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1. Introduction  
 

Study of vibration characteristics of cylindrical shells 

with ring supports is a widely area of research in applied 

mathematics and theoretical mechanics. Analytical 

investigation of vibrations of these shell are performed to 

estimate the probable dynamical response. Vibration shell 

problems with ring supports occur in industrial engineering 

fields. Their vibration analysis predicts to approximate the 

experimental results. Nature of a shell material plays an 

important role in specifying their vibration frequencies. 

Stability of a cylindrical shell depends highly on these 

aspects of material. More the shell material sustains a load 

due to physical situations, the more the shell is stable. Any 

predicted fatigue due to burden of vibrations is evaded by 

estimating their dynamical aspects.  

Variations in the shell physical parameters are inducted 

to enhance their strength and stability. During the recent 

years, study of cylindrical shell (CSs) has gained the 

attention of researchers doing work on their vibration 

characteristics. Advanced composite materials keep extreme 

particular stiffness, strength and are resistant to corrosion.  
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Firstly, Love (1888) presented the Kirchhoff’s hypotheses 

for plates. After that this theory became a foundation stage 

for building new ones by changing physical terms 

expressions. 

More than one form of materials is used to structure the 

functionally graded (FG) materials and their physical 

properties vary from one surface to the other surface. In 

these surfaces, one has highly heat resistance property while 

other may preserve great dynamical perseverance and 

differs mechanically and physically in regular manner from 

one surface to other surface, making them of dual physical 

appearance. All these materials have changeable outer and 

inner sides and their physical properties greatly differ from 

each other (Suresh and Mortensen 1997, Koizumi 1997). 

These materials are organized by various techniques and 

their applications are seen in dynamical elements such as 

plates, beams and shells. Moreover, they are also observed 

in space crafts, nuclear reactors and missiles technology etc. 

Sewall and Naumann (1968) considered the vibration 

analysis of CSs based on analytical and experimental 

methods. The shells were strengthened with longitudinal 

stiffeners. Xiang et al. (2002) formed some closed form 

solution functions for studying vibrations of cylindrical 

shells. The mid-way ring supports were clamped around the 

shells. Sharma (1974) analyzed vibration frequencies 

circular cylinder with using the Rayleigh - Ritz method 

(RRM) and made comparisons of his results with some 

experimental ones.  
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Abstract.  In this study, the impact of ring supports around the shell circumferential has been examined for their various 

positions along the shell axial length using Rayleigh-Ritz formulation. These shells are stiffened by rings in the tangential 

direction. For isotropic materials, the physical properties are same everywhere where the laminated and functionally graded 

materials, they vary from point to point. Here the shell material has been taken as functionally graded material. The influence of 

the ring supports is investigated at various positions. These variations have been plotted against the locations of ring supports for 

three values of length-to-diameter ratios. Effect of ring supports with middle layer thickness is presented using the Rayleigh-Ritz 

procedure with three different conditions. The influence of the positions of ring supports for clamped-clamped is more visible 

than simply supported and clamped-free end conditions. The frequency first increases and gain maximum value in the midway 

of the shell length and then lowers down. The Lagrangian functional is created by adding the energy expressions for the shell 

and rings. The axial modal deformations are approximated by making use of the beam functions. The comparisons of 

frequencies have been made for efficiency and robustness for the present numerical procedure. Throughout the computation, it is 

observed that the frequency behavior for the boundary conditions follow as; clamped-clamped, simply supported-simply 

supported frequency curves are higher than that of clamped-simply curves. To generate the fundamental natural frequencies and 

for better accuracy and effectiveness, the computer software MATLAB is used. 
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Sharma et al. (1998) determined frequencies of 
composite cylindrical shells containing fluid. They 
estimated the axial modal deformations by trigonometric 
functions. Wang et al. (1997) scrutinized the vibrations of 
ring-stiffened CSs using Ritz polynomial functions. 
Materials of both shells and rings were of isotropic nature. 
These shells were stiffened with isotropic rings having three 
forms of locations on the shell outer surface. To increase the 
stiffness of CSs was stabilized by ring-stiffeners. Isotopic 
materials are the constituents of these rings. A large use of 
shell structures in practical applications makes their 
theoretical analysis an important field of structural 
dynamics. Since a shell problem is a physical one, so their 
vibrational behaviors are distorted by variations of physical 
and material parameters. Jiang and Olson (1994) 
recommended the characteristics of analysis of stiffened 
shell using finite element method to diminish large 
computational efforts which are required in the 
conventional finite element analysis. To elude any 
complications which may risk a physical system their 
analytical investigation was done. Ergin and Temarel (2002) 
did a vibration study of cylindrical shells. The shells lied in 
a horizontal direction and contained fluid and submerged in 
it. Najafizadeh and Isvandzibaei (2007) applied ring 
supports to CSs for vibration analysis along the tangential 
direction and founded their research on angular deformation 
theory of higher order. The angular deformation was used 
for shell equations and determined the effects of constituent 
volume fractions and shell configurations on the shell 
vibrations. FG material parameters were changed step by 
step. 

