
Advances in Concrete Construction, Vol. 9, No. 5 (2020) 491-501 

DOI: https://doi.org/10.12989/acc.2020.9.5.491                                                                   491 

Copyright © 2020 Techno-Press, Ltd. 
http://www.techno-press.org/?journal=acc&subpage=7                                      ISSN: 2287-5301 (Print), 2287-531X (Online) 

 
1. Introduction 
 

Microtubules (MTs), first proposed the name to small 

filaments in 1961 (Bulinski and Borisy 1980) are long 

hollow cylindrical protein organelles with inner and outer 

diameters of about 20 to 30 nm respectively, present in 

almost all living cells, made up of subunits for α and β-

tubulins molecules, capable of changing length by assembly 

or disassembly of their subunits (Howard 2001). MTs are 

sensitive to cold and several specific chemicals such as 

colchicine and other building proteins, complex assemblies 

like the mitotic spindle, centrioles, cilia and flagella, 

axonemes, neurotubules (Schliwa and Woehlke 2003).  

They appeared to give strength and maintain the cell 

shape, mediate in cell motility and in the displacements of 

chromosomes at mitosis and meiosis and provide the path 

for vesicular transport (Chen and Chen 2000). They form 

the moving core of cilia and flagella. It is proved in many 

experiments that the deformation of MTs is the result of 

chemical reaction. For example, rise in tension on cells of 

nervous system leads to their assembly and increase in local 

curvature that result in their disintegration (Zheng et al. 

1993, Odde and Renn 1999). Mechanical characteristics are 

crucial for complete understanding of biological processes 
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of MTs. Bending in MTs may occur due to several 

physiological processes in living cells like polymerization, 

acto-myosin contractility, motor activity especially in 

ciliary and flagellary motion (Waterman-Storer and Salmon 

1997).  

 It was revealed in the experiments that during its 

biological functions, bending of protein MTs in fibroblast 

cell with a mean curvature of 0.4 rad/µm is observed (Odde 

and Renn 1999). By applying some form of bending to 

MTs, other mechanical characteristics like flexural rigidity 

of MTs are also calculated (Felgner nd Schliwa 1996). 

Salah et al. (2019) employed a simple four-variable integral 

plate theory for examining the thermal buckling properties 

of functionally graded material (FGM) sandwich plates. The 

proposed kinematics considers integral terms which include 

the effect of transverse shear deformations. Hussain and 

Naeem (2017) examined the frequencies of armchair tubes 

using Flügge’s shell model. The effect of length and 

thickness-to-radius ratios against fundamental natural 

frequency with different indices of armchair tube was 

investigated. Kolahchi and Cheraghbak (2017) studied with 

the nonlocal dynamic buckling analysis of embedded 

microplates reinforced by single-walled carbon nanotubes 

(SWCNTs). The material properties of structure are 

assumed viscoelastic based on Kelvin–Voigt model. 

Agglomeration effects are considered based on Mori–

Tanaka approach. The elastic medium is simulated by 

orthotropic visco-Pasternak medium. Hussain et al. (2017) 

demonstrated an overview of Donnell theory for the 
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Abstract.  Microtubules buckle under bending and torsion and this property has been studied for free microtubules before 

using orthotropic elastic shell model. But as microtubules are embedded in other elastic filaments and it is experimentally 

showed that these elastic filaments affect the critical buckling moment and critical buckling torque of the microtubules. To prove 

that, we developed orthotropic Winkler like model and demonstrated that the critical buckling moment and critical buckling 

torque of the microtubules are orders of higher magnitude than those found for free microtubules. Our results show that Critical 

buckling moment is about 6.04 nNnm for which the corresponding curvature is about 𝜃 = 1.33 rad /𝜇m for embedded MTs, 

and critical buckling torque is 0.9 nNnm for the angle of 1.33 rad/𝜇m. Our results well proved the experimental findings. 
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frequency characteristics of two types of SWCNTs. 

Fundamental frequencies with different parameters have 

been investigated with wave propagation approach. 

Kolahchi (2017) investigated the bending, buckling and 

buckling of embedded nano-sandwich plates based on 

refined zigzag theory (RZT), sinusoidal shear deformation 

theory (SSDT), first order shear deformation theory (FSDT) 

and classical plate theory (CPT). In order to present a 

realistic model, the material properties of system are 

assumed viscoelastic using Kelvin–Voigt model. Hussain 

and Naeem (2018a) used Donnell’s shell model to calculate 

the dimensionless frequencies for two types of single-

walled carbon nanotubes. The frequency influence was 

observed with different parameters. Bilouei et al. (2016) 

used as concrete the most usable material in construction 

industry it’s been required to improve its quality. 

Nowadays, nanotechnology offers the possibility of great 

advances in construction. For the first time, the nonlinear 

buckling of straight concrete columns armed with single- 

walled carbon nanotubes (SWCNTs) resting on foundation 

is investigated in the present study. The column is modelled 

with Euler-Bernoulli beam theory. Fatahi Vajari et al. 

(2019) studied the vibration of single-walled carbon 

nanotubes based on Galerkin’s and homotopy method.This 

work analyses the nonlinear coupled axial–torsional 

vibration of single-walled carbon nanotubes (SWCNTs) 

based on numerical methods. Two-second order partial 

differential equations that govern the nonlinear coupled 

axial–torsional vibration for such nanotube are derived. 

