a new group of coeval equations as follows 
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Where i=(1,2) and the algebraic operators ( )i

pqG  are 

derived using Appendix-II with p,q=(1,2,3). The frequency 

vibration of double-walled CNT is exhibited based on 

nonlocal FSM subject to four end supports clamped-

clamped (FSM-CC), clamped-simply supported(FSM-CS), 

simply supported-simply supported (FSM-SS) and 

clamped-free (FSM-CF). 

 
 
4. Results and discussion  

 

In this portion of writing, the significance of boundary 

conditions on the vibration behavior of double-walled CNT 

is investigated employing wave propagation approach. The 

versatility and accuracy of proposed method is seen by 

numerous studies (Natuskiet al. 2006, Natuski et al. 2007) 

to determine natural frequencies in shell and CNTs. This 

study specifically scrutinizes the small scale effect in the 

vibration analysis of double-walled CNT. The numerical 

values of Young modulus, Poisson’s ratio, thickness and 

density are E=1 TPa, v=0.3, h=0.34 nm and ρ=2.3 g/cm3 

reported (Ansari and Arash 2013). Moreover, distinguished 

values of inner tube radius together with nonlocal parameter 

signifies the present nonlocal shell-based model to analyze 

frequency spectra. CNT is well known structure in shapes 

of i) armchair ii) chiral and iii) zigzag, herethe vibration 

analysis is carried out of zigzag CNT subjected to four  

 

 

Table 1 Comparison of FSM double-walled CNT frequencies with Loy et al. (1999) 

L/R h/R Method 
N 

1 2 3 4 5 6 

20 0.01 
Loy et al. (1999) 0.016102 0.009382 0.022105 0.042095 0.06801 0.09973 

FSM 0.016101 0.009378 0.022103 0.042094 0.04209 0.09973 
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Table 2 FSM frequencies of clamped double-walled CNTs 

(h/R=0.05, L/R=2.5) 

m V N Heydarpour et al. (2014) Present 

0 

0.12 

7 0.6240 0.6228 

9 0.6240 0.6234 

11 0.6240 0.6239 

0.17 

7 0.8157 0.8143 

9 0.8157 0.8152 

11 0.8157 0.8155 

0.28 

7 0.8553 0.8541 

9 0.8553 0.8547 

11 0.8553 0.8550 

 

 

conditions FSM-CC,FSM-CS,FSM-SS and FSM-CF. For 

the convergence rate of CNT, the non-dimensional 

frequency parameters enumerated in the current work, i.e., 

using FSM, are happened to be in a good consistency along 

with the so-called exact results furnished by Loy et al. (Loy 

1999), those were established by working out with the 

deformation theory provided in Table 1. The Frequencies 

are described for non-dimensional frequency parameters as: 
2(1 ) /R E   = −  as shown in Table 1 and positive 

coherence is achieved. The percentage difference is 

negligible as n=1,3,4 are 0.006%, 0.01%, 0.002% and at  
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Fig. 2 Frequency comparison of FSM-CC double-walled 

CNTs for 1st and 3rd mode against L/d with FSM and MD 

simulations (Zhang et al. 2009) 

 

 

n=2 by 0.0061% and present FSM result are lower than 

equivalent results executed by Loy et al. (1999). The 

frequency parameters for circumferential wave numbers 

n=5, 6 are same with the outcomes of Loy et al. (1999). A 

non-dimensional frequency parameter ξ is defined for a 
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Fig. 3 Influence of diverse boundary conditions on chiral double-walled CNT (8, 3) 
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CNT as: 2(1 )  /R E   = − . The obtained results are 

cross-compared with external data and provide agreement 

between modeling, computation and experimental outcomes 

as shown in Tables 1 and 2. Fig. 2 plots the fundamental 

frequency versus L/d for FSM-CC end condition for 

different modes of vibration. It should be mentioned for 

both cases, the values of L/d varies from 4.67 ~ 35.34. It is 

found that from Fig. 3, that frequencies of first (1, 1) and 

third (3, 1) vibration modes decrease and reaches the 

constant values on increasing of L/d. The influence of L/d 

on the frequency of present model has been discussed and 

checked with MD simulation as shown in Fig. 3 for FSM-

CC end condition. 

