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1. Introduction  
 

Based on recent developments, a variety of carbon based 

structures containing carbon nanotube or carbon fiber have 

been widely utilized in composites for enhancing their 

mechanics and thermal specifications (Zhang 2017, 

Keleshtreri et al. 2016, Belbachir et al. 2019, Draoui et al. 

2019, Medani et al. 2019). A 273% enhancement of elastic 

modulus is obtained by Ahankari et al. (2010) for carbon 

reinforced composites in comparison to conventional 

composites. Likewise, Gojny et al. (2004) mentioned that 

structural stiffness of carbon based composites may be 

enhanced with incorporation of carbon nanotube within 

material. Impacts of configuration and scale of carbon 

nanotubes on rigidity growth of material composites having 

metallic matrices are studied by Esawi et al. (2011). 

Because of possessing above mentioned properties, beam 

and plate structures having carbon based fillers are 

researched to understand their static or dynamical status 

(Yang et al. 2017, Semmah et al. 2019, Hussain et al. 

2019). There are also some investigations on composite or 

functionally graded materials and interested readers are 

refaced to new investigations on materials (Barati and 

Zenkour 2018, Shafiei et al. 2017, Mirjavadi et al. 2017, 

2018, 2019, Azimi et al. 2017, 2018, Hellal et al. 2019, 

Tlidji et al. 2019, Chaabane et al. 2019, Dehrouyeh-Semnan 

2018, Dehrouyeh-Semnani et al. 2019, Dehrouyeh-Semnani  
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and Jafarpour 2019, Keddari et al. 2020, Berghouti et al. 

2019, Bourada et al. 2019, Sahla et al. 2019, Khiloun et al. 

2019, Boutaleb et al. 2019, Boulefrakh et al. 2019, Boukhlif 

et al. 2019). Furthermore, the graphene based composite 

material has been recently gained enormous attentions 

because of having easy producing procedure and high 

rigidity growth. Nieto et al. (2017) presented a review paper 

based on several graphene based composite material 

possessing ceramic or metallic matrices. The multi-scale 

study of mechanical attributes for graphene based 

composite material has been provided by Lin et al. (2018) 

utilizing finite elements approach. 

Until now, many of researches in the fields of nano-

composites have been interested in production and materials 

characteristics recognition of graphene based composites 

and structural components containing slight percentages of 

graphene fillers. For instance, it is mentioned by Rafiee et 

al. (2009) that some material characteristics of graphene 

based composites may be enhanced via placing 0.1% 

volume of graphene filler. However, achieving to this level 

of reinforcement employing nanotubes required 1% of their 

volume. Graphene based composites containing epoxy 

matrix were created by King et al. (2013) by placing 6% 

weight fraction of graphene fillers to polymeric phases. It 

was stated that Young modulus of the composite has been 

increased from 2.72 GPa to 3.36 GPa. Next, 57% increment 

for Young modulus has been achieved by Fang et al. (2009) 

based on a sample of graphene based composite.  

Moreover, many studies in the fields of nano-mechanic 

are associated with vibrational and stability investigation of 

various structural elements containing beam or plate 

reinforced via diverse graphene dispersions. For instance,  
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Fig. 1 Geometry of GOP-reinforced plate on elastic 

substrate 

 

 

vibrational properties of a laminated graphene based plate 

have been explored by Song et al. (2017) assuming simply 

support edge condition. They assumed that the plate is 

constructed from particular numbers of layers each 

containing a sensible content of graphene. Selecting a 

perturbation approach, static deflections and bucking loads 

of graphene based plates have been derived by Shen et al. 

(2017). In above papers, each material property has 

discontinuous variation across the thickness of beam or 

plate. Also, geometrically nonlinear vibration frequencies of 

graphene based beams having embedded graphene have 

been explored by Feng et al. (2017) selecting first-order 

beam theory. Moreover, vibration frequencies of graphene 

based beams having porosities have been explored by 

Kitipornchai et al. (2017). 

