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Abstract. In this study, the impact of ring supports around the shell circumferential has been examined for their various
positions along the shell axial length using Rayleigh-Ritz formulation. These shells are stiffened by rings in the tangential
direction. For isotropic materials, the physical properties are same everywhere where the laminated and functionally graded
materials, they vary from point to point. Here the shell material has been taken as functionally graded material. The influence of
the ring supports is investigated at various positions. These variations have been plotted against the locations of ring supports for
three values of length-to-diameter ratios. Effect of ring supports with middle layer thickness is presented using the Rayleigh-Ritz
procedure with three different conditions. The influence of the positions of ring supports for clamped-clamped is more visible
than simply supported and clamped-free end conditions. The frequency first increases and gain maximum value in the midway
of the shell length and then lowers down. The Lagrangian functional is created by adding the energy expressions for the shell
and rings. The axial modal deformations are approximated by making use of the beam functions. The comparisons of
frequencies have been made for efficiency and robustness for the present numerical procedure. Throughout the computation, it is
observed that the frequency behavior for the boundary conditions follow as; clamped-clamped, simply supported-simply
supported frequency curves are higher than that of clamped-simply curves. To generate the fundamental natural frequencies and

for better accuracy and effectiveness, the computer software MATLAB is used.
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1. Introduction

Study of vibration characteristics of cylindrical shells
with ring supports is a widely area of research in applied
mathematics and theoretical mechanics. Analytical
investigation of vibrations of these shell are performed to
estimate the probable dynamical response. Vibration shell
problems with ring supports occur in industrial engineering
fields. Their vibration analysis predicts to approximate the
experimental results. Nature of a shell material plays an
important role in specifying their vibration frequencies.
Stability of a cylindrical shell depends highly on these
aspects of material. More the shell material sustains a load
due to physical situations, the more the shell is stable. Any
predicted fatigue due to burden of vibrations is evaded by
estimating their dynamical aspects.

Variations in the shell physical parameters are inducted
to enhance their strength and stability. During the recent
years, study of cylindrical shell (CSs) has gained the
attention of researchers doing work on their vibration
characteristics. Advanced composite materials keep extreme
particular stiffness, strength and are resistant to corrosion.
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Firstly, Love (1888) presented the Kirchhoff’s hypotheses
for plates. After that this theory became a foundation stage
for building new ones by changing physical terms
expressions.

More than one form of materials is used to structure the
functionally graded (FG) materials and their physical
properties vary from one surface to the other surface. In
these surfaces, one has highly heat resistance property while
other may preserve great dynamical perseverance and
differs mechanically and physically in regular manner from
one surface to other surface, making them of dual physical
appearance. All these materials have changeable outer and
inner sides and their physical properties greatly differ from
each other (Suresh and Mortensen 1997, Koizumi 1997).
These materials are organized by various techniques and
their applications are seen in dynamical elements such as
plates, beams and shells. Moreover, they are also observed
in space crafts, nuclear reactors and missiles technology etc.
Sewall and Naumann (1968) considered the vibration
analysis of CSs based on analytical and experimental
methods. The shells were strengthened with longitudinal
stiffeners. Xiang et al. (2002) formed some closed form
solution functions for studying vibrations of cylindrical
shells. The mid-way ring supports were clamped around the
shells. Sharma (1974) analyzed vibration frequencies
circular cylinder with using the Rayleigh - Ritz method
(RRM) and made comparisons of his results with some
experimental ones.
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Sharma et al. (1998) determined frequencies of
composite cylindrical shells containing fluid. They
estimated the axial modal deformations by trigonometric
functions. Wang et al. (1997) scrutinized the vibrations of
ring-stiffened CSs using Ritz polynomial functions.
Materials of both shells and rings were of isotropic nature.
These shells were stiffened with isotropic rings having three
forms of locations on the shell outer surface. To increase the
stiffness of CSs was stabilized by ring-stiffeners. Isotopic
materials are the constituents of these rings. A large use of
shell structures in practical applications makes their
theoretical analysis an important field of structural
dynamics. Since a shell problem is a physical one, so their
vibrational behaviors are distorted by variations of physical
and material parameters. Jiang and Olson (1994)
recommended the characteristics of analysis of stiffened
shell using finite element method to diminish large
computational efforts which are required in the
conventional finite element analysis. To elude any
complications which may risk a physical system their
analytical investigation was done. Ergin and Temarel (2002)
did a vibration study of cylindrical shells. The shells lied in
a horizontal direction and contained fluid and submerged in
it. Najafizadeh and Isvandzibaei (2007) applied ring
supports to CSs for vibration analysis along the tangential
direction and founded their research on angular deformation
theory of higher order. The angular deformation was used
for shell equations and determined the effects of constituent
volume fractions and shell configurations on the shell
vibrations. FG material parameters were changed step by
step.