Kolahchi et al. (2016a) concerned with the dynamic 

stability response of an embedded piezoelectric nanoplate 

made of polyvinylidene fluoride (PVDF). In order to 

present a realistic model, the material properties of 

nanoplate are assumed viscoelastic using Kelvin–Voigt 

model. The visco-nanoplate is surrounded by viscoelastic 

medium which is simulated by orthotropic visco-Pasternak 

foundation. The PVDF visco-nanoplate is subjected to an 

applied voltage in the thickness direction. Asghar et al. 

(2019a, b) conducted the vibration of nonlocal effect for 

double-walled carbon nanotubes using wave propagation 

approach. Many material parameters are varied for the exact 

frequencies of many indices of double-walled carbon 

nanotubes. Demir et al. (2016) deals with buckling analysis 

of simply supported conical panels based on the Donnell’s 

shell theory. Different material properties have been 

considered such as isotropic, composite laminated and 

functionally graded (FG). The governing differential 

equation for buckling of laminated conical panel is derived. 

These equations are discrete using method of discrete 

singular convolution (DSC). Shannon’s delta kernel is used 

for trial functions. Arani and Kolahchi (2016) used a 

concrete material in construction industry it’s been required 

to improve its quality. Nowadays, nanotechnology offers 

the possibility of great advances in construction. For the 

first time, the nonlinear buckling of straight concrete 

columns armed with single-walled carbon nanotubes 

(SWCNTs) resting on foundation is investigated in the 

present study. The column is modelled with EulerBernoulli 

and Timoshenko beam theories. The characteristics of the 

equivalent composite being determined using mixture rule. 

The foundation around the column is simulated with spring 

and shear layer. Sharma et al. (2019) studied the 

functionally graded material using sigmoid law distribution 

under hygrothermal effect. The Eigen frequencies are 

investigated in detail. Frequency spectra for aspect ratios 

have been depicted according to various edge conditions. 

Zamanian et al. (2017) considered the use of 

nanotechnology materials and applications in the 

construction industry. However, the nonlinear buckling of 

an embedded straight concrete columns reinforced with 

silicon dioxide (SiO2) nanoparticles is investigated in the 

present study. The column is simulated mathematically with 

Euler-Bernoulli and Timoshenko beam models. 

Agglomeration effects and the characteristics of the 

equivalent composite are determined using Mori-Tanaka 

approach. The foundation around the column is simulated 

with spring and shear layer. Bensattalah et al. (2019) 

studied the critical buckling of a single-walled carbon 

nanotube (SWCNT) embedded in Kerr’s medium. Based on 

the nonlocal continuum theory and the Euler-Bernoulli 

beam model. The governing equilibrium equations are 

acquired and solved for CNTs subjected to mechanical 

loads and embedded in Kerr’s medium. Kerr-type model is 

employed to simulate the interaction of the (SWNT) with a 

surrounding elastic medium. Kolahchi et al. (2017) studied 

the dynamic buckling of sandwich nano plate (SNP) 

subjected to harmonic compressive load based on nonlocal 

elasticity theory. The material properties of each layer of 

SNP are supposed to be viscoelastic based on Kelvin-Voigt 

model. In order to mathematical modeling of SNP, a novel 

formulation, refined Zigzag theory (RZT) is developed. 

Furthermore, the surrounding elastic medium is simulated 

by visco-orthotropic Pasternak foundation model in which 

damping, normal and transverse shear loads are taken into 

account. Motezaker and Eyvazian (2020) deals with the 

buckling and optimization of a nanocomposite beam. The 

agglomeration of nanoparticles was assumed by Mori-

Tanaka model. The harmony search optimization algorithm 

is adaptively improved using two adjusted processes based 

on dynamic parameters. The governing equations were 

derived by Timoshenko beam model by energy method. 

The optimum conditions of the nanocomposite beam- based 

proposed AIHS are compared with several existing 

harmony search algorithms. Kolahchi and Bidgoli (2016) 

presented a model for dynamic instability of embedded 

single-walled carbon nanotubes (SWCNTs). SWCNTs are 

modeled by the sinusoidal shear deformation beam theory 

(SSDBT). The modified couple stress theory (MCST) is 

considered in order to capture the size effects. The 

surrounding elastic medium is described by a visco-

Pasternak foundation model, which accounts for normal, 

transverse shear, and damping loads. The motion equations 

are derived based on Hamilton’s principle. Madani et al. 