The obtained results are well agreed with the reported 

results of MD simulation (Zhang et al. 2009). Particularly, 

the frequencies (THz) of double-walled CNTs correspond to 

L/d=6.71 are 0.671, 1.565, 2.552, 3.523 for present model 

and 0.681, 1.535, 2.536, 3.588, as given by Duan et al. 

(2007), respectively. The vibrations of FSM-CC double-

walled CNTs have been investigated both by simulations 

techniques (Li and Chou 2003, Li and Chou 2004, Zhang et 

al. 2009) and experimentally (Yakobson et al. 1996, Hsu et 

al. 2008). It is seen that the frequencies have a notable 

effect on the vibration of double-walled CNTs with shorter 

length-to-diameter ratio. Fig. 3 exhibits the variation of 

fundamental eigen frequencies against two distinct values 

 

 
of nonlocal parameter e0a=0.18, 0.40 for chiral (8, 3) 
double-walled CNTs. The detail inspection of aspect ratio 
thickness to radius (h/R1) that ranges from 0.30nm to 0.44 

nm is discussed subject to four boundary conditions FSM-
CC, FSM-CS, FSM-SS and FSM-CF. The radius of inner 
tube is considered as R1=0.35 nm and R1=1.5 nm with all 
above mentioned numerical estimates of physical 
parameters incorporating also with vdW interaction between 
two tubes of double-walled CNTs. The graph in figure 

shows that with an increase in values of aspect ratio, 
frequency corresponding to each boundary condition tends 
to increase. For lessen value of e0a the frequencies are 
higher for FSM-CC, FSM-CS, FSM-SS and FSM-CF 
respectively. Whereas for lower aspect ratio the frequencies 
coincide but as it continues to expand the difference 

between all respective boundary conditions slightly tend to 
increase. One of main findings depicted by graph is that 
calculated frequencies coincide for all boundary condition 
in beginning and continue to ascent with a rise in aspect 
ratio.  

On the other hand chiral (8, 3) with R1=1.5 nm attains 

higher frequencies for distinct values of nonlocal 

parameters compared to R1=0.35 nm. The rooted nonlocal 

elasticity model also produces more significant results for 

minimal radius of tubes. The graphs in Fig. 4 compares the 

fundamental frequencies of chiral (11, 4) with inner radius 

R1=0.35 nm and R1=1.5 nm. The all other numerical  
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Fig. 4 Influence of diverse boundary conditions on chiral double-walled CNT (11, 4) 

583



 

Sehar Asghar, Muhammad N. Naeem, Mohamed Amine Khadimallah, Muzamal Hussain, Zafar Iqbal and Abdelouahed Tounsi 

 

  

 

10 15 20 25 30 35

3.535

3.636

3.737

3.838

3.939

F
u
n
d
a
m

e
n
ta

l 
fr

e
q
u
e
n
c
y

L/d2

 FSM-CC

 FSM-CS

 FSM-SS

 FSM-CF

 

10 15 20 25 30 35

3.535

3.636

3.737

3.838

3.939

4.040

F
u
n

d
a

m
e

n
ta

l 
fr

e
q

u
e

n
c
y

L/d2

 FSM-CC

 FSM-CS

 FSM-SS

 FSM-CF

 

 

 (a) (b)  

 

0.28 0.30 0.32 0.34 0.36 0.38 0.40 0.42 0.44

4.853

5.064

5.275

5.486

F
u
n

d
a

m
e

n
ta

l 
fr

e
q

u
e

n
c
y

L / d2

 FSM-CC

 FSM-CS

 FSM-SS

 FSM-CF

 
10 15 20 25 30 35

4.847

4.978

5.109

5.240

5.371

5.502

5.633

5.764

F
u
n

d
a

m
e

n
ta

l 
fr

e
q

u
e

n
c
y

L/d2

 FSM-CC

 FSM-CS

 FSM-SS

 FSM-CF

 

 

 (c) (d)  

Fig. 5 Influence of diverse boundary conditions on chiral double-walled CNT (8, 3), (9, 3), (11, 4) and (13, 4) with 

R1=0.35 nm against nonlocal parameter e0a=0.18 displaying the comparison of aspect ratio L/d 
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Fig. 6 Influence of diverse boundary conditions on chiral double-walled CNT (8, 3), (9, 3) ,(11, 4) and (13, 4) with  