Wang and Lai (2000) examined a novel approach for the
evaluation of eigen - frequencies of cylindrical shells. The
numerical process adopted by them was alike the wave
propagation approach (WPA). Zhang (2002) studied
vibrations of CSs submerged in a fluid. It was seen that the
fluid factor impressed vibration shell frequencies to a
significant limit. Shah et al. (2009) and Sofiyev and Avcar
(2010) studied stability of CSs based on Rayleigh - Ritz and
Galerkin technique using elastic foundations. The structures
of cylindrical shell were tackled under the exponential law
and axial load. Hussain and Naeem (2017) examined the
frequencies of armchair tubes using Fliigge’s shell model.
The effect of length and thickness-to-radius ratios against
fundamental natural frequency with different indices of
armchair tube was investigated. Hussain et al. (2017)
demonstrated an overview of Donnell theory for the
frequency characteristics of two forms of SWCNTs.
Fundamental frequencies with different parameters have
been investigated with WPA. Hussain and Naeem (2018)
used Donnell’s shell model to calculate the dimensionless
frequencies for two forms of single-walled carbon
nanotubes. The frequency influence was observed with
different parameters. Pankaj et al. (2019) studied the
functionally graded material using sigmoid law distribution
under hygrothermal effect. The Eigen frequencies are
investigated in detail. Frequency spectra for aspect ratios
have been depicted according to various edge conditions.
Several researchers used different approaches for the
investigation of frequency of cylinders and concrete
material (Kagimoto et al. 2015, Mesbah and Benzaid 2017,

Alijani and Bidgoli 2018, Demir and Livaoglu 2019,
Samadvand and Dehestani 2020).

According to our knowledge, up to now little is known
about the vibration analyses of varying three layers in
different configuration and has not been investigated for
three layered FG-CS with ring supports based on Rayleigh-
Ritz method. The proposed model is quite straightforward
for the vibrational analysis of these structures of CSs. A
large use of shell structures in practical applications makes
their theoretical analysis an important field of structural
dynamics. Since a shell problem is a physical one, so their
vibrational behaviors are distorted by variations of physical
and material parameters. It is also exhibited that the effect
of frequencies by varying the different layers with
constituent material. The frequencies changes with these
layers according to the material formation of FG-CSs with
ring supports. Throughout the computation, it is observed
that the frequency behavior for the boundary conditions
follow as; clamped-clamped (C-C), simply supported-
simply supported (SS-SS) frequency curves are higher than
that of clamped-simply (C-S) curves. Also the Sander’s
shell model based on the Rayleigh - Ritz method for
estimating fundamental natural frequency has been
developed to converge more quickly than other methods
and models. The presented vibration modeling and analysis
of CSs may be helpful especially in applications such as
oscillators and in non-destructive testing. To elude any
complications which may risk a physical system their
analytical investigation is done.

2. Functionally graded material

The modeling of FG-CS is due to mixing two or more
than two materials like ceramic and metal and the
distribution of various functions and properties (physical
and material), is termed as rule of mixture. Power law
function has been utilized for with particular index using
material properties in the thickness direction. The
temperature and properties variations have been obtained by
using the property of temperature and volume fraction. The
distributions of volume fraction for all forms of CSs are
assumed as (Chi and Chung 2006).

p
v, {Eﬁ} (1)
h 2
where p, h and z, respectively, denoted for power law index,
thickness and the coordinate, where z which varies from

zero to infinity.

A FG-CS consisting of two constituent materials. In
these forms, nickel, stainless steel and zirconia are used for
middle, internal and external surfaces, but their arrangement
has profound influence on the formation of FG-CSs. If E,
and E» as Young’s moduli, v; and v, as Poisson’s ratios, pi
and p, mass densities respectively. Then effective material
quantities for FG material are

2z+h°
EFGM :[El—EZ][T:l +E27
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Ring support

Fig. 1 Geometry of cylindrical shell with ring support
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Toulokian et al. (1967) stated the material properties C
at high temperature environ, with temperature-dependents
which is a function of temperature. In Eq. (3), the constants
(Co,C.1,C1,C5,C5) are different for different material.