(2016) presented vibration analysis of embedded 

functionally graded (FG)-carbon nanotubes (CNT)- 

reinforced piezoelectric cylindrical shell subjected to 

uniform and non-uniform temperature distributions. The 

structure is subjected to an applied voltage in thickness 

direction which operates in control of vibration behavior of 

system. Kolahchi et al. (2016b) investigated the nonlinear 
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dynamic stability analysis of embedded temperature-

dependent viscoelastic plates reinforced by single-walled 

carbon nanotubes (SWCNTs). The equivalent material 

properties of nanocomposite are estimated based on the rule 

of mixture. For the carbon-nanotube reinforced composite 

(CNTRC) visco-plate, both cases of uniform distribution 

(UD) and functionally graded (FG) distribution patterns of 

SWCNT reinforcements are considered. The surrounding 

elastic medium is modeled by orthotropic temperature-

dependent elastomeric medium. The viscoelastic properties 

of plate are assumed based on Kelvin–Voigt theory. Batou 

et al. (2019) studied the wave propagations in sigmoid 

functionally graded (S-FG) plates using new Higher Shear 

Deformation Theory (HSDT) based on two-dimensional 

(2D) elasticity theory. The current higher order theory has 

only four unknowns, which mean that few numbers of 

unknowns, compared with first shear deformations and 

others higher shear deformations theories and without 

needing shear corrector. Motezaker and Kolahchi (2017a) 

Investigated the Seismic response of the concrete column 

covered by nanofiber reinforced polymer (NFRP) layer. The 

concrete column is studied in this paper. The column is 

modeled using sinusoidal shear deformation beam theory 

(SSDT). Mori-Tanaka model is used for obtaining the 

effective material properties of the NFRP layer considering 

agglomeration effects. Using the nonlinear strain-

displacement relations, stress-strain relations and 

Hamilton’s principle, the motion equations are derived. 

Motezaker and Kolahchi (2017b) presented the dynamic 

analysis of a concrete pipes armed with Silica ($ SiO2 $) 

nanoparticles subjected to earthquake load. The structure is 

modeled with first order shear deformation theory (FSDT) 

of cylindrical shells. Mori-Tanaka approach is applied for 

obtaining the equivalent material properties of the structure 

considering agglomeration effects. Akgöz and Civalek 

(2014) presented a new microstructure-dependent 

sinusoidal beam model for buckling of microbeams using 

modified strain gradient theory. This microbeam model can 

take into consideration microstructural and shear 

deformation effects. The equilibrium equations and 

corresponding boundary conditions in buckling are derived 

with the minimum total potential energy principle. Kolahchi 

et al. (2017) focussed with general wave propagation in a 

piezoelectric sandwich plate. The core is consisted of 

several viscoelastic nanocomposite layers subjected to 

magnetic field and is integrated with viscoelastic 

piezoelectric layers subjected to electric field. The 

piezoelectric layers play the role of actuator and sensor at 

the top and bottom of the core, respectively. Benmansour et 

al. (2019) analyzed the dynamic and bending behaviors of 

isolated protein microtubules. Microtubules (MTs) can be 

considered as bio-composite structures that are elements of 

the cytoskeleton in eukaryotic cells and posses considerable 

roles in cellular activities. They have higher mechanical 

characteristics such as superior flexibility and stiffness. On 

the other hand, application of bending deformation caused 

by hydrodynamic flow were applied to calculate the flexural 

rigidity of MTs by studying the relaxation process of MTs 

bending through laser trap or deduced from thermal 

fluctuation of MTs shapes (Felgner et al. 1997, Mickey and 

Howard 1995). Motezaker et al. (2020) presented the 

present research post-buckling of a cut out plate reinforced 

through carbon nanotubes (CNTs) resting on an elastic 

foundation. Material characteristics of CNTs are 

hypothesized to be altered within thickness orientation 

which is calculated according to Mori-Tanaka model. For 

modeling the system mathematically, first order shear 

deformation theory (FSDT) is applied and using energy 

procedure, the governing equations can be derived. Khelifa 

et al. (2018) deals with buckling analysis with stretching 

effect of functionally graded carbon nanotube-reinforced 

composite beams resting on an elastic foundation. The 

single-walled carbon nanotubes (SWCNTs) are aligned and 

distributed in polymeric matrix with different patterns of 

reinforcement. The material properties of the CNTRC 

beams are estimated by using the rule of mixture. For the 

accurate measurement of bending rigidity, it is necessary 

that during bending, buckling must not occur so the critical 

buckling load should be known for MTs. In this regard, 

some works have been done about bending buckling of 

MTs. Many simulations on bending buckling were 

developed with the help of elastic sheet model and three-

dimensional finite model which were related to the effect of 

MTs helical structure (Janosi et al. 2000, Varga et al. 2007). 

It was also demonstrated that orthotropic walls have great 

effect on buckling of cylindrical shells. The effect of wall 

orthotropicity on critical buckling parameters was discussed 

by Li (2008) using orthotropic shell model for free MTs. As 

MTs, observed by immunofluorescence, extend sometimes 

further than the cell boundaries, and are straighter than 

usual, suggesting that the curvature of MT in living cells 

results from the interaction of MT with MAPs or other 

structures like intermediate filaments (Woody et al. 1982), 

(Bayley et al. 1982). Also in (Grishchuk et al. 2005) it was 

demonstrated that critical buckling load may increase by 

hundreds in living cells as compared to buckling force for 

free MTs. Therefore it is the need to develop a theoretical 

model to study the bending buckling behavior of the MTs. 

Motezaker et al. (2020) analysis the vibration, buckling and 

bending of annular nanoplate integrated with piezoelectric 

layers at the top and bottom surfaces. The higher order 

nonlocal theory for size effect and Gurtin–Murdochtheory 

for surface effects are utilized. The governing equations are 

derived based on the layer-wise (LW) theory and 

Hamilton’s principle. The differential method (DCM) as a 

new numerical procedure, is utilized to solve the motion 

equations for obtaining the frequency, buckling load and 

deflection.  