Furthermore, reinforcement of concrete with nano-size 

inclusions is a novel case study (Alijani and Bidgoli 2018, 

Guenaneche et al. 2019, Zaheer et al. 2019, Alimirzaei et 

al. 2019). Many researches show that mechanical properties 

of concrete can be enhanced by adding graphene platelets 

(GPLs), graphene oxide powders (GOPs) and ever carbon 

nanotubes (Du et al. 2016, Shamsaei et al. 2018). Graphene 

oxide, as derivative of graphene, is broadly and 

economically available from graphite mass oxidations. It is 

compatible with many matix materials including polymeric 

materials and even concrete (Mohammed et al. 2017). 

Graphene oxide composite exhibits great Young modulus 

and tensile strength as are carbon-based material with 

remarkable performances and low costs (Zhang et al. 2020). 

To the best of author’s knowledge, post-buckling study of 

geometrically imperfect concrete plates reinforced by GOPs 

is not carried out till to now. 

The present article is devoted to analyze post-buckling 

behaviors of a geometrically imperfect concrete plate 

reinforced with graphene oxide powders (GOPs) based on 

five-variable plate theory. GOPs have two types of 

dispersion within the structure including uniform-type and 

linear-type. The presented formulation is based upon a 

higher order plate accounting for shear deformations. So, it 

is useful for thick plates. The GOP-reinforced plate is 

exposed to an in-plane mechanical load (Wang and Su 

2013) leading to its buckling. Via an analytical procedure, 

post-buckling path of the beam has been derived. It will be 

demonstrated that buckling characteristics of the GOP-

reinforced plate are dependent on shear deformation, 

geometric amplitude, GOP distribution and foundation 

factors. 

 

 

2. GOP-based composites 
 

According to Fig. 1, it is assumed that GOPs have two 

types of dispersion within the structure including uniform-

type and linear-type. In this figure, a GOP reinforced 

composite plate is illustrated. Micro-mechanic theory of 

such composite materials (Liew et al. 2015) introduces the 

below relationship between GOPs weight fraction (WGOP) 

and their volume fraction (VGOP) by 
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where ρ
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and ρ
M

 define the mass densities of GOP and 

matrices, respectively. Next, the elastic modulus of a GOP 

based composite might be represented based upon matrix 

elastic modulus (EM) by (Zhang et al. 2020) 
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(2) 

so that and  define two geometrical factors 

indicating the impacts of graphene configuration and scales 

as 

 (3a) 

 
(3b) 

 (3c) 

 
(3d) 

so that dGPL and tGPL define GOP average diameter and 

thickness, respectively. Furthermore, Poisson’s ratio for 

GOP based composite might be defined based upon 

Poisson’s ratio of the two constituents in the form 

1 GOP GOP M Mv v V v V= +  (4) 

in which VM=1−VGOPexpresses the volume fractions of 

matrix component (Metwally et al. 2014). Herein, three 

dispersions of the GOP have been assumed as: 
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3. Derivation of equations of motion 
 

A general shear deformable plate theory having five 

field components (Barati 2017, Mouffoki et al. 2017, 

Fenjan et al. 2019, Ahmed et al. 2019, Zemri et al. 2015, 

Bounouara et al. 2016, Abualnour et al. 2019, Adda Bedia 

et al. 2019, Batou et al. 2019, Meksi et al. 2019) employs 

the below displacements field based on lateral (w), in-plane 

(u, v) and rotation (ψx, ψy) variables as (Draiche et al. 2019, 

Addou et al. 2019) 

 (7) 

 
(8) 

 (9) 

Thus, the shear function has been selected as (Ahmed et 

al. 2019) 

 (10) 

and 

,  (11) 

Therefore, the strain components may be derived as 

(Zarga et al. 2019, Zaoui et al. 2019, Mahmoudi et al. 

