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1. Introduction  
 

Earthquakes seriously threaten the safety of civil 

engineering structures. The search for an effective control 

method to reduce the response of engineering structures 

under seismic action and improving the structural aseismic 

ability is always a significant research subject in the field of 

civil engineering (Adeli and Jiang 2006, Jiang and Adeli 

2005, Zhou et al. 2015, Lee et al. 2017 , Kim et al. 2018, 

Chen 2019, Chen et al. 2020). The scientific models of 

numerous physical and building frameworks are habitually 

of high measurement, or having intuitive unique marvels. 

The data preparing and prerequisites to explore different 

avenues regarding these models for control reasons for 

existing are typically over the top. In addition, the presence 

of time delays is every now and again a wellspring of 

shakiness here and there. Thus, the issue of soundness 

investigation of time-defer frameworks has been one of the 

principle worries of specialists wishing to review the 

properties of such frameworks. 

Stability criteria of the time-delay systems so far has 

been drawn nearer in two primary ways as indicated by the 

reliance upon the measure of postponement. One bearing is 

to devise dependability conditions that do exclude data on 

the postponement, while the other heading incorporates 

strategies which consider. The previous case is frequently 

alluded to as postponement free criteria and for the most 

part gives great mathematical conditions (Trinh and Aldeen 

 

Corresponding author, Professor 

E-mail: chen19876612@gmail.com 
aPh.D. 

E-mail: timchen@tdtu.edu.vn 

 

 

1995). Be that as it may, surrender of data on the measure 

of time delay fundamentally causes conservativeness of the 

criteria, particularly when the deferral is nearly little (Mori 

1985).  
In this paper, we consider a different time-defer 

extensive scale framework made out of J subsystems with 
interconnections and every subsystem is spoken to by the 
purported Takagi-Sugeno (T-S) model with various time 
delays. One basic property of control frameworks is 
steadiness and impressive reports have been issued in the 
writing on the soundness issue of unique frameworks (see 
Chen, 2014 and the references in that). Be that as it may, a 
writing overview shows that the soundness issue of 
frameworks with different time delays has not yet been 
settled. Thus, for the purpose of general application, a 
delay-dependent stability criterion in terms of Lyapunov’s 
direct method is derived to guarantee the asymptotic 
stability of multiple time-delay fuzzy large-scale systems. 

This paper proposes new evolved algorithms based on 

the LMI and evolutionary algorithm to optimize the rules 

and performs a numerical simulation on a three-layer 

reinforced concrete frame structure under excited 

earthquakes. 

 

 

2. System description and stability analysis 
 

Concrete frame structures are the most common type of 

modern building. Fig. 1 shows the model of a three three-

layer reinforced concrete frame structure. It usually consists 

of a frame or a skeleton of concrete. Horizontal members 

are beams and vertical ones are the columns. Concrete 

Buildings structures also contain slabs which are used as 

base, as well as roof / ceiling. Among these, the column is 

the most important as it carries the primary load of the  
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Fig. 1 The model of a three three-layer reinforced concrete 

frame structure 

 

 

building. 

In order to develop fuzzy criterion for the three three-

layer reinforced concrete frame structure, we consider a 

multiple time-delay fuzzy large-scale system F composed 

of J interconnected fuzzy subsystems Fj, j=1,2,…,J The jth 

isolated subsystem (without interconnection) of F is 

represented by a T-S fuzzy model with multiple time 

delays. All the reinforced concrete frame structures could be 

modeled as the fuzzy type controlled systems by selected 

fuzzy approximating variables. The main feature of T-S 

fuzzy model is to express each rule by a linear state 

equation, and the ith rule of this fuzzy model is of the 

following form 
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T
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i=1,2,…,rj and rj is the number of IF-THEN rules of the jth 

subsystem; Aij and Aikj are constant matrices with 

appropriate dimensions, xj(t) is the state vector, τkj denotes 

the time delay, Mipj (p=1,2,…,g) are the fuzzy sets and 

x1j(t)~xgj(t) are the premise variables. 