Several researchers used different approaches for the 

investigation of frequency of cylinders, plates, beams and 

concrete material (Kagimoto et al. 2015, Mesbah and 

Benzaid 2017, Alijani and Bidgoli 2018, Demir and 

Livaoglu 2019, Samadvand and Dehestani 2020, Ayat et al. 

2018, Behra et al. 2018, Narwariya et al. 2018, Rezaiee-

Pajand et al. 2018, Sedighi and Sheikhanzadeh 2017). 

Recently Hussain and Naeem (2019a, b, c, d, 2020a) 

performed the vibration of SWCNTs based on wave 

propagation approach and Galerkin’s method. They 

investigated many physical parameters for the rotating and 

non-rotating vibrations of armchair, zigzag and chiral 
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indices. Moreover, the mass density effect of single walled 

carbon nanotubes with in-plane rigidity has been calculated 

for zigzag and chiral indices. Many material researchers 

calculated the frequency of nano structure using different 

techniques, for example, Timoshenko beam model (Zidour 

et al. 2014), SiO2 nanoparticles (Zarei et al. 2017, Amnieh 

et al. 2018, Jassas et al. 2019), layerwise theory 

(Hajmohammad et al. 2018a, Hajmohammad et al. 2019), 

Flugge shell theory (Zidour et al. 2014), Grey Wolf 

algorithm (Kolahchi et al. 2020), reinforced polymer layer 

(Hajmohammad et al. 2018b), agglomerated CNTs 

(agglomerated CNTs), zigzag theory (Kolahchi et al. 2017), 

and viscoelastic cylindrical shell (Hosseini and Kolahchi 

2018, Hajmohammad et al. 2018c).  

In this article, we developed an orthotropic –Winkler 

like model to investigate the buckling characteristics of 

embedded MTs upon bending and torsion. We compared 

the critical buckling parameters for free MTs (Yi et al. 

2008) and embedded MTs and found that the critical 

buckling moment is about 6.04 nN nm for which the 

corresponding curvature is about 𝜃 = 1.33 rad  /𝜇m for 

embedded MTs, and critical buckling torque is 0.9 nN nm 

for the angle of 1.33 rad/𝜇m. 

 

 

2. Materials and methods 
 
Over the past several years, vibration of nanostructures 

of various configurations and boundary conditions have 
been extensively studied (Hussain et al. 2018a, Hussain et 
al. 2018b, Hussain et al. 2018c, Hussain and Naeem 2018b, 
Hussain et al. 2019a, Hussain et al. 2019b, Hussain et al. 
2020a, Hussain and Naeem 2020b, Asghar et al. 2020, 
Hussain et al. 2020b, c, d, e, f, g, Taj et al. 2020a, Taj et al. 
2020a, b, c). We will apply Orthotropic Elastic Shell Model 
to analyze the buckling of MTs under bending and torsion. 
Surrounding medium of MTs will be modeled by Winkler 
model. We will develop orthotropic Winkler-like model by 
the combination of these models. We will use wave 
propagation approach to solve the developed model. 

 

2.1 Orthotropic elastic shell model for MTs 
 

In this section, we developed an “Orthotropic elastic 

shell model” for buckling of MTs within an elastic medium 

due to bending and torsion. Since this model has four 

independent material constants, longitudinal modulus, 

circumferential modulus, shear modulus, and Poisson ratio 

along the longitudinal direction (Ventsel and Krauthammer 

2004), denoted by 𝐸𝑥, 𝐸𝜃 , 𝐺𝑥𝜃 , and 𝜐𝑥 respectively 

(Sirenko et al. 1996). The cross section of MTs will be 

treated as an equivalent circular annular shape with 

equivalent thickness about ℎ ≈ 2.7 nm (de Pablo et al. 

2003). Thus the elastic moduli, in-plan stiffnesses and the 

mass density are found based on such a thickness, ℎ ≈
2.7 nm. The bending thickness of MTs can be calculated by 

using so called the “bridge” thickness, 1.1 nm (de Pablo et 

al. 2003), which is much smaller than equivalent thickness 

ℎ ≈ 2.7 nm. Thus, just like the single walled carbon 

nanotubes (Flügge 2013) the effective bending stiffness of 

MTs, modeled as elastic shell, should be considered to be 

Table 1 Numerical values of material parameters for MTs 

Parameters Symbols Values 

Longitudinal modulus 𝐸𝑥 0.5 − 2.0 × 109𝑝𝑎 

Circumferential modulus 𝐸𝜃 1.0 − 4.0 × 106𝑝𝑎 

Shear modulus in 𝑥𝜃 plane 𝐺𝑥𝜃 1.0 × 106𝑝𝑎 

Longitudinal Poisson ratio 𝜈𝑥 0.3 

Equivalent thickness ℎ 2.7 × 10−9𝑚 

Mass density per unit volume 𝜌 1.47𝑔/𝑐𝑚3 

 

 

an independent material constant. The bending stiffness of 

MTs can be estimated by effective thickness which is about 

1.6 nm (de Pablo et al. 2003). The range of the values of 

these material constants for MTs is identified from the data 

available in literatures (Kawaguchi et al. 2008) and 

summarized in Table 1. 