C=C,(C.T'+CT+C,T*+C;T%) 3)

3. Theoretical formation

The geometrical parameters L, 4, R denotes as length,
thickness and radius for CSs with its coordinate system
(x,0,z) as shown in Fig. 1. The x, 6 co-ordinate are
assumed to be along longitudinal and -circumferential
direction, respectively and z-co-ordinates are taken in its
radial directions.

When the material and geometrical parameters are
considered, the formula for a strain energy, S of a vibrating
cylindrical shell is expressed as

R (L (2
S = Efo Iy “[A11 €7 + Apse} + 241,16, + Agsely +
2(Byie1ky + Byie1ky + Byjeiky + Byjeky +

23666121612) +D11k]2_ + D22k§ + 2D12klkZ
Désk?,1dOdx 4)
where e, e,, e; and k; , k,, k; designate the surface
strains and curvatures respectively. The extensional
stiffness, A;; , coupling stiffness, B;; and bending
stiffness, D;; are written as
by -
{4y Bip Dy} = [ Quy{1,2,2%dz(0,j = 126) (5)
The variation of stiffness moduli A4y By Dj
i.j =1,2,6 is modifies as

A“_ — |n (1s0) +AiJ m(FGM) + Ou(lso)
Bij — Biljn(lso) n B|T FGM) Bi(j)u (1s0)

Dij _ Diijn(lso) + DiT(FGM) + Ditj)u(lso) ©)

Middle isotropic layver

‘ Inner FG layer |

Outer FG layer

Fig. 2 Composition of material of CSs

Fig. 2 shows for the composition of layers with isotropic
middle layers and other with FG layers.

Here the reduced stiffness, Q;;’s are written as for
isotropic CSs

Q11 =022 =

E E
Tz le_ﬁ Qs =50 D

The strain-displacement relations from Budiansky and
Sanders (1963) furnished as

ay 1 ,0v v 10u
e = €= —w), ep=—+-— (8
ox R 00 dx RO

and the expressions for the curvature - displacement
relations are represented as
1 azw

kpp = — (22
22 R

22w )
22902 69

ox2’ :
1 ,0%w 30v 1 Ju

Fi2 = % Gag +iax ~ wmoe) ©)
Making substitutions of these relations from the

expression (8) and (9) into the formula (4), the strain

energy, S is takes the new forms

ki =

2mL
au 1 s0v
ff[An x) + Ay, 2<£+W)
Pon IO ) (108
2R ax \oe 66\96 ' Rox
2B (6_11)(&)_23 L(%)(az_w_a_v)
1 \ox/ \ ax? 2R2\gx/\ 062 00
1 /0v 0%w
287 (55 w) (W)

2B 1<6v+ )62w ov
2223\50 T W)\ 502 " 90

2

4B (617 16u) 22w 36v+ 1 du
Bos 7 \58 T Rox)\oxo8 ~29x T 1R 0
2w\> Dy, (0%w v\’
+Du ax2 TR \302 20

2D 0*w\ (0*w dv
12R a 692 ae

%w 39 a
#Daa s (s~ 150+ o) JRdxdd (10

The shell kinetic energy, K of the cylindrical shell is
written as

K=" 0 [GH? + G% + C?| Rdxdo (1)
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Where p; is designated as
hy.
Pt = f—h?z pdz (12)

The mass density p remains constant for an isotropic
material. The Langrange energy functional [] for a
vibrating cylindrical shell is stated as the difference
between kinetic and strain energies and is expressed as

M=k-S (13)

4. Solution methodology

Here Rayleigh’s method is engaged to solve the CSs
problem of differential equations in an efficient and
comprehensive way. This method needs the axial modal
approximates dependence on the characteristic function.
The governing equation was formulated based on Sander’s
thin shell theory with energy functional. Over the past
several years vibration of shell structures of various
configurations and boundary conditions have been
extensively studied (Hussain and Naecem 2019, Wang et al.
1997). The RRM is very powerful technique for the
prediction of vibration of shells. Axial, circumferential and
radial direction is related only to the axial displacement
function. The unknown functions involving the tube
dynamical equations are functions of shape linear variables.
The independent variables are separated by employing
prescribed method. They are supposed in the form of the
product of separate functions of independent variables.