Wang and Lai (2000) examined a novel approach for the 

evaluation of eigen - frequencies of cylindrical shells. The 

numerical process adopted by them was alike the wave 

propagation approach (WPA). Zhang (2002) studied 

vibrations of CSs submerged in a fluid. It was seen that the 

fluid factor impressed vibration shell frequencies to a 

significant limit. Shah et al. (2009) and Sofiyev and Avcar 

(2010) studied stability of CSs based on Rayleigh - Ritz and 

Galerkin technique using elastic foundations. The structures 

of cylindrical shell were tackled under the exponential law 

and axial load. Hussain and Naeem (2017) examined the 

frequencies of armchair tubes using Flügge’s shell model. 

The effect of length and thickness-to-radius ratios against 

fundamental natural frequency with different indices of 

armchair tube was investigated. Hussain et al. (2017) 

demonstrated an overview of Donnell theory for the 

frequency characteristics of two forms of SWCNTs. 

Fundamental frequencies with different parameters have 

been investigated with WPA. Hussain and Naeem (2018) 

used Donnell’s shell model to calculate the dimensionless 

frequencies for two forms of single-walled carbon 

nanotubes. The frequency influence was observed with 

different parameters. Pankaj et al. (2019) studied the 

functionally graded material using sigmoid law distribution 

under hygrothermal effect. The Eigen frequencies are 

investigated in detail. Frequency spectra for aspect ratios 

have been depicted according to various edge conditions. 

Several researchers used different approaches for the 

investigation of frequency of cylinders and concrete 

material (Kagimoto et al. 2015, Mesbah and Benzaid 2017, 

Alijani and Bidgoli 2018, Demir and Livaoglu 2019, 

Samadvand and Dehestani 2020). 

According to our knowledge, up to now little is known 

about the vibration analyses of varying three layers in 

different configuration and has not been investigated for 

three layered FG-CS with ring supports based on Rayleigh-

Ritz method. The proposed model is quite straightforward 

for the vibrational analysis of these structures of CSs. A 

large use of shell structures in practical applications makes 

their theoretical analysis an important field of structural 

dynamics. Since a shell problem is a physical one, so their 

vibrational behaviors are distorted by variations of physical 

and material parameters. It is also exhibited that the effect 

of frequencies by varying the different layers with 

constituent material. The frequencies changes with these 

layers according to the material formation of FG-CSs with 

ring supports. Throughout the computation, it is observed 

that the frequency behavior for the boundary conditions 

follow as; clamped-clamped (C-C), simply supported-

simply supported (SS-SS) frequency curves are higher than 

that of clamped-simply (C-S) curves. Also the Sander’s 

shell model based on the Rayleigh - Ritz method for 

estimating fundamental natural frequency has been 

developed to converge more quickly than other methods 

and models. The presented vibration modeling and analysis 

of CSs may be helpful especially in applications such as 

oscillators and in non-destructive testing. To elude any 

complications which may risk a physical system their 

analytical investigation is done.   

 

 

2. Functionally graded material 
 

The modeling of FG-CS is due to mixing two or more 

than two materials like ceramic and metal and the 

distribution of various functions and properties (physical 

and material), is termed as rule of mixture. Power law 

function has been utilized for with particular index using 

material properties in the thickness direction. The 

temperature and properties variations have been obtained by 

using the property of temperature and volume fraction. The 

distributions of volume fraction for all forms of CSs are 

assumed as (Chi and Chung 2006).  
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where p, h and z, respectively, denoted for power law index, 

thickness and the coordinate, where z which varies from 

zero to infinity.  