 

2.2 Winkler like model 
 

Upon incipient bending buckling and torsional buckling 

of MTs, the surrounding filamentous network of 

cytoskeleton is deformed. In turn, the surrounding fibres 

exert a distributed force on MTs in the opposite direction of 

the bending buckling and torsional buckling. Inspired by the 

valid application of Winkler-like model to the buckling of 

MTs due to axial and radial force (Taj and Zhang 2011) and 

on the buckling of Carbon Nanotubes (Ru 2000), we used 

this model to relate the effects of surrounding on bending 

buckling and torsional buckling of MTs.  

The said model reads as 

𝑃 = −𝐾𝑤                   (1) 

Where negative sign shows that the pressure ‘𝑃’ is 

opposite to the incipient buckling mode and ‘K’ is the 

Elastic constant of fibres surrounding the MTs.  

 

2.3 Orthotropic Winkler like model 
 

Combining the above mentioned orthotropic and 

Winkler models, we developed orthotropic Winkler-like 

model for the buckling of MTs due to forces  𝑁𝑥 , 𝑁𝜃 and 

𝑁𝑥𝜃 , as Orthotropic elastic shell model is described by 

following three equations (Eslami and Javaheri 1999). 

𝐹1 = 𝐴1𝑢 + 𝐵1𝑣 + 𝐶1𝑤 = 0, 

𝐹2 = 𝐴2𝑢 + 𝐵2𝑣 + 𝐶2𝑤 = 0,          (2) 

𝐹3 = 𝐴3𝑢 + 𝐵3𝑣 + 𝐶3𝑤 = 0. 

Where 

𝐴1 = (𝐾𝑥 + 𝑁𝑥)𝑅
2

𝜕2

𝜕𝑥2
+ 2𝑅𝑁𝑥𝜃

𝜕2

𝜕𝑥𝜕𝜃
 

+(
𝐾𝑥𝜃𝑅2+𝐷𝑥𝜃

𝑅2 + 𝑁𝜃)
𝜕2

𝜕𝜃2 , 

𝐵1 = 𝑅(𝑣𝑥𝐾𝜃 + 𝐾𝑥𝜃)
𝜕2

𝜕𝑥𝜕𝜃
 , 

𝐶1 = −𝑅(𝑣𝜃𝐾𝑥 − 𝑁𝜃)
𝜕

𝜕𝑥
+ 𝑅𝐷𝑥

𝜕3

𝜕𝑥3 −
𝐷𝑥𝜃

𝑅

𝜕3

𝜕𝑥𝜕𝜃2 , 

𝐴2 = 𝑅(𝑣𝜃𝐾𝑥 + 𝐾𝑥𝜃)
𝜕2

𝜕𝑥𝜕𝜃
 , 

𝐵2 = (𝐾𝜃 + 𝑁𝜃)
𝜕2

𝜕𝜃2
+ 2𝑅𝑁𝑥𝜃

𝜕2

𝜕𝑥𝜕𝜃
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+(
𝐾𝑥𝜃𝑅2+3𝐷𝑥𝜃

𝑅2 + 𝑁𝑥) 𝑅2 𝜕2

𝜕𝑥2 , 

𝐶2 = −(𝐾𝜃 + 𝑁𝜃)
𝜕

𝜕𝜃
− 2𝑅𝑁𝑥𝜃

𝜕

𝜕𝑥
+ (𝑣𝜃𝐷𝑥 + 3𝐷𝑥𝜃

𝜕3

𝜕𝑥2𝜕𝜃
 , 

𝐴3 = 𝑅(𝑣𝜃𝐾𝑥 − 𝑁𝜃)
𝜕

𝜕𝑥
− 𝑅𝐷𝑥

𝜕3

𝜕𝑥3 +
𝐷𝑥𝜃

𝑅

𝜕3

𝜕𝑥𝜕𝜃2 , 

𝐵3 = (𝐾𝜃 + 𝑁𝜃)
𝜕

𝜕𝜃
+ 2𝑅𝑁𝑥𝜃

𝜕

𝜕𝑥
− (𝑣𝜃𝐷𝑥 + 3𝐷𝑥𝜃)

𝜕3

𝜕𝑥2𝜕𝜃
 , 

(2𝑣𝜃𝐷𝑥 + 4𝐷𝑥𝜃)
𝜕4

𝜕𝑥2𝜕𝜃2
−

𝐷𝜃

𝑅2
(

𝜕2

𝜕𝜃2
+ 1)

2

 

𝐶3 = −𝑅2𝐷𝑥

𝜕4

𝜕𝑥4
+ 2𝑅𝑁𝑥𝜃

𝜕2

𝜕𝑥𝜕𝜃
− 

+𝑁𝜃
𝜕2

𝜕𝜃2 + 𝑁𝑥𝑅
2 𝜕2

𝜕𝑥2 − 𝐾𝜃 . 

Here longitudinal coordinate is represented by 𝑥 and 

circumferential coordinate is 𝜃, and 𝑢, 𝑣 and 𝑤 are axial, 

circumferential and inward displacements respectively, 

density is represented by ρ and 𝑅 is the average radius. 