2019) 
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(13) 

Also, the constitutive relations based on five-unknown 

plate theory may be expressed by (Faleh et al. 2018, She et 

al. 2018) 

 

 

(14) 

Five governing equations based on five-unknown plate 

theory employing Hamilton’s rule may be introduced as 
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in which kW and kp are linear and shear foundation 

parameters and plate forces and moments have been 

introduced as below relations 
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Next, placing Eq. (14) into Eq. (20) results in below 
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(25) 

Next, Eqs. (17)-(19) may be re-written as one equation 

via placing Eqs. (21)-(24) in Eqs. (17)-(19) and then 

removing ψx,x+ψy,y
 
from derived equations and then adding 

geometric imperfection effect as 
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(28) 

in which 

 
(29) 

and F defines the Airy stress function as 

 (30) 

Moreover, w* introduces the initial deflection of the plate 

because of geometric imperfectness. The basic 

compatibility equation of plates incorporating geometric 

imperfectness may be written as 

22 0 2 02 0 2 2 2 2 2 * 2 2 * 2 2 *

2 2 2 2 2 2 2 2
2

y xyx w w w w w w w w w

y x x y x y x y x y x y x y y x

              
+ − = − + − − 

                

 

22 0 2 02 0 2 2 2 2 2 * 2 2 * 2 2 *

2 2 2 2 2 2 2 2
2

y xyx w w w w w w w w w

y x x y x y x y x y x y x y y x

              
+ − = − + − − 

                

 
(31) 

Next, based on Eqs. (21) and (22), one can derives 

membrane strains in below forms 

 

(32) 

Finally, the compatibility equation may be written via 

below relation via placing Eq. (32) in Eq. (31) 

 

 
(33) 

This equation should be simultaneously solved with Eq. 

(28) for deriving post-buckling path of GOP-reinforced 

plates. 

 

 

4. Method of solution 
 

Presented in this chapter is analytic solution of the non-

linear governing equations for post-buckling of a GOP-

reinforced plate. The below movable edge conditions may 

be introduced for mechanical post-buckling analyzes of 

simply-supported plate as: 

 at x=0,a (34) 

 at y=0,b (35) 

Then, the deflections have been selected as below forms 

 
(36) 

 
(37) 

so that 𝑊̃ and W* define plate center deflection and 

imperfectness magnitude, respectively and λm=mπ/a, 

δn=nπ/b. Via utilizing the edge conditions in Eqs.(34)-(35) 

and displacements in Eqs. (36)-(37), the closed form of 

stress function F may be defined by 
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(38) 

where 

 

 

Now, Eqs. (36)-(38) can be inserted in Eq. (28) to find 

the governing equation as 
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where Ks and Ψs are the linear stiffness matrices of perfect 

and imperfect plates respectively. Gi denote nonlinear 

stiffness matrices. In this study, the biaxial load has been 

assumed as Px=Py=P. The nonlinear governing equation has 

been solved for finding post-buckling curves of the plate 

based on the variation of P versus normalized deflection 

𝑊̃/ℎ. It must be pointed out that calculations have been 

carried out based on the below normalized quantities for  
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Table 1 Comparison of post-buckling loads of ideal and 

imperfect plates for various normalized amplitude 

𝑊̃/ℎ w*/h=0  w*/h=0.1  

 Chikh et al. (2016) present Chikh et al. (2016) present 

0 0.62411 0.62411 0 0 

0.1 0.62627 0.62627 0.31853 0.31853 

0.2 0.63274 0.63274 0.43334 0.43334 

0.3 0.64354 0.64354 0.50047 0.50047 

 

 

Fig. 2 Post-buckling load of GOP-reinforced plate versus 

dimensionless deflection for different GOP weight fractions 

(a/h=10, KW=KP=0, W*/h=0.02) 

 

 

elastic foundation 

(40)  

 

 

5. Discussion on results 
 

In this section, post-buckling of a GOP-reinforced plate 

modeled via nonlinear five-unknown plate theory has been 

studied based upon provided solution approach. The 

dependency of post-buckling load on GOPs, foundation 

parameters, normalized amplitude, matrix material, 

geometric imperfectness and shear deformation will be 

explored. As the first step, post-buckling responses of ideal 

and imperfect plates have been validated with those 

reported by Chikh et al. (2016) based on functionally 

graded (FG) plate model, as provided in Table 1. According 

to the table, buckling loads have been provided for both 

perfect (w*/h=0) and imperfect (w*/h=0.1) plates based on 

various normalized amplitude. In this research, the material 

properties of GOP reinforced beam with concrete matrix 

have been considered as: 