A FG-CS consisting of two constituent materials. In 

these forms, nickel, stainless steel and zirconia are used for 

middle, internal and external surfaces, but their arrangement 

has profound influence on the formation of FG-CSs. If E1 

and E2 as Young’s moduli, v1 and v2 as Poisson’s ratios, ρ1 

and ρ2 mass densities respectively. Then effective material 

quantities for FG material are   
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Fig. 1 Geometry of cylindrical shell with ring support 
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(2) 

Toulokian et al. (1967) stated the material properties C 
at high temperature environ, with temperature-dependents 

which is a function of temperature. In Eq. (3), the constants 

(C0,C-1,C1,C2,C3) are different for different material. 

( )1 2 3

0 1 1 2 3 C C C CT TC CT T−

−= + + +  (3) 

  

 

3. Theoretical formation 
 

The geometrical parameters L, h, R denotes as length, 

thickness and radius for CSs with its coordinate system 
(𝑥, 𝜃, 𝑧)  as shown in Fig. 1. The x, θ co-ordinate are 

assumed to be along longitudinal and circumferential 

direction, respectively and z-co-ordinates are taken in its 

radial directions.  

When the material and geometrical parameters are 

considered, the formula for a strain energy, S of a vibrating 

cylindrical shell is expressed as 

𝑆 =
𝑅

2
∫ ∫ [𝐴11

2𝜋

0

𝐿

0
𝑒1

2 + 𝐴22𝑒2
2 + 2𝐴12𝑒1𝑒2 + 𝐴66𝑒12

2 +  

2(𝐵11𝑒1𝑘1 + 𝐵11𝑒1𝑘1 + 𝐵11𝑒1𝑘1 + 𝐵11𝑒1𝑘1 + 

2𝐵66𝑒12𝑘12) +𝐷11𝑘1
2 + 𝐷22𝑘2

2 + 2𝐷12𝑘1𝑘2 

𝐷66
2 𝑘12

2 ]𝑑𝜃𝑑𝑥                 (4) 

where  𝑒1, 𝑒2, e3  and 𝑘1  , 𝑘2, 𝑘3  designate the surface 

strains and curvatures respectively. The extensional 

stiffness, 𝐴𝑖𝑗 , coupling stiffness,  𝐵𝑖𝑗  and bending 

stiffness, 𝐷𝑖𝑗 are written as 
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The variation of stiffness moduli Aij, Bij, Dij  

6,2,1. =ji  is modifies as 
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Fig. 2 Composition of material of CSs 

 

 

Fig. 2 shows for the composition of layers with isotropic 

middle layers and other with FG layers. 

Here the reduced stiffness, 𝑄𝑖𝑗 ’s are written as for 

isotropic CSs 
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The strain-displacement relations from Budiansky and 

Sanders (1963) furnished as 
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and the expressions for the curvature - displacement 

relations are represented as 
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Making substitutions of these relations from the 

expression (8) and (9) into the formula (4), the strain 

energy, S is takes the new forms 
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The shell kinetic energy, K of the cylindrical shell is 

written as 
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Where 𝜌 t  is designated as 

𝜌𝑡 = ∫  𝜌𝑑𝑧
ℎ

2⁄

−ℎ
2⁄

               (12) 

The mass density 𝜌  remains constant for an isotropic 

material. The Langrange energy funct ional  ∏   for a 

vibrating cylindrical shell is stated as the difference 

between kinetic and strain energies and is expressed as 

∏ = 𝐾 − 𝑆                (13) 

 

 

4. Solution methodology 
 

Here Rayleigh’s method is engaged to solve the CSs 

problem of differential equations in an efficient and 

comprehensive way. This method needs the axial modal 

approximates dependence on the characteristic function. 

The governing equation was formulated based on Sander’s 

thin shell theory with energy functional. Over the past 

several years vibration of shell structures of various 

configurations and boundary conditions have been 

extensively studied (Hussain and Naeem 2019, Wang et al. 

1997). The RRM is very powerful technique for the 

prediction of vibration of shells. Axial, circumferential and 

radial direction is related only to the axial displacement 

function. The unknown functions involving the tube 

dynamical equations are functions of shape linear variables. 