u(x,6,t)= A, %cosnesin ot
v(x,6,t)=B ¢( )sin n@sin et
w(x,0,t) = C, ¢(x ) (x a,)" cosn@sin wt (14

Where A4,, Bn, C, are taken as the displacement
amplitudes in x, 0 and z directions. The angular frequency
and circumferential wave number are represented by w and
n respectivelywhere. The axial function ¢(x) represents
axial modal displacement shapes and satisfies the geometric
boundary conditions. The term x=q; is the i ring supports
along longitudinal direction and V, ¢; designates for number
and existence of ring supports. When there is no ring on the
shell the condition is &=0 and for ring supports is &=1.

The modified form of strain and kinetic energy with
axial displacement functions

, d° ¢ Azz
J.[Ail Xz

—Z{nB,p+C,o(x-a)}

2’*? (An ){anwcm(p(x a)}

d(D nAn d_¢)2 _

+A (B, 11('% )

©, < ? (x- a)+2d"’)}

n°C,p(x—a)—nB, ¢}

(A2
BH{nB -+ Cop(x— a)}{C( ? (x-a)

d¢)} 222008, 0+ Cp(x-)}

{—nZCmgo(X—a)—an(p}— 66 Bm o

- L0y nc, (L ix-a)+o)-B, ‘”}

2

1%
+ Dll{Cm ( dxz

(x—2)+292)y
dx
+D—i2{—nzcm(p(x —-a)-nB, ¢} + Ezu

{C( ?(x-a)+2 w)}{ n’C,¢p

(x—a)-nB,p}+ Rfe {-nC,
(15)

(d—go(x— a)+¢)-B, d—q)}z]sinz wtdx
dx dx
and
2 L
T= %J[Ai(i—f)z +B2¢? +C2p* (x—a)*] cos® wtdx
0

(16)

With the help of these equation, many (or any) ring

supports can be investigated. For minimum energy

principal, the relation of strain energy Umax and kinetic
energy Tmax are obtained, i.c.

Uns [AHA{ wj " By
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Now, the Langrangian function can be written as
=T, —U.,.
The function is minimized with the help of vibration
amplitudes A4,,, B, and C,, as:
ol oIl oIl
oA, B, oC
The compact form for three equations is
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Table 1 Convergence of RRM frequencies (Loy ef al. 1997)

Method 1 5 d 3 4
c.c Loy eral (1997) 0.032885 0.01393 0.02267 0.04221
Present 0.034878 0.01405 0.02272 0.04227
q.g Loyeral (1997) 0.016101 0.00938 0.02211  0.04209
Present 0.016102 0.00938 0.02211 0.04227
c.g Loy eral (1997) 0.023974 0.00822 0.00584  0.00871
Present 0.024721 0.00828 0.00585 0.00871
L L
nD
X—a)p’dx ——2
! (x-a)p'dx——3 j
_2nD12.|5¢d(pd +4nD66j(X_a) doY’ dx
R* ¢ dx R* o dx
4nD,, ¢ de A, 2
+—%8 |p—dx B +|2|(x-a dx
R? !‘/’dx m Rzl( Je
2I312J.(x a)’p d” ¢dx+ 4B,
2n’B
j(x a)p d¢’ 22j(x a)2¢2dx+D11I(x a)?
de do d(/)d
(d%] dx+4Dllj[d de+4Dll_[(x D o ? dx
4 2
40 sz(x a)’pdx — D12
4n*D
h qodx— 12_[(x a)(p—dx+

2
an’ ?66 J.(x—a)z(d—(pj dx+—4n Des
R® ¢ dx

2

8n°Dy, ¢
— % —-a —d
= !( )‘/’d x}

2
L prdx+

J

L
° pthf(x - a)2 @°dxC,,
0

@n

The above equations can be written in the form of
matrices as

a‘ll a12 al3 Am IZ O
a, dy, a,|B,|=pw’0 1, 0 (22)
alS a23 a33 Cm O 0 |11

The expressions for the terms ay;'s, I, I and I are given
in Appendix-I.

