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1. Introduction 
 

Carbon nanotube as one of the most applicable 

miniature structure attracts many researchers in order to 

analytically and experimentally probes its dynamical 

properties using the nonlocal beam theory. Several 

researchers studied linear and nonlinear vibrations of the 

nanostructures utilizing the Eringen’s nonlocal elasticity 

theory Eringen (2002). They mostly focused on the free 

vibrational analysis of the nano-structure, specially, carbon 

nanotubes. In addition, nano-structures can be mentioned as 

the important types of devices which have wide 

applications in a variety of technological and scientific 

fields. The nonlinear forced vibration of carbon nanotubes 

has seldom been observed. However, this issue is very 

crucial due to the widespread application of the forced 

nonlinear vibration carbon nanotubes in many practical 

instruments.  

The nonlocal elasticity introduced by Eringen (2002) 

becomes a turning point as small scale effect was inculcated 

in to fundamental equations as simply material parameter. 

Therefore, scientific community now propose to apply 

nonlocal continuum models to investigate nano-structured 

materials (Sudak 2003, Wang et al. 2006, Pradhan and 

Phadikar 2009, Ansari et al. 2010, Hao et al. 2010, Amara 

et al. 2010, Shen and Zhang 2010). Donnell (1996), Flügge 
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(1962) have been two substantial shell theories practiced 

extensively in study of static and dynamic characteristics of 

CNTs. Flügge shell theory takes promising place to 

generate remarkably accurate developments to examine the 

CNTs. The existence of long range interactions in materials 

is the basic reason of application of nonlocal theory.  The 

first ever work presented on use of nonlocal elasticity was 

by Peddieson et al. (2003). Prominent computational 

competence and accuracy makes nonlocal models an 

attractive choice for further advancements in field. Wang et 

al. (2006) introduced new modeling for vibration of CNTs 

and to find the critical buckling strain and tube thickness. 

Natuski et al. (2007) investigated single and double-walled 

CNTs filled with fluids by adopting wave propagation 

approach. Flügge shell theory was proposed to form 

governing equations of motion for CNTs. Lee and Chang 

(2008) analyzed the vibration mode shape and frequency of 

fluid-filled SWCNTs. It is found that mode shape and 

frequency are influenced significantly by the nonlocal 

parameters. Ke et al. (2009) investigated free nonlinear 

vibrations of double-walled CNT and applied differential 

quadrature technique to derive frequency equations. On the 

other side, for length scale coefficient and soft elastic 

medium with embedded carbon nanotube, the nonlocal 

frequencies are comparatively lower. It is also found that 

the frequencies of the nonlocal model at different stages of 

temperature are higher than the nonlocal with same 

temperature. Eringen nonlocal theory and Von-Karman 

geometry were fully studied by Yang et al. (2010). Selmi 

and Bisharat (2018) studied the Aluminum alloy (Al-alloy) 

reinforced with Single walled carbon nanotubes (SWNT), 

which represents an important industrial application. 
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Abstract.  This research deals with the study of the orthotropic vibrational features of single-walled carbon nanotubes 

according to Kelvin’s model and to check the accuracy of the models, the results have been compared with earlier 

modeling/simulations. Obtaining rough approximations of the natural frequencies of CNTs using continuum equations are still a 

common procedure, even at high harmonics. The effects of different physical and material parameters on the fundamental 

frequencies are investigated for zigzag and chiral single-walled carbon nanotubes invoking Kelvin’s theory. By using nonlocal 

Kelvin’s model, the fundamental natural frequency spectra for two forms of single-walled carbon nanotubes (SWCNTs) have 

been calculated. The influence of frequencies with nonlocal parameters and bending rigidity are investigated in detail for these 

tubes. Computer software MATLAB is utilized for the frequencies of SWCNTs and current results shows a good stability with 

comparison of other studies. 
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Different beam theories (BT) are applied to investigate 

functionally graded (FG) beams made of Al-alloy 

reinforced with randomly oriented, straight and long 

SWNT. The Rayleigh-Ritz method is used to estimate the 

beam frequencies. Bisen et al. (2018) investigated the the 

natural fiber (Luffa cylindrica fiber) reinforced epoxy 

composite and their structural responses (frequency and 

deflection) have been computed experimentally and 

numerically first time using the corresponding experimental 

elastic properties. Selmi (2019) investigated the 

effectiveness of single walled carbon nanotubes in 

improving the dynamic behavior of cracked Aluminium 

alloy, Al-alloy, beams by using a method based on changes 

in modal strain energy. Mechanical properties of composite 

materials are estimated by the Eshelby-Mori-Tanaka 

method. 

Rouhi and Ansari (2012) executed the axial buckling of 

double-walled CNT subject to various layer-wise conditions 

by using Rayleigh-Ritz based upon nonlocal Flügge shell 

theory. Their study showed that the number of different 

layer-wise boundary conditions dominates the choice of 

values for nonlocal parameter. Ansari and Rouhi (2013) 

summarized the effect of small scale, geometrical parameter 

and layer-wise end conditions of double-walled CNT by 

adopting Flügge shell model (FSM). They depicted that the 

continuum model considering the nonlocal effect compels 

the short double-walled CNT more flexible. Mehar and 

Panda (2018a) computed the vibration behavior, bending 

and dynamic response of FG reinforced CNT using shear 

deformation theory and finite element method. For the sake 

of generality, the mathematical model was presented with 

the mixture of Green Lagrange method. The convergence of 

these methodologies have been checked for the variety of 

results. The composite plates with different graded was 

investigated with isotropic and core phase. Moreover, 

Benguidiab et al. (2014) explored the features of zigzag 

double-walled CNT. A comprehensive research presented 

by Salvatore Brischetto (2015) to analyze the vibration 

characteristic of double-walled CNT by considering shell 

continuum model. The findings of article were evolved 

around effects of van der Waals interaction in terms of 

frequency ratio. Hussain and Naeem (2017) examined the 

frequencies of armchair tubes using Flügge’s shell model. 

The effect of length and thickness-to-radius ratios against 

fundamental natural frequency with different indices of 

armchair tube was investigated. Dihaj et al. (2018) studied 

the transverse free vibration of chiral double-walled carbon 

nanotube (DWCNTs) embedded in elastic medium by the 

non-local elasticity theory and Euler Bernoulli beam model. 

The governing equations are derived and the solutions of 

frequency are obtained. Hussain and Naeem (2018a) used 

Donnell’s shell model to calculate the dimensionless 

frequencies for two types of single-walled carbon 

nanotubes. The frequency influence was observed with 

different parameters. Fatahi-Vajari et al. (2019) studied the 

vibration of single-walled carbon nanotubes based on 

Galerkin’s and homotopy method. This work analyses the 

nonlinear coupled axial-torsional vibration of single-walled 

carbon nanotubes (SWCNTs) based on numerical methods. 

Two-second order partial differential equations that govern 

the nonlinear coupled axial-torsional vibration for such 

nanotube wasderived. Asghar et al. (