Furthermore, longitudinal and circumferential Poisson 

ratios and Young’s moduli are denoted by 𝑣𝑥  , 𝑣𝜃  and 

𝐸𝑥  , 𝐸𝜃  respectively which satisfy the relation  𝑣𝜃 𝑣𝑥⁄ =
𝐸𝜃 𝐸𝑥⁄ , while shear modulus is denoted by 𝐺𝑥𝜃 , in plane 

stiffness in longitudinal direction is denoted by 𝐾𝑥[=
𝐸𝑥ℎ/(1 − 𝑢𝑥𝑣𝜃)] and in circumferential direction is 𝐾𝜃[=
𝐸𝜃ℎ/(1 − 𝑢𝑥𝑣𝜃)] , and 𝐾𝑥𝜃(= 𝐺𝑥𝜃ℎ)  is in plane shear. 

Furthermore effective bending stiffness is represented by 

𝐷𝑥, 𝐷𝜃 , and 𝐷𝑥𝜃 respectively (Flügge 2013). 

Bending stiffness of MTs is measured by “bridge” 

thickness because of the latticed structure of MTs which is 

smaller than bending stiffness. We considered effective 

bending stiffness of MTs as independent material constant 

during modeling as an elastic shell, in contrary to elastic 

shell theory based on the thickness of MTs.  

substituting 

𝛼 = 𝑣𝜃 𝑣𝑥 =⁄ 𝐸𝜃 𝐸𝑥 =⁄ 𝐾𝜃 𝐾𝑥 =⁄  𝐷𝜃 𝐷𝑥⁄ , 

and 

 𝛽 = 𝐺𝑥𝜃 𝐸𝑥 ≈⁄ 𝐺𝑥𝜃 𝐸𝑥(1 − 𝛼𝑣𝑥
2) =⁄ 𝐷𝑥𝜃 𝐷𝑥 =⁄ 𝐾𝑥𝜃 𝐾𝑥⁄ , 

(𝛼. 𝑣𝑥
2 → 0), 

The orthotropic elastic shell model can be described by 

four parameters 𝐸𝑥, 𝑣𝑥 , 𝛼, and 𝛽. It can be easily verified 

that isotropic elastic shell model can be derived from 

orthotropic elastic shell by using 𝛼 = 1 and  𝛽 = 1(1 −
𝑣)/2.  

 

2.4 Buckling of MTs upon bending 
 

The buckling mode upon bending can be taken as (Yi et 

al. 2008) 

𝑢(𝑥, 𝜃) = cos (
𝑚𝜋

𝐿
𝑥)∑  𝐴𝑛 cos(𝑛, 𝜃)∞

𝑛=1 , 

𝑣(𝑥, 𝜃) = sin (
𝑚𝜋

𝐿
𝑥)∑  𝐵𝑛 sin(𝑛, 𝜃)∞

𝑛=1 ,  

𝑤(𝑥, 𝜃) = sin (
𝑚𝜋

𝐿
𝑥)∑  𝐶𝑛 cos(𝑛, 𝜃)∞

𝑛=1 .     (3) 

In which 𝐴𝑛, 𝐵𝑛and 𝐶𝑛 are real constants, n represent 

the circumferential wave number, 𝑚(≠ 0) half axial wave 

number, 𝐿 is the length of MT, and the dimensionless axial 

wavelength calculated as 𝐿/(Rm).  

By the combination of (1), (2) and (3), we obtained the 

“Winkler like Model” for MTs with in an elastic medium. 

Now writing the system of equations, in matrix form we 

obtained 

 

Fig. 1 Dependence of critical buckling Mcr on the 

dimensionless axial wavelength (normalized by diameter 

2R) L/Rm is obtained for isotropic shell model (α=1, 

β=0.35) 

 

 

𝑴(𝑀𝑐𝑟 , 𝐾,
𝐿

𝑅𝑚
)

9×9

[
 
 
 
 
 
 
 
 
𝐴1

𝐴2

𝐴3

𝐵1

𝐵2

𝐵3

𝐶1

𝐶2

𝐶3]
 
 
 
 
 
 
 
 

= 0            (4) 

We are looking for nontrivial solution which leads to det 

M=0, which result to critical buckling load, hence the 

buckling mode. 

 
 
3. Results 
 

3.1 Buckling upon bending 
 

Fig. 1 graphically demonstrate critical buckling moment 

𝑀𝑐𝑟  plotted against normalized length  𝐿 𝑅𝑚⁄ , where R is 

the radius of MTs and m is the half axial wave number. K 

shows the effects of surroundings on critical buckling of 

MTs in natural environment where they lie. Here it is clear 

that without considering the effects of surroundings, the 

critical buckling moment of MTs was about 0.85 nNnm. In 

our work, where we considered the embedded MTs, this 

value increases upto 6.04 nNnM which is about 7 times 

more than the value for free MTs. The proximity of elastic 

medium increases stiffness of MTs by a considerable 

amount which requires special attention that how the MTs 

when embedded in elastic medium provide the shape and 

rigidity to the cell.  