5. Simulation results and discussion
Here, the versatile numerical technique RRM has been

used in current study to investigate the vibration of FG-CS
with ring support. For the convergence rate of CSs, the non-
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Fig. 3 Convergence of RRM frequencies (a) versus m (n=1,
L=8 in, h=0.1 in, R=2 in, E=30x10° Ibf in2, v=0.3,
p=7.35x10* Ibf s> in*) (b) versus n (m=1, L=0.41 m,
h=0.001 m, R=0.3015 m, £=2.1x10" N/m?, v=0.3, p=7850
Kg/m?)

dimensional frequency enumerated in the current work, i.e.,
using RRM are happened to be in a good consistency along
with the so-called exact results furnished by Loy et al.
(1997), those were established by working out with the
deformation theory provided in Table 1. There is once again
comparison of present resuts of CSs with Loy et al. (1999),
Ansari ef al.(2011) and Warburton (1965), provided in Fig.
3(a) and Gonclaves et al. (2006), Gonclaves and Batista
(1988), Gaser (1987) as shown in Fig 3(b). The proposed
model based on RRM can incorporate in order to accurately
predict the acquired results of material data point. Fig. 4
indicates that the frequency values versus circumferential
wave number. It is observed that the frequencies are highly
visible for without ring are higher than those for ones. In
Fig. 4, variations of frequencies are shown versus the wave
modes (n). As n grows, frequencies for cylindrical shells
boost indefinitely.
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Table 2 Configuration of layers with materials as Stainless
Steel (STS), Zirconia (ZI) and Nickel (NI)

Table 5 Frequency comparison for all forms of shell versus
circumferential wave numbers (n) with C-S.

Configurations p n Form I FormII  FormIII Form IV
Layers FormI FormIl FormIll Form IV 1 596.97  583.55  583.82  572.08
Inner layer (Iso) ~ STS-ZI STS-ZI ZI-STS ZI-STS 3 2 34774 339.80  340.08  333.11
Middle layer (FGM) NI NI NI NI 3 246.77  240.60 24246  237.03
Outer layer (Iso) ~ STS-ZI ZI-STS STS-ZI ZI-STS 4 27645 26863 273.64 26674
1 61799 59757  597.67  580.71
Table 3 Configuration of layers with thickness 5 2 359.95 347.98 348.12 338.17
. 3 25522 24654 24798  240.80
Layers Configurations 4 285.53 27549  279.50  271.29
Form[ FormIl FormIll FormIV 1 629.57 60497 60498  585.11
Inner layer (Iso) 5h/12 hl4 h4 hl6 2 366.68 35230 35236  340.75
Middle layer (FGM) /6 h4 hi4 2h/3 7 3 259.87  249.71  250.85 24272
Outer layer (Iso) Sh/12 h/2 h/2 h/6 4 290.52 279.22 282.45 273.61

Table 4 Comparison of C-C frequencies for all forms of
shell versus circumferential wave numbers (1)

Table 6 Comparison of SS-SS frequencies for all forms of
shell versus circumferential wave numbers (#)

p n Form I FormIl FormIII Form IV p n Form I FormII  Form Il Form IV
1 662.27 647.28 648.26 635.13 1 350.96 343.10 343.70 336.20
3 2 439.62 429.50 430.76 421.89 3 2 170.03 166.10 166.21 162.77
3 336.21 328.01 330.26 323.04 3 147.79 143.75 146.09 142.53
4 336.22 327.13 331.99 323.97 4 227.92 221.19 226.48 220.55
1 685.58 662.82 663.64 644.73 1 363.32 350.36 351.20 341.28
5 2 455.03 439.84 440.95 428.31 5 2 175.98 170.11 170.12 165.25
3 347.80 336.03 337.87 328.11 3 152.71 147.38 149.27 144.91
4 347.44 335.36 339.27 329.36 4 235.30 226.91 231.21 224.40
1 702.42 671.03 671.75 649.62 1 370.13 355.72 355.84 343.87
- 2 463.53 44531 446.30 431.58 7 2 179.26 172.23 172.81 166.52
3 354.19 340.30 341.84 330.70 3 155.41 149.35 150.89 146.13
4 353.61 339.82 342.98 332.11 4 239.35 230.03 233.57 226.37

Since a FG-CS is composed of three layers having
different thickness for different four forms, which is
presented in the Tables 2 and 3.