The independent variables are separated by employing 

prescribed method. They are supposed in the form of the 

product of separate functions of independent variables.  
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Where Am, Bm, Cm are taken as the displacement 

amplitudes in 𝑥, 𝜃 and 𝑧 directions. The angular frequency 

and circumferential wave number are represented by 𝜔 and 

𝑛  respectivelywhere. The axial function ϕ(x) represents 

axial modal displacement shapes and satisfies the geometric 

boundary conditions. The term x=ai is the ith ring supports 

along longitudinal direction and N, εi designates for number 

and existence of ring supports. When there is no ring on the 

shell the condition is εi=0
 
and for ring supports is εi=1. 

The modified form of strain and kinetic energy with 

axial displacement functions 

2
2 222

11 2 2

0

2

12

2

[ { ( )}
2

2
( ){ ( )}

L

m m m

m m m

AR d
U A A nB C x a

dx R

A d
A nB C x a

R dx

 
 


 

= + + −

+ + −


             

2
2

66 11 2

2

12

2 2

( ) 2 ( )

2
{ ( ( ) 2 )}

m
m m

m

nAd d d
A B B A

dx R dx dx

Bd d
C x a

dx dx R

  

 

+ − −

− + −

 

2
2

2

2

12

2

( ){ ( ) }

2
{ ( )}{ ( ( )

m m m

m m m

d
A n C x a nB

dx

B d
nB C x a C x a

R dx


 


 

− − −

− + − −

 

22

3

2 66

2
2 )} { ( )}

4
{ ( ) } {

m m

m m m

Bd
nB C x a

dx R

B d
n C x a nB B

R dx


 


 

+ − + −

− − − −

 

2
2

11 2

}{ ( ( ) ) }

{ ( ( ) 2 )}

m
m m

m

nA d d d
nC x a B

R dx dx dx

d d
D C x a

dx dx

  


 

− − − + −

+ − +

 

2 222 12

4 2

2
2

2

2
{ ( ) }

{ ( ( ) 2 )}{

m m

m m

D D
n C x a nB

R R

d d
C x a n C

dx dx

 

 


+ − − − +

− + −

 

66

2

2 2

4
( ) } {

( ( ) ) } ]sin

m m

m

D
x a nB nC

R

d d
x a B tdx

dx dx



 
 

− − + −

− + −

     (15) 
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With the help of these equation, many (or any) ring 

supports can be investigated. For minimum energy 

principal, the relation of strain energy Umax and kinetic 

energy Tmax are obtained, i.e. 
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Now, the Langrangian function can be written as 
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Table 1 Convergence of RRM frequencies (Loy et al. 1997) 

 Method 
n 

1 2 3 4 

C-C 
Loy et al. (1997) 0.032885 0.01393 0.02267 0.04221 

Present 0.034878 0.01405 0.02272 0.04227 

S-S 
Loy et al. (1997) 0.016101 0.00938 0.02211 0.04209 

Present 0.016102 0.00938 0.02211 0.04227 

C-S 
Loy et al. (1997) 0.023974 0.00822 0.00584 0.00871 

Present 0.024721 0.00828 0.00585 0.00871 
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The above equations can be written in the form of 

matrices as 
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The expressions for the terms aij
’s, I2, I9 and I11 are given 

in Appendix-I. 

 

 

5. Simulation results and discussion 
 

Here, the versatile numerical technique RRM has been 

used in current study to investigate the vibration of FG-CS 

with ring support. For the convergence rate of CSs, the non- 
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Fig. 3 Convergence of RRM frequencies (a) versus m (n=1, 

L=8 in, h=0.1 in, R=2 in, E=30×106 lbf in-2, v=0.3, 

ρ=7.35×10-4 lbf s2 in-4) (b) versus n (m=1, L=0.41 m, 

h=0.001 m, R=0.3015 m, E=2.1×1011 N/m2, v=0.3, ρ=7850 

Kg/m3) 

 

 

dimensional frequency enumerated in the current work, i.e., 

using RRM are happened to be in a good consistency along 

with the so-called exact results furnished by Loy et al. 

(1997), those were established by working out with the 

deformation theory provided in Table 1. There is once again 

comparison of present resuts of CSs with Loy et al. (1999), 

Ansari et al.(2011) and Warburton (1965), provided in Fig. 

