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1. Introduction  
 

The seismic risk stem of US highway structures has 

been one of the main concerns for a long time. Although 

seismic resilience of the US highway system has been 

improved in recent decades, not all existing highway 

infrastructure has been retrofitted; therefore, some seismic 

risks to the U.S. highway structures remain. There is no 

national database for seismic risk to U.S. highway 

infrastructure. Different approaches have been taken to deal 

with the vulnerability of existing highway structures such as 

replacing, retrofitting, and abandoning.  

In the straight highway bridges, the longitudinal and 

transverse responses are decoupled, since the superstructure 

and substructural centerlines are perpendiculars. Since the 

approach of seismic design codes has switched from 

deterministic to probabilistic, fragility function 

methodology has become a significant decision-making tool 

to assess the condition of existing structures and design new 

structures. There are two main methods to derive fragility 

curves; empirical and analytical. In the former method, the 

fragility curves were developed based on the data of 

historical earthquakes. In the analytical method, nonlinear 

dynamic analyses apply to structures using a limited 

number of ground motion to generate fragility curves. One 

of the main drawbacks attributed to the empirical method is 
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a need for a large amount of damage data for a specific 

class of structure, which is usually not available.  

Wang et al. (2018) analyzed twenty-six intensity 

measures to propose the optimal intensity measure of 

probabilistic seismic demand analysis of the pile-shaft-

supported bridges in liquefied and laterally spreading 

ground. Jeon et al. (2019) developed the work on the 

seismic fragility curves for California concrete bridges. 

They considered structural uncertainties such as material 

and geometric in the generation of the fragility curves. 

Dukes et al. (2018) used a multi-parameter demand model 

to estimate the fragility curves. They applied Monte Carlo 

simulation to determine the fragility of the bridge 

components. Cui et al. (2018) tried to conduct the fragility 

analysis for the high-speed railway continuous-girder bridge 

by considering different modeling parameters and damage 

states. 

Recent works related to the empirical and analytical 

fragility curves can be found in the open literatures 

(Cimerallo et al. 2010, Muntasir Billah et al. 2015, Parghi 

et al. 2017, Cui et al. 2019, Duke et al. 2018, Wang et al. 

2018, Jeon et al. 2017, 2019, Haukaas et al. 2008, Kia et al. 

2018, 2016, Jalayer et al. 2015, Alam et al. 2017, 2019, 

Soltangharaei et al. 2019, Hwang et al. 2001, Kwang et al. 

2017, Bai et al. 2011, Choe et al. 2008, Gkatzogias et al. 

2015, O’Reilly et al. 2018, Sisi et al. 2018, Chen et al. 

2016).  

In this paper, regression-based demand models with a 

linear formulation in the logarithmic space are proposed to 

predict the maximum drift ratio for bridge columns of 

concrete girder highway bridges. A concrete girder bridge 

was modeled in SAP 2000 V.14.2.4 finite element software.  
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Fig. 1 A scheme of the three dimension of the bridge 

 

 
(a) 

 
(b)                    (c) 

Fig. 2 Concrete member reinforcing layout (a) Deck detail 

(b) Column (c) Bent beam (Bayat et al. 2015b) 

 

 

A full incremental dynamic analysis has been conducted on 

the bridge. PGA is chosen as an intensity measure (IM), and 

column drift ratios as an engineering demand parameter 

(EDP). The different performance levels of the bridge are 

considered through slight, moderate and extensive levels. 

Bayesian regression analysis has been utilized to develop a 

probabilistic demand model to predict damages in the 

bridge. In the Bayesian regression, the uncertainty resulted 

due to incomplete sample populations (statistical 

uncertainty) is directly addressed by standard deviation σ 

and regression coefficients, which are random variables, 

rather than constant variables.  

Analytical fragility curves have been developed for a 

typical bridge class of Central and Southeastern United 

States (CSUS) region. The CSUS is a moderate seismic 

zone which the seismic risk mitigation efforts are 

inevitable. The main objective of this paper is to assess the 

bridge seismic vulnerabilities using a probabilistic demand 

model developed using the Bayesian interface framework. 

Seismic fragility curves are developed, considering both the 

uncertainties from the hazard and the capacity of the 

bridges. A numerical modeling of the bridge is presented for 

the investigation on the seismic response and risk 

assessment of the most common bridge types in the Central 

and Southeastern US.  