5.1 Frequency behavior without ring supports for all
forms of CSs

In Tables 4-6, frequencies of vibrating FG-CSs are
plotted versus the wave number, n. These frequencies have
been examined for the wave number, m=1. These tables
portray the variations of frequencies with circumferential
wave number, n for all forms of shell. These variations of
the natural frequency (Hz) have been calculated for the
following volume fraction exponents: p=3, 5, 7 of FGM
cylindrical shells. The frequencies first decrease then
increase for all forms of shell as n increases and frequencies
increases on increases the law exponent. In these tables, for
clamped-clamped conditions, variations of frequencies are
higher than that of other conditions.

5.2 Frequency variation of isotropic middle layer with
ring supports

In Fig. 5, frequencies of vibrating CSs with ring support
are plotted versus the wave number, n. These variations of
the natural frequency (Hz) have been calculated for the four

forms with volume fraction exponent p=0.5. Figures depicts
that frequencies increases with the increase of n with ring
attached at a/L=0.1 The frequencies diminishes on
increasing the middle layer thickness and the effect ring
support is prominent with three different boundary
conditions. For clamped-clamped conditions, variations of
frequencies are higher than that of other conditions.

Here frequencies for four forms of FG-CSs with ring
supports are presented in following figures. The frequency
variation with the position of the ring support at a/L=0.3 for
the edge conditions: SS- SS, C-C and C-S for both FG-CS
as shown in Fig. 6-8. These figures depicts the frequency
variations versus ring support for four forms of cylindrical
shell with for three values of L/R=10, 15, 20 and law
exponent is 0.5 (m=1, n=1, h/R=0.002). These variations of
frequencies are drawn with three forms of end conditions.
As a is enhanced for these boundary conditions, the
frequencies go up. At a/L (=0.5) all the frequencies are
higher and at a/L (=0.6~0.9), the frequencies decreases. The
frequencies are same at a/L=0, 1 and rust itself a bell shape.
In these figure, the C-S are lower than that of C-C and SS-
SS. As shown by this figure, the boundary conditions C-C
have the highest frequency curves. These frequencies have
a great impact on the vibration of CSs. It is inferred this
frequency behavior with position of the ring supports has
paramount influence on the vibrations of FG-CSs. From
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Fig. 6 Variations of frequency with L/R ratios of SS-SS condition versus ring support (a) Form-I (b) Form-II (c)

Form-III (d) Form-1V)

these figures, it can be seen that the frequency behavior
versus position of ring position at a/L (=0~0.5) for form I
and II with L/R=10 for C-C is 71.4%, SS-SS is 60.3% and
with L/R=15 for C-C is 70%, SS-SS is 59.6% and with
L/R=20 for C-C is 68.6%, SS-SS is 59.2%. Now frequency

variation for form III and form Iv is calculated as with
L/R=10 for C-C is 71.5%, SS-SS is 60.7%, and with L/R=15
for C-C is 70.2%, SS-SS is 60% and with L/R=20 for C-C is
68.9%, SS-SS is 59.5%. The interesting phenomena occurs
for the C-S condition that the frequencies are symmetrical
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Fig. 7 Variations of frequency with L/R ratios of SS-SS condition versus ring support (a) Form-I (b) Form-II (c)

Form-III (d) Form-1V)

about the center for all forms of shell configuration, shown

in Fig. 8.

6. Conclusions

In present study, vibrations of FG cylindrical shells have
been examined for four forms of cylindrical shell.
study gives a
experimental frequencies and avoids any future risk to a
physical system. For the derivation of frequency equation,

Theoretical

prediction

to

estimate
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Rayleigh-Ritz technique has been applied. Terms of ring
supports have been introduced by a polynomial function
that bears the degree equal to the number of ring supports.
These results have been obtained for circumferential wave
mode for different layers with various ratios of length-to-
radius. Variations of frequencies with the locations of ring
supports have been analyzed placed round the
circumferential direction. The position of a ring support has
been taken along the shell length. It is seen that frequencies
increases on inducting of ring-position and play prominent
role in the shell vibration. The frequency first increases and
obtains its maximum value at the shell mid length position
and then decreases and get a bell shape for clamped-
clamped and simply supported conditions. In clamped-
simply supported, frequencies are symmetrical about the
center of the shell and not form the shape of bell. The
frequency behaviors have been fully checked with different
material and configuration of four forms of shells. The
frequency decreases from first shell to forth shell due to the
configuration and shell thickness variations. Also the effect
of middle layer has been seen in very prominent manners.
Its values at both ends are similar. This procedure can be
applied to vibration characteristics of FG-shell using
various volume fraction laws with ring supports.
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