• 𝐸𝐺𝑂𝑃 = 444.8 𝐺𝑃𝑎 , 𝑑𝐺𝑂𝑃 = 500 𝑛𝑚, 𝑡𝐺𝑂𝑃 =
0.95 𝑛𝑚, 𝑣𝐺𝑂𝑃 = 0.165. 

• 𝐸𝑀 = 16.9 𝐺𝑃𝑎, 𝑣𝑀 = 0.15. 

Influences of GOP weight fraction on the post-buckling 

properties of concrete plates are presented in Fig. 2 at 

imperfection amplitude of W*/h=0.02. Uniform GOP 

 
(a) WGOP=0.4% 

 
(b) WGOP=0.6% 

Fig. 3 Post-buckling load of GOP-reinforced plate versus 

dimensionless deflection for different GOP distributions 

(a/h=10, KW=KP, W*/h=0.02) 

 

 

distribution has been considered. In the case of ideal 

(perfect) GOP-reinforced plate, the load at 𝑊̃/ℎ = 0 is 

critical buckling load. However, in the case of imperfect 

GOP-reinforced plate (w*/h≠0), the critical buckling load 

does not exist, because the plate has an initial deflection. It 

must be pointed out that the buckling load becomes greater 

by increasing in normalized amplitude. The reason is 

intrinsic stiffening impact raised from geometric 

nonlinearity. Reinforcing effect of GOPs on mechanical 

properties of the plate is obviously observable from this 

graph. In fact, the effective stiffness of the reinforced 

concrete plate may be prominently strengthened via adding 

a small amount of GOPs to matrix material (concrete). 

Thus, post-buckling loads enlarge by increasing in GOP 

weight fraction (WGOP). 

In Fig. 3, post-buckling load-amplitude curves of a 

GOP-reinforced concrete plate with and without geometric 

imperfections have been presented accounting for various 

GOP weight fraction and dispersions. It is considered that 

a/h=10 and W*=0.02h. The most important observation 

from this figure is that increasing GOP weight fraction  

4 2a a
k , kW W p pK K

D D
= = 
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Fig. 4 Post-buckling load of GOP-reinforced plate versus 

dimensionless deflection for different plate theories (a/h=5, 

KW=KP=0, WGOP=0.2%, W*/h=0.02) 

 

 

Fig. 5 Post-buckling load of GOP-reinforced plate versus 

dimensionless deflection for different geometric 

imperfections (a/h=10, KW=KP= 0, WGOP=0.2%) 

 

 

yields larger buckling loads for all types of GOP 

distributions. It means that adding the amount of GOP can 

increase the plate stiffness and enhance its post-buckling 

behavior. Moreover, uniform GOP distribution provides 

greater post-buckling loads than linear (graded) distribution. 

This is due to larger amount of GOP at the upper surface of 

nano-composite plate. As an outcome, controlling of GOP 

is vital for obtaining the best mechanical performances of 

concrete plates. 

Shear deformation effect on post-buckling behavior of 

concrete GOP-reinforced plate has been plotted in Fig. 4 via 

comparison of obtained results for classic and higher-order 

plate models. Geometric imperfection amplitude is selected 

as W*/h=0.02. This figure shows that higher-order plate 

model gives lower post-buckling loads than classic plate 

theory due to incorporating shear deformation effect. So, 

the presented higher-order plate formulation is more 

accurate for post-buckling analysis of thick concrete GOP- 

 

Fig. 6 Post-buckling load of GOP-reinforced plate versus 

dimensionless deflection for different foundation 

parameters (a/h=10, WGOP=0.2 %) 

 

 

Fig. 7 Post-buckling load of GOP-reinforced plate versus 

dimensionless deflection for matrix materials (a/h=10, 

WGOP=0.2 %) 

 

 

reinforced plates.  