Table 1 Damage States (DS) for concrete columns (Zhang 

et al. 2009) 

Component/ 

Damage 

Slight 

(DS=1) 

Moderate 

(DS=2) 

Extensive 

(DS=3) 

Collapse 

(DS=4) 

Column 

Cracking and 

spalling 

Moderate 

cracking 

and spalling 

Degradation 

w/o collapse 

Failure 

leading to 

collapse 

>1 >2 >4 >7 

    

 
 

2. Numerical modelling 
 

The model used in this study is derived from a non-

skewed model developed by Nielson (2005). The bridge 

characteristics are based on the data obtained from a survey 

of numerous bridge plans of CSUS region. Fig. 1 shows a 

three-dimensional finite-element of the considered bridge in 

SAP2000 software. The bridge has a total length of 48 m 

with three spans, and a total width of 15.01 m with eight 

AASHTO-type prestressed girders. Frame elements were 

used to model the prestressed concrete girders and cap 

beams and columns were modeled by nonlinear frame 

elements. Two joint link elements were used to model the 

elastomeric pads between the cap beams and girders. The 

bridge deck was modeled by shell elements. The lateral 

stiffness of soil was modeled by spring elements. 

The detail of the bridge components is shown in Fig. 2. 

More details of this bridge can be found in (Bayat et al. 

2015a, b, Choi 2002). A bilinear plastic element is used to 

model the place of plastic hinges that are likely to form. 

Abutments and the column boundary conditions are fixed-

free in the longitudinal direction and fixed-fixed in the 

transverse direction. The bearings are elastomeric pads and 

their behavior are modeled with an elastic-perfectly plastic 

material. The first period of the bridge was 0.59 seconds 

with 5% damping.  

 

 

3. Damage states for IDA 
 

In this paper, column drift ratios were utilized to define 

the performance levels as tabulated in Table 1. 

 

 

4. Seismic fragility analysis 
 

Seismic fragility is defined as the probability of 

exceeding a specific threshold value of d in the condition of 

IM equals to x, which is computed as follows 

( ) 
( ) ( )

( ) 

























 −
−=

Im|

|
1Im|Im,

DLn

IMDLndLn
xdDP






 

(1) 

Where λLn(D|IM) and σLn(D|Im) are the median and standard 

deviation of the seismic demand given 

Im in the logarithmic space. φ indicates cumulative 

standard normal distribution function. According to Eq. (1), 

probabilistic demand model is vital component of 

probabilistic decision-making analyses such as seismic 

fragility analysis.  These models are commonly developed 
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based on observations obtained from experimental tests 

and/or numerical analyses. It should be noted that a model 

that matches past observations would not necessarily 

predict future events. Therefore, both aleatory and statistical 

uncertainty should be explicitly embedded within the 

predictive demand models. To this end, linear model with 

random parameters in the logarithmic space have been 

employed to describe relation between overall maximum 

drift as the bridge structural demand parameter (D) and 

earthquake intensity, the spectral acceleration at the 

fundamental period Sa (T1) or peak ground acceleration 

(PGA). The logarithmic transformation is also utilized to 

approximately satisfy the normality assumption (i.e., model 

error has normal distribution) and homoscedasticity 

assumption (i.e., Standard deviation of model error is 

constant). This mathematical expression conforms to the 

perceptional of a structural performance curve (IDA curve). 

Eq. (2) illustrates general form of the predictive model 

considered in this study 

( ) ( )( )1Ln D a b Ln Sa T or PGA u= +  +  (2) 

where D represents the target response (overall maximum 

drift), Ln function denotes natural logarithm, u is a term 

reflecting model error and is supposed to be a normal 

random variable with zero mean and unknown standard 

deviation equals σ, and Θ=(a, b) is a vector of unknown 

normal random model parameters. It is worthy noted the 

above-mentioned relation is also written as follows 

( ) ( )( )1Ln D a b Ln Sa T or PGA  = +  +  (3) 

In practice, estimating the statistical characteristics of 

the model parameters a, b and σ require collecting a large 

quantity of observations, including:  appropriate ground 

motion records selection, Incremental Dynamic Analysis, 

and statistical inference, which are explained in the 

following.  

 
 
5. Ground motion records selection 

 

Twenty ground motion records were selected according 

to criteria proposed by FEMA-P695 (2003). The records are 

listed in Table 2 and the criteria are presented as follow: 

• Peak Ground Acceleration (PGA)>0.2 g and Peak 

Ground Velocity (PGV)>15 cm/sec. Earthquake 

magnitude is larger than 6.5 M. 

• Epicenters are larger than 10 km. 

• Soil shear wave velocity, in upper 30m of soil, greater 

than 180 m/s. 

• Lowest useable frequency<0.25 Hz.  

• Strike-slip and thrust faults. 