3(a) and Gonclaves et al. (2006), Gonclaves and Batista 

(1988), Gaser (1987) as shown in Fig 3(b). The proposed 

model based on RRM can incorporate in order to accurately 

predict the acquired results of material data point. Fig. 4 

indicates that the frequency values versus circumferential 

wave number. It is observed that the frequencies are highly 

visible for without ring are higher than those for ones. In 

Fig. 4, variations of frequencies are shown versus the wave 

modes (n). As n grows, frequencies for cylindrical shells 

boost indefinitely. 
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Table 2 Configuration of layers with materials as Stainless 

Steel (STS), Zirconia (ZI) and Nickel (NI) 

Layers 
Configurations 

Form I Form II Form III Form IV 

Inner layer (Iso) STS -ZI STS - ZI ZI -STS ZI - STS 

Middle layer (FGM) NI NI NI NI 

Outer layer (Iso) STS - ZI ZI - STS STS - ZI ZI - STS 

 

Table 3 Configuration of layers with thickness 

Layers 
Configurations 

Form I Form II Form III Form IV 

Inner layer (Iso) 5h/12 h/4 h/4 h/6 

Middle layer (FGM) h/6 h/4 h/4
 

2h/3
 Outer layer (Iso) 5h/12 h/2 h/2 h/6 

 

Table 4 Comparison of C-C frequencies for all forms of 

shell versus circumferential wave numbers (n) 

p n Form I Form II Form III Form IV 

3 

1 662.27 647.28 648.26 635.13 

2 439.62 429.50 430.76 421.89 

3 336.21 328.01 330.26 323.04 

4 336.22 327.13 331.99 323.97 

5 

1 685.58 662.82 663.64 644.73 

2 455.03 439.84 440.95 428.31 

3 347.80 336.03 337.87 328.11 

4 347.44 335.36 339.27 329.36 

7 

1 702.42 671.03 671.75 649.62 

2 463.53 445.31 446.30 431.58 

3 354.19 340.30 341.84 330.70 

4 353.61 339.82 342.98 332.11 

 

 

Since a FG-CS is composed of three layers having 

different thickness for different four forms, which is 

presented in the Tables 2 and 3.  

 

5.1 Frequency behavior without ring supports for all 
forms of CSs 

 

In Tables 4-6, frequencies of vibrating FG-CSs are 

plotted versus the wave number, n. These frequencies have 

been examined for the wave number, m=1. These tables 

portray the variations of frequencies with circumferential 

wave number, n for all forms of shell. These variations of 

the natural frequency (Hz) have been calculated for the 

following volume fraction exponents: p=3, 5, 7 of FGM 

cylindrical shells. The frequencies first decrease then 

increase for all forms of shell as n increases and frequencies 

increases on increases the law exponent. In these tables, for 

clamped-clamped conditions, variations of frequencies are 

higher than that of other conditions. 

 

5.2 Frequency variation of isotropic middle layer with 
ring supports 

 

In Fig. 5, frequencies of vibrating CSs with ring support 

are plotted versus the wave number, n. These variations of 

the natural frequency (Hz) have been calculated for the four 

Table 5 Frequency comparison for all forms of shell versus 

circumferential wave numbers (n) with C-S. 

p n Form I Form II Form III Form IV 

3 

1 596.97 583.55 583.82 572.08 

2 347.74 339.80 340.08 333.11 

3 246.77 240.60 242.46 237.03 

4 276.45 268.63 273.64 266.74 

5 

1 617.99 597.57 597.67 580.71 

2 359.95 347.98 348.12 338.17 

3 255.22 246.54 247.98 240.80 

4 285.53 275.49 279.50 271.29 

7 

1 629.57 604.97 604.98 585.11 

2 366.68 352.30 352.36 340.75 

3 259.87 249.71 250.85 242.72 

4 290.52 279.22 282.45 273.61 

 

Table 6 Comparison of SS-SS frequencies for all forms of 

shell versus circumferential wave numbers (n)  

p n Form I Form II Form III Form IV 

3 

1 350.96 343.10 343.70 336.20 

2 170.03 166.10 166.21 162.77 

3 147.79 143.75 146.09 142.53 

4 227.92 221.19 226.48 220.55 

5 

1 363.32 350.36 351.20 341.28 

2 175.98 170.11 170.12 165.25 

3 152.71 147.38 149.27 144.91 

4 235.30 226.91 231.21 224.40 

7 

1 370.13 355.72 355.84 343.87 

2 179.26 172.23 172.81 166.52 

3 155.41 149.35 150.89 146.13 

4 239.35 230.03 233.57 226.37 

 

 

forms with volume fraction exponent p=0.5. Figures depicts 

that frequencies increases with the increase of n with ring 

attached at a/L=0.1 The frequencies diminishes on 

increasing the middle layer thickness and the effect ring 

support is prominent with three different boundary 

conditions. For clamped-clamped conditions, variations of 

frequencies are higher than that of other conditions. 