R1=0.35 nm against nonlocal parameter e0a=0.40 displaying the comparison of aspect ratio L/d 
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estimates are same as quoted above. The curves in graphs 

shows the validity of small-scale effect as the frequencies 

decrease with an increase of nonlocal parameter. Also, it is 

observed that as inner radius is reduced so the fundamental 

frequencies possess more significant result. The FSM-CC 

attains highest fundamental frequency chased by FSM-CS 

after that FSM-SS and at last FSM-CF comes. In both 

figures smaller inner radius shows insignificance of 

boundary conditions for low aspect ratio. For the special 

case, in Fig. 4(b) and (d) for chiral (11, 4), in start the 

frequency rises with jump for all corresponding end 

supports, but as aspect ratio expands it displays an 

infinitesimal increase respectively. The graphs in Fig. 5 

included the fundamental frequencies of chiral (8, 3), (9, 4), 

(11, 4) and (13, 4) showing diversity with the e0a=0.18. The 

all depicted frequencies in graphs are facing length to 

diameter ratio(ranges from 8 nm to 35 nm). It is noticed that 

there is uniform decrease in frequencies of chiral 

corresponding to all four conditions FSM-CC, FSM-CS, 

FSM-SS and FSM-CF. In Fig. 5, the inner tube radius is 

taken as R1=0.35 nm with other estimates remained same. 

Fig. 5 display the comparison chiral (7, 0) with e0a=0.18. It 

is obviously seen there is an decreasing trend and which 

remains unchanged for all boundary conditions as well as 

chiral double-walled CNTs with distinct indices possess the 

identical behavior. It is noticeable that chiral (13, 4) procure 

the higher frequency in comparison of L/d2 for chiral (8, 3), 

(9, 3) and (11, 4) against nonlocal parameter. The graph in 

Fig. 5(a) represented the frequency 3.9144 against the first 

thickness to radius ratio for FSM-CC of chiral (8, 3), 

whereas in Fig. 5(d) it was espied as 5.8167. Fig. 6 

illustrates the influence of boundary conditions for chiral (8, 

3), (9, 3), (11, 4) and (13, 4) respectively considering the 

e0a=0.40. The drop of the curves opposite of length to 

diameter ratio affirms the nonlocal effect. Corresponding to 

all chiral frequencies, there is seen drop in the frequencies 

as inflates the nonlocal parameter value. Also, as enlarges 

the indices of chiral, the curves indicated escalation in 

frequencies and the pattern recognized the fact. The gap 

presented in four boundary conditions is obvious in start of 

the curves as FSM-CF secures the lowest frequency in 

comparison of FSM-SS, FSM-CS and FSM-CC. Moreover, 

the more accretion in the nonlocal parameter, the lower the 

fundamental frequencies are observed. It shows a descent in 

fundamental frequencies with an ascent in nonlocal 

parameter. However the validation of present model is 

evidently observed by meeting all four end supports at end 

with the increase in tube’s length. 
 
 
5. Conclusions 
 

The Flügge shell theory based on nonlocal elasticity 
investigates the vibration characteristics of double-walled 
CNTs. Theoretical formation of the nonlocal model 
involves the van der Waals interactions between the tubes 
and impact of small-scale effect subjected to four boundary 

supports. The wave propagation approach is exercised to 
determine eigen frequencies for chiral CNTs. The 
fundamental frequencies scrutinized with assorted length to 
diameter ratio and thickness to radius ratio. The analysis 

done with the findings 
• The rise in value of nonlocal parameter reduces the 
corresponding fundamental frequency estimates. 
• Due to small scale effect fundamental frequency ratio 
decreases as length to diameter ratio increases. 
• Small scale effect becomes more pronounced on all 
end supports for the higher values of aspect ratio (length 
to diameter). 

• With the large inner tube radius double-walled CNTs 

behaves more sensitive towards nonlocal parameter. 

• An increase in indices of chiral double-walled CNTs 

with increasing inner tube radius become insignificant 

for thickness to radius ratio. 

The present study can be appropriate to employ for 

analyzing the vibrations in double-walled CNTs with 

Galerkin and finite element methods. 
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