 

 

6. Incremental Dynamic Analysis (IDA) 
 

In this paper, the spectral acceleration at the 

fundamental period Sa (T1) and peak ground acceleration 

(PGA) were employed to represent earthquake intensity. In 

addition, Overall maximum drift (θmax) is also considered as 

a demand of interest to evaluate seismic performance of the  

Table 3 Characteristics of the earthquake ground motion 

histories (FEMA 2009) 

ID 

No 
M 

Earthquake Recording station 

PGA(g) Year Name Name owner 

1 7.0 0.48 1992 
Cape 

Mendocino 

Rio Dell 

Overpass 
USGS 

2 7.6 0.21 1999 Chi-Chi, Taiwan CHY101 CWB 

3 7.1 0.82 1999 Duzce,Turkey Bolu ERD 

4 6.5 0.45 1976 Friuli, Italy Tolmezzo ------------ 

5 7.1 0.35 1999 Hector Mine Hector SCSN 

6 6.5 0.34 1979 Imperial Valley Delt UNAMUCSD 

7 6.5 0.35 1979 Imperial Valley 
El Centro 

Array#1 
USGS 

8 6.9 0.38 1995 Kobe, Japan Nishi-Akashi CUE 

9 6.9 0.51 1995 Kobe,Japan Shin-Osaka CUE 

10 7.5 0.24 1999 Kokaeli,Turkey Duzce ERD 

11 7.3 0.36 1992 Landers 
Yemo Fire 

Station 
CDMG 

12 7.3 0.24 1992 Landers Coolwater SCE 

13 6.9 0.42 1989 Loma Prieta Capitola CDMG 

14 6.9 0.53 1989 Loma Prieta 
Gilory 

Arrey#3 
CDMG 

15 7.4 0.56 1990 Manjil Abbar BHRC 

16 6.7 0.55 1994 Northridge 
Beverly Hills-

Mulhol 
USC 

17 6.7 0.44 1994 Northridge 
Canyon 

Country-WLC 
USC 

18 6.6 0.36 1971 San Ferando 

LA-

Hollywood 

Stor 

CDMG 

19 6.5 0.51 1987 
Superstition 

Hills 

El Centro 

Imp.Co 
CDMG 

20 6.5 0.52 1987 
Superstition 

Hills 

Poe Road 

(temp) 
USGS 

 

 

bridge. All records were scaled to 1 g and applied to the 

bridge with 0.1 g intervals. In each step, full nonlinear time 

history analysis is conducted (Vamvatsikos et al. 2002). The 

scale started from 0.1 g and increased until the collapse 

state of the bridge. 

A comprehensive structural data-base is established due 

to these extensive nonlinear dynamic analyses. The 

database is divided into two parts, collapse and non-

collapse data. The non-collapse data is applied to develop 

probabilistic demand model according to Eqs. (4) or (5).  

 

 

7. Bayesian statistical inference  
 

Consider h(x) as a vector of explanatory functions 

formulated in terms of independent variables collected in 

vector x. y is a response variable predicted by 

( ) ( ) ( )  ++++= xhxhxhy
kk

..........
2211

 (4) 

where θis are called model parameters, ε is a standard 

normal random variable and σ is standard deviation of 

model error. Traditionally, classical regression is applied to 

compute point estimation of model parameters (θ, σ). It is 

clear that point estimation based on information obtained 

from a finite-size sample population is incomplete and 

uncertain. Conversely, Bayesian linear regression can 

express our uncertainty about (θi, σ) by considering model  
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parameters as random variables and determines probability 

distribution of the coefficients using the Bayesian updating 

rule (Box and Tiao 2011) 

( ) ( ) ( ) ,.,.,
iii

PLcf =  (5) 

Where f(θi, σ) denotes posterior distribution representing 

our updated knowledge about the coefficients, L(θi, σ) 

indicates the likelihood function representing the objective 

information on (θi, σ) gained from a set of observations, 

p(θi, σ) denotes the prior distribution reflecting our 

knowledge about parameters prior to obtaining observations 

and c is a normalizing factor . In the case that lower bound 

data and/or upper bound data are not available such as data 

collected in this study, and the probabilistic model of 

interest is formulated as a linear function of θ, closed-form 

solution can be found for Eq. (6) (Gardoni et al. 2002). 