This value of moment corresponds to the critical 

buckling curvature of about 0.16 rad/𝜇m, calculated by the 

expression  1 𝜌⁄ =
𝑀𝑐𝑟

𝜋𝐸𝑥ℎ𝑅3⁄  . We use the same value 

for longitudinal modulus as used for free MTs. 

Experimental value for critical buckling curvature was 0.4 

rad/𝜇m (Odde et al. 1999), which is very close to our 

theoretical value. This proves that due to elastic effects on 

MTs, its rigidity increases and it can provide shape and 

rigidity to the cell to maintain its shape for proper  
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Fig. 2 The dependence of critical buckling Mcr on the 

dimensionless wavelength (normalized by the diameter 2R). 

L/Rm is obtained for orthotropic model with α=β=0.001 

 

 

Fig. 3 Dependence of critical buckling Mcr on the 

dimensionless axial wavelength (normalized by diameter 

2R) L/Rm is obtained for orthotropic Winkler-like model 

 

 

functioning of organelles of the cell. 

 

3.2 Effects of elastic medium on torsional buckling of 
MTs 
 

During many physiological processes such as in moving 

motor proteins along MTs, movement of cilia and flagella, 

movement of chromosomes, and crawling with skewed 

angle on the inner surface of plasma membrane, MTs rotate 

within the cell. Before torsion of MTs was studied without 

considering the effect of elastic medium (Yi et al. 2008). In 

this study, the authors demonstrate the critical buckling load 

due to torsion. But the surrounding medium may affect the 

torsional behaviour of MTs. Due to coupling with the 

surrounding; the critical buckling load due to torsion may 

rise. To confirm the above questions, we discussed in this 

paper the effect of medium on torsional mechanics of MTs. 

We calculated the buckling torque and corresponding 

critical torsional angle. 

For a MT embedded in elastic medium, shearing force 

𝑁𝑥𝜃  is very vital. But 𝑁𝑥 = 𝑁𝜃 = 0, then the buckling 

mode for embedded MTs due to torsion can be represented 

by following (Flügge 2013). 

𝑢(𝑥, 𝜃) = 𝑈 cos (
𝑚𝜋

𝐿
𝑥 − 𝑛𝜃) 

𝑣(𝑥, 𝜃) = 𝑉 cos (
𝑚𝜋

𝐿
𝑥 − 𝑛𝜃) 

 

Fig. 4 Dependence of critical buckling torque Tcr on the 

dimensionless axial wavelength (normalized by diameter 

2R) L/Rm is obtained for isotropic elastic shell model (α=1, 

β=0.35) 

 

 

Fig. 5 Dependence of critical buckling torque Tcr on the 

dimensionless axial wavelength (normalized by diameter 

2R) L/Rm is obtained for anisotropic elastic shell model 

(α=β=0.001) 

 

 

𝑤(𝑥, 𝜃) = 𝑊 sin (
𝑚𝜋

𝐿
𝑥 − 𝑛𝜃)          (5) 

In which 𝑈, 𝑉  and 𝑊  are real constants. 𝑛  denotes 

the circumferential wave number, 𝐿 is length of MT and 

nonzero ‘𝑚’ is half-axial wave number. Putting (1) and (5) 

into the orthotropic elastic shell model (2) and obtained the 

set of equations 

[
2𝜋𝑚𝑛𝑅𝑁𝑥𝜃

𝐿
−

𝜋2𝑚2𝑅2(𝐾𝑥+𝑁𝑥)

𝐿2 −
𝑛2{𝑅2(𝐾𝑥𝜃+𝑁𝜃)+𝐷𝑥𝜃}

𝑅2 ] 𝑈 +  

[
𝜋𝑚𝑛𝑅(𝐾𝑥𝜃+𝐾𝜃𝑣𝑥

𝐿
] 𝑉  

+ [
𝜋𝑚[𝑛2𝐿2𝐷𝑥𝜃+𝑅2{𝐿2(𝑁𝜃−𝐾𝑥𝑣𝜃)−𝑛2𝐿2𝐷𝑥𝜃}]

𝐿3𝑅
]𝑊 = 0,  

[
𝜋𝑚𝑛𝑅(𝐾𝑥𝜃+𝐾𝑥𝑣𝜃)

𝐿
] 𝑈 +  

[
2𝜋𝑚𝑛𝑅𝑁𝑥𝜃

𝐿
−

𝑛2{𝑅2(𝐾𝑥𝜃+𝑁𝜃)+𝐷𝑥𝜃}

𝑅2 − 𝑛2(𝐾𝜃 + 𝑁𝜃)] 𝑉 +t 

[
𝜋2𝑚2𝑛(3𝐷𝑥𝜃+𝐷𝑥𝑣𝜃)

𝐿2 −
2𝜋𝑚𝑅𝑁𝑥𝜃

𝐿
+ 𝑛(𝐾𝜃 + 𝑁𝜃)]𝑊 = 0,  

[
𝜋𝑚[𝑛2𝐿2𝐷𝑥𝜃+𝑅2{𝐿2(𝑁𝜃−𝐾𝑥𝑣𝜃)−𝜋2𝑚2𝐷𝑥}]

𝐿3𝑅
] 𝑈  

+ [
𝜋2𝑚2𝑛(3𝐷𝑥𝜃+𝐷𝑥𝑣𝜃)