Based on the definition of above multiple layers RC 

structure and fuzzy type models, the final state of this fuzzy 

dynamic system is inferred as follows 



 

=

= =

−+

=
j

j j

r

i
ji

r

i

N

k
jkjjikjjiji

j

tw

txAtxAtw

tx

1

1 1

)(

)]()()[(

)(




 

 
= =

−+=
j jr

i

N

k
jkjjikjijji txAtxAth

1 1

)]()()[(       (2) 

with 


=

=
g

p
jpjpiji txMtw

1

))(()( ,  


=

=
jr

i
ji

ji

ji

tw

tw
th

1

)(

)(
)(  (3) 

in which Mipj(xpj(t)) is the grade of membership of xpj(t) in 

Mipj. In this paper, it is assumed that wij(t)≥0, i=1,2,…,rj; 

j=1,2,…,J and   0)(      and    ,,2 ,1 ; ,,2 ,1      ,0)(
1
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jr

i
jijji twJjritw  for all t. Therefore, hij(t)≥0 and 

 1)(
1
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ji th  for all t. The fuzzy control force is used to 

guarantee the stability of the multiple layers RC structure, 

and thus the fuzzy Lyapunov of inequality will be 

considered and derived in the following section. 

Based on the above analysis, the jth fuzzy subsystem Fj 

with interconnections can be described as follows 
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where Cnj is the interconnection matrix between the nth and 

jth subsystems. 

The purpose of this paper is two-fold: to stabilize the 

closed-loop nonlinear system and to attenuate the influence 

of the external disturbance on the state variable. According 

to Chen (2014), the disturbance attenuation problem, which 

is characterized by means of the so-called L2 gain of a 

nonlinear system, is defined as follows: Given a real 

number γ> 0, it is said that the exogenous input is locally 

attenuated by γ if there exists a neighborhood U of x=0 such 

that for every positive integer N and for which the state 

trajectory of the closed-loop nonlinear system starting from 

x(0)=0 remains in U  
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where Q is a positive definite weighting matrix. The 

physical meaning is finding an L2 gain less than or equal to 

a prescribed number γ (strictly less than 1). 

If the initial condition is also considered, the inequality 

(3.1) can be modified as 

where P are some positive definite matrices. 

Prior to examination of asymptotic stability of the multi-

time delay fuzzy complex system with multi-

interconnections, a useful concept is given below. 

In the following, a delay-dependent stability criterion is 

proposed to guarantee the asymptotic stability of the 

multiple time-delay fuzzy large-scale system F. Prior to 

examination of asymptotic stability of F, a useful concept is 

given below. 

Lemma 1 (Tsai et al. 2015): For any real matrices X and 

Y with appropriate dimensions, we have 

YYXXXYYX TTTT 1−++   

where κ is a positive constant. 

Theorem 1: The multiple time-delay fuzzy large-scale 

system F is asymptotically stable, if there exist positive 

definite matrices 0= T

jj PP , 0= T

jkjk RR and positive 

constants αj>0, β>0 such that the following matrices Qikj 

and Hikj are both negative definite for i=1,2,…,rj; 
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j=1,2,…,J; k=1,2,…,Nj: 
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Proof: Let the Lyapunov function for the multiple time-

delay fuzzy large-scale system F be defined as  
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where 0= T

jj PP  and the weighting matrix 

0= T

jkjk RR . We then evaluate the time derivative of V on 

the trajectories of Eq. (4) to get 
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(by Lemma 1) 
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The Lyapunov derivative is negative if the matrices Qikj 

and Hikj (j=1,2,…,J; i=1,2,…,rj; k=1,2,…,Nj) are negative 

definite, which completes the proof.  

Evolved Bat Algorithm (EBA) is proposed based on the 

bat echolocation fuzzy complex system in the natural world. 

Unlike other swarm intelligence algorithms, the strong point  
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Fig. 2 Four-DOF structure-ATMD system 

 

 

of EBA is that it only has one parameter, which is called the 

medium, needs to be determined before employing the 

algorithms to solve problems. Choosing different medium 

determines different searching step size in the evolutionary 

process. In this study, we choose the air to be the medium 

because it is the original existence medium in the natural 

environment where bats live. The operation of EBA can be 

summarized in following steps:  

Initialization: the artificial agents are spread into the 

solution space by randomly assigning coordinates to them. 