Geometrical imperfection (W*/h) effect on post-buckling 

behavior of concrete GOP-reinforced plate has been 

illustrated in Fig. 5. IT may be observed that the initial 

deflection of plate has notable influences on the post-

buckling load-deflection path. Based on previous 

discussion, the critical buckling load vanishes by 

considering plate initial deflection. In fact, for the case of 

perfect structure (w*/h=0), the plate has critical buckling. 

Next, plate buckling capacity improves by the increase of 

normalized deflection. However, for the case of imperfect 

structure (w*/h≠0), there is no buckling load before the 

initial situation of GOP-reinforced plate. Thus, the buckling 

load is zero at the starting point for imperfect plates. After 

that, greater amplitudes of plates need stronger compressive 

load. Finally, it may be concluded that pot-buckling curves 

of perfect and imperfect plates become closer to each other 

at large values for normalized amplitude. 
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Fig. 8 Post-buckling load of GOP-reinforced plate versus 

dimensionless deflection for different length to thickness 

ratios (WGOP=0.2 %) 

 

 

Fig. 6 indicates the variation of post-buckling load of a 

GOP-reinforced plate versus normalized amplitude for 

various linear (KW), shear (KP) foundation factors at 

WGOP=0.2%. It must be pointed out that the shear layer 

gives continuous interactions with the GOP-reinforced 

plate, whereas linear layer gives discontinuous interactions 

with the plate. Growth of foundation factors results in 

greater nonlinear buckling load via improving the bending 

rigidity of GOP-reinforced plate. 

Fig. 7 illustrates the effect of matrix material on post-

buckling curves of the plate at a prescribed amount of GOPs 

(WGOP=0.2 %). Three types of material including concrete, 

epoxy (E=3.5 GPa) and Aluminum (E=70 GPa) are 

considered as matrix material. The maximum and minimum 

values of buckling loads are obtained for Aluminum and 

epoxy matrices. Actually, epoxy matrix gives smaller post-

buckling loads than concrete matrix due to having lower 

stiffness. Accordingly, type of matrix material has a key 

role on post-buckling behavior of ideal/imperfect GOP-

reinforced plates. 

Effects of length-to-thickness ratio (a/h) on post-

buckling behaviors of GOP-reinforced plates have been 

plotted in Fig. 8. Two cases of geometrically ideal (perfect) 

and imperfect plates have been supposed. It is obvious that 

plates are less rigid at greater values for a/h. Accordingly, 

derived post-buckling load becomes lower via enlargement 

of a/h at prescribed normalized amplitudes (𝑊̃/ℎ). Also, 

calculated post-buckling loads for various values of a/h rely 

on the magnitude of normalized deflection. For smaller a/h, 

post-buckling load increases with a higher slope according 

to normalized deflection than higher length-to-thickness 

ratio or thinner plates. Such observation is due to more 

stiffness of the plate at low values of a/h. 

 

 

6. Conclusions 
 

This article analyzed post-buckling behaviors of 

imperfect concrete plates filled by GOPs via stablishing a 

nonlinear higher order plate formulation in which shear 

deformation effects are involved without adding shear 

correction factor. Both uniform and linear GOP 

distributions were considered. Obtained finding in this 

research are presented as follows. 

• The most important observation was that increasing 

GOP weight fraction yields larger buckling loads for all 

types of GOP distributions. It means that adding the 

amount of GOP can increase the plate stiffness and 

enhance its post-buckling behavior.  

• Moreover, uniform GOP distribution provided greater 

post-buckling loads than linear distribution. This is due 

to larger amount of GOP at the upper surface of nano-

composite plate.  

• It was found that refined plate model gives lower post-

buckling loads than classic plate theory due to 

incorporating shear deformation effect.  

• An important finding was that as the magnitude of 

imperfection is greater, the post-buckling load is lower. 
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