𝐿2 −
2𝜋𝑚𝑅𝑁𝑥𝜃

𝐿
− 𝑛(𝐾𝜃 + 𝑁𝜃)] 𝑉  

−[
(𝑛2−1)

2
𝐷𝜃

𝑅2 +
𝑅2[𝜋2𝑚2𝐿2(4𝑛2𝐷𝑥𝜃+𝑅2𝑁𝑥+2𝑛2𝐷𝑥𝑣𝜃)+]

𝐿4𝑅2 +  

𝐿4(2𝜋𝑅𝐾 + 𝑛2𝑁𝜃) + 𝜋4𝑚4𝑅2𝐷𝑥 − 2𝜋𝑚𝑛𝐿3𝑅𝑁𝑥𝜃 + 

𝐿4𝐾𝜃]𝑊 = 0                (6) 

We are interested in the nonzero solution of (6), which  
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Fig. 6 Dependence of critical buckling torque Tcr on the 

dimensionless axial wavelength (normalized by diameter 

2R) L/Rm is obtained for orthotropic Winkler-like model 

 

 

lead to 𝑑𝑒𝑡𝑴 = 𝟎 where 

𝑴(𝑇𝑐𝑟 ,
𝐿

𝑅𝑚
, 𝑛)

3×3
[
𝑈
𝑉
𝑊

] = 0           (7) 

 

3.3 Buckling due to torsion 
 

Eq. (7) is the matrix form of (6). Eq. (6) are derived by 

setting 𝑅 = 13 nm, 𝐸𝑥 = 1  GPa,  𝑣𝑥 = 0.3 , 𝛼 = 0.001 

and 𝛽 = 0.001 , the critical buckling torque 𝑇𝑐𝑟  with 

different length 𝐿 (𝑅𝑚)⁄  and 𝑛 is plotted in Fig. 6. With 

the comparison of orthotropic elastic shell model for free 

MTs, it is clear that critical buckling torque is near 0.95 

nNnm, due to which the critical torsional angle is about 

𝜃 = 1.33 rad /𝜇m ≈ 76.24°/𝜇m and corresponds to a skew 

angle of filament about . 𝛾 = 𝑅𝜃 ≈ 0.99°. 
For a MT of significant length, m=3 and n=2 correspond 

to minimum buckling load. In this case, it can be verified 

from Eq. (7) that the force for critical buckling derived by 

relation  (𝑁𝑥𝜃)𝑐𝑟 = 𝜋𝑅𝐸𝑥ℎ 𝐿(1 − 𝑣𝑥𝑣𝜃)⁄ . Moreover, the 

critical torque can be related as  𝑇𝑐𝑟 = 2𝜋𝑅2(𝑁𝑥𝜃)𝑐𝑟, with 

the help of this equation, critical buckling torque can be 

derived as 𝑇𝑐𝑟 = 2𝜋𝑅3𝐸𝑥ℎ 𝐿(1 − 𝑣𝑥𝑣𝜃)⁄ ≈ 2𝜋2𝑅3𝐸𝑥ℎ 𝐿⁄ . 

Our result pointed out that the embedded MTs are stiffer 

than the free MTs which were calculated earlier (Yi et al. 

2008). But elastic medium in the surrounding of MTs 

significantly increase the rigidity of MTs which is not easy 

to ignore. Our results shows that embedded MTs can bear 

12 times more force than free MTs.  

 

 

4. Conclusions 
 

We combined orthotropic elastic shell model with 

Winkler like model to develop orthotropic Winkler-like 

model to investigate the effects of elastic surrounding on 

the buckling behavior of MTs under bending and torsion. 

Critical buckling moment of about 6.04 nN nm is obtained 

to which the corresponding curvature is about 𝜃 =
1.33 rad  /𝜇m  ≈ 76.24°/𝜇m for embedded MTs, critical 

buckling torque of 0.9 nN nm for the angle of 1.33 rad/𝜇m 

for a MT is derived. Our designed results of orthotropic 

Winkler-like model are compared with orthotropic elastic 

shell model for free MTs. It is clear that, by orthotropic 

elastic shell model, we cannot obtain the values of the 

critical bending buckling, which are obtained by experiment 

(Odde et al. 1999). But our proposed model well agrees 

with the practical values obtained in the laboratory. Our 

calculation shows surrounding medium has drastic effect on 

the stiffness of MTs hence on the cells. In this paper, we 

tried to prove some experimental results about embedded 

MTs. We demonstrated theoretically that coupling of 

medium in which MTs lie and perform their function 

greatly affect the mechanical properties of MTs. 

Particularly, we used Orthotropic Winkler-like model for 

bending buckling and torsional buckling and proved that 

due to coupling, how bending moment and torsional 

buckling load increase and give strength to the cell.  

In future, we can consider the non-linear and viscous 

effects of surrounding medium on MTs. Similar procedure 

can be applied to calculate the effect of medium on other 

components of cytoskeleton. We can also develop a 

mathematical model which can formulate all the 

components of cytoskeleton as all components together give 

shape and maintain the cell rigidity. The present study can 

be appropriate to employ for analyzing the Winkler’s model 

with embedded microtubules using finite element method. 
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