Movement: the artificial agents are moved. A random 

number is generated and then it is checked whether it is 

larger than the fixed pulse emission rate. If the result is 

positive, the artificial agent is moved using the random 

walk process. 
1t t

i i
x x D−= +

, 

where 𝑥𝑖
𝑡 indicates the coordinate of the i-th artificial agent 

at the t-th iteration, 𝑥𝑖
𝑡−1 represents the coordinate of the i-

th artificial agent at the last iteration, and D is the moving 

distance that the artificial agent goes in this iteration. 
ΔD T= 

 
where γ is a constant corresponding to the medium chosen 

in the experiment, and Δ [ 1, 1]T −  is a random number. 

γ=0.17 is used in our experiment because the chosen 

medium is air. 

( )best

Rt t

i i
x x x= − ,

  0,  1 
 

where β is a random number; xbest indicates the coordinate 

of the near best solution found so far throughout all 

artificial agents; and 𝑥𝑡
𝑡𝑅 represents the new coordinates of 

the artificial agent after the operation of the random walk 

process. 

Remark 1: The proposed delay-dependent stability 

conditions for the larger delays τkj of the multiple time-delay 

fuzzy large-scale system F are more difficult to be satisfied 

in this paper.  

Remark 2: From Eq. (5), it is obvious that the larger 

delay τkj the multiple time-delay fuzzy large-scale system F 

has, the more difficult to ensure the stability of the system. 

3. Numerical simulation and results 
 

In this section, the proposed fuzzy criterion is 

demonstrated in reinforced concrete frame structures with 

an example of ATMD System shown in Fig. 2. To reflect the 

real working state of the reinforced concrete structure, the 

random seismic waves (El Centro wave is chosen, so that 

the domain of the seismic acceleration may be determined 

as 0~0.2 m/s2. For the structure, the basic domain of the 

structure displacement response is 0~h/200 under a basic 

fortification intensity, where h is the layer height. The 

duration and time step are set to 15 s. 

The active TMD mounted on a shear structure is 

modeled as a Four-degree-of freedom structure-ATMD 

system as shown in Fig. 2. The parameters md=50 (kg), 

cd=14.05 (N-s/m), and kd=9875.18 (N/m) represent mass, 

damping, and stiffness in the ATMD and the following 

parameter vectors: M (kg), C (N-s/m), and K (N/m), 

represent mass, damping, and stiffness vector (t=t+∆t, 

∆t=0.02 sec) of this nonlinear time-varying dilapidated-

simulation structure with ATMD; F and u represent the 

external force and control input. The dynamic equations of 

motion of the pendulum are given below. 
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We set the sensor on the top floor of the dilapidated-

simulation structure. Using the procedure discussed above, 

we specify the response by defining a suitable surface

ddm

T eeeeecS  4.02.030 33 −+−== . Then, we construct 
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Fig. 3 Acceleration of the random earthquake 

 

 

Fig. 4 Top floor response of the structure in the random 

earthquake 

 

 

the structure on the evolved algorithm and the initial values 

of the consequent parameter vector 𝑤̂ can be chosen as 

follows: [1  0.88  0.60  0.25  0.05  0  -0.06  -0.25  

-0.36  -0.72 -0.95]’. Then, let η=10, Φ=0.2, and adjust 𝑤̂ 

by the adaptive law. 

The simulation results in the random earthquake 

disturbances are illustrated in Figs. 3-5. It is shown to 

improve the performance of the system in all respects while 

retaining the advantage of assuring robustness in the 

presence of bounded disturbances. The dilapidated 

simulated structure rapidly becomes asymptotically stable 

and the modified fuzzy criterion can be derived to guarantee 

the stability of the three-layer reinforced concrete frame 

structure. 

 

 

4. Conclusions 
 

This paper is concerned with the stability problem of a 

multiple time-delay fuzzy large-scale system which consists 

of a few interconnected subsystems. Each subsystem is 

represented by a T-S fuzzy models with multiple time 

delays. Next, a delay-dependent stability criterion in terms 

of Lyapunov’s direct method is proposed to guarantee the 

asymptotic stability of multiple time-delay fuzzy large-scale 

systems. A numerical simulation for a three-layer reinforced 

concrete frame structure subjected to earthquakes is 

demonstrated that the proposed criterion is feasible for 

practical applications. 

 

Fig. 5 Control force of the ATMD system in the random 

earthquake 
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