Here frequencies for four forms of FG-CSs with ring 

supports are presented in following figures. The frequency 

variation with the position of the ring support at a/L=0.3 for 

the edge conditions: SS- SS, C-C and C-S for both FG-CS 

as shown in Fig. 6-8. These figures depicts the frequency 

variations versus ring support for four forms of cylindrical 

shell with for three values of L/R=10, 15, 20 and law 

exponent is 0.5 (m=1, n=1, h/R=0.002). These variations of 

frequencies are drawn with three forms of end conditions. 

As a is enhanced for these boundary conditions, the 

frequencies go up. At a/L (=0.5) all the frequencies are 

higher and at a/L (=0.6~0.9), the frequencies decreases. The 

frequencies are same at a/L=0, 1 and rust itself a bell shape. 

In these figure, the C-S are lower than that of C-C and SS-

SS. As shown by this figure, the boundary conditions C-C 

have the highest frequency curves. These frequencies have 

a great impact on the vibration of CSs. It is inferred this 

frequency behavior with position of the ring supports has 

paramount influence on the vibrations of FG-CSs. From  
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these figures, it can be seen that the frequency behavior 

versus position of ring position at a/L (=0~0.5) for form I 

and II with L/R=10 for C-C is 71.4%, SS-SS is 60.3% and 

with L/R=15 for C-C is 70%, SS-SS is 59.6% and with 

L/R=20 for C-C is 68.6%, SS-SS is 59.2%. Now frequency 

 

 

 

variation for form III and form Iv is calculated as with 

L/R=10 for C-C is 71.5%, SS-SS is 60.7%, and with L/R=15 

for C-C is 70.2%, SS-SS is 60% and with L/R=20 for C-C is 

68.9%, SS-SS is 59.5%. The interesting phenomena occurs 

for the C-S condition that the frequencies are symmetrical  

 
(C-C) 

 
(C-S) 

 
(SS-SS) 

Fig. 5 Frequency variations for middle isotropic layer of C-C, C-S, SS-SS versus (n) 

 

 
(Form-I) 

 
(Form-II) 

 

Fig. 6 Variations of frequency with L/R ratios of SS-SS condition versus ring support (a) Form-I (b) Form-II (c) 

Form-III (d) Form-IV) 
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about the center for all forms of shell configuration, shown 

in Fig. 8. 

 

 

6. Conclusions 

 

 
 

In present study, vibrations of FG cylindrical shells have 

been examined for four forms of cylindrical shell. 

Theoretical study gives a prediction to estimate 

experimental frequencies and avoids any future risk to a 

physical system. For the derivation of frequency equation,  

 

 
(Form-III) 

 
(Form-IV) 

 

Fig. 6 Continued 

 

 
(Form-I) 

  
(Form-II) 

 

 

 
(Form-III) 

 
(Form-IV) 

 

Fig. 7 Variations of frequency with L/R ratios of SS-SS condition versus ring support (a) Form-I (b) Form-II (c) 

Form-III (d) Form-IV) 
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Rayleigh-Ritz technique has been applied. Terms of ring 

supports have been introduced by a polynomial function 

that bears the degree equal to the number of ring supports. 

These results have been obtained for circumferential wave 

mode for different layers with various ratios of length-to-

radius. Variations of frequencies with the locations of ring 

supports have been analyzed placed round the 

circumferential direction. The position of a ring support has 

been taken along the shell length. It is seen that frequencies 

increases on inducting of ring-position and play prominent 

role in the shell vibration. The frequency first increases and 

obtains its maximum value at the shell mid length position 

and then decreases and get a bell shape for clamped-

clamped and simply supported conditions. In clamped-

simply supported, frequencies are symmetrical about the 

center of the shell and not form the shape of bell. The 

frequency behaviors have been fully checked with different 

material and configuration of four forms of shells. The 

frequency decreases from first shell to forth shell due to the 

configuration and shell thickness variations. Also the effect 

of middle layer has been seen in very prominent manners. 

Its values at both ends are similar. This procedure can be 

applied to vibration characteristics of FG-shell using 

various volume fraction laws with ring supports. 
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