Under the normality assumption on   and a non-

informative priors, Box and Tiao (2011) show that the 

posterior distributions of θ and σ2, denotes vector of model 

parameters θ, are a multivariate t distribution and an inverse 

chi-square distribution respectively.  
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(6) 

Where H is a n-by -k dimensional matrix which contains all 

n observations of explanatory functions. Also, Y is the n- 

 

 

Table 5 Correlation matrix of regression coefficients 

implemented in model in terms of PGA 

 a b 

a 1 0.604 

b 0.604 1 

 

Table 6 Correlation matrix of the regression coefficients 

implemented in model in terms of Sa (T1) 

 a b 

a 1 -0.0085 

b -0.0085 1 

 

 

dimensional vector of response variable observations. Once 

posterior distribution is known, mean vector Mθ and 

covariance matrix ∑θθ can be computed as follows 
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(7) 

According to above description and those presented in 

the previous section, the procedure implemented in the 

present study to develop demand model is graphically 

exhibited in the following  

 

 

8. Developed regression-based demand model 
 

According to the above description, maximum drift 

demand model in terms of PGA in the form of Eq. (3) is 

developed. Table 4 demonstrates model parameters  

 

Fig. 3 Procedure of developing regression-based demand model 

Table 4 Posterior statistics of the model parameters implemented in Eq. (3) 

( ) ( ) ++= PGALnbaDLn  

a b σ 

Mean C.O.V % Mean C.O.V % Mean C.O.V % 

-4.072 0.5894 0.893 2.772 0.298 0.0459 

( ) ( )( )1Ln D a b Ln Sa T = +  +  

a b σ 

Mean C.O.V % Mean C.O.V % Mean C.O.V % 

-4.602 0.2586 0.952 1.6355 0.1855 0.0459 
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 (a)  (b) 

 
(c) 

Fig. 4 Graphical diagnoses of the demand model developed in terms of PGA; (a) Prediction model plot; (b) Quantile-Quantile 

plot to assess the normality; (c) Residual plot to assess homoscedasticity 

  
 (a)  (b) 

 
(c) 

Fig. 5 Graphical diagnoses of the demand model developed in terms of PGA; (a) Prediction model plot; (b) Quantile-Quantile 

plot to assess the normality; (c) Residual plot to assess homoscedasticity 
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computed based on IDA and Bayesian regression analysis.   

The posterior correlation coefficients were calculated 

between the regression coefficients (model parameters a, b) 

are also presented in Tables 4 and 5.   

In addition, a graphical diagnosis of regression demand 

models is illustrated in Figs. 4 and 5 to investigate the 

performance of model. The assessment proceeded with 

plotting the model predictions against observed data, the 

model residuals versus the predicted values of the 

dependent variable and quantiles of the model residual 

against normal theoretical quantiles. The latter which is 

known as Q-Q plot depicts the residual values against the 

value of inverse normal cumulative distribution function 

(CDF) at u/n point, where u is the number of the residual in 

ordered vector of residuals and n is the number of 

observations. In the case of normally distributed residuals, 

the points align with a 45° line. Similarly, the degree to 

which plotted prediction data align with a 45° line implies 

the quality of the model. In addition, the proposed 

regression model is acceptable regarding the 

heteroscedasticity if the residuals fall within fairly 

horizontal lines on both sides of the zero axes. Further 

information about regression diagnosis techniques can be 

found in technical texts.  

 

 

9. Results and discussions 
 

By comparison these two sets of graphs according to 

above mentioned explanations (accuracy and reasonability), 

it is concluded:  

Both models are acceptable according to normality and 

accuracy criteria, but only the demand model developed in 

terms of PGA is acceptable and reliable regarding the 

homoscedasticity criterion.  

Thus, the demand model in terms of PGA is 

implemented in the following to perform fragility analysis. 

To this end, it is only required to substitute probabilistic 

demand model in Eq. (1) as follow 
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(8) 

Now Fragility curves are developed for three different 

limit-state named Slight, Moderate, and Extensive 

prevention by assigning different values to the PGA.   

(Fig. 6). It is worthy noted, the above mention formulation 

could only reflect aleatory uncertainties raised from nature 

of the phenomena, and variability in the models parameters 

is neglected to simplify calculation.  

 

 

10. Conclusions 
 

In this study, the seismic vulnerability of a detailed 

three-dimensional bridge is completely investigated by 

developing probabilistic demand model in terms of the two 

most used intensity measures, i.e. PGA and Sa (T1) based 

on incremental dynamic analysis and Bayesian inference. 

After developing demand models, a graphical diagnosis of 

the models is extracted. According to these graphs not only 

accuracy and reasonableness of the models are investigated, 

but also the authors are capable of answering which 

intensity measure is suitable for this type of bridge.  This 

methodology is different from those commonly employed 

in the technical text to evaluate the sufficiency and 

efficiency of different intensity measures. Next, the PGA 

based- demand model is employed in a fragility analysis to 

assess the seismic vulnerability of the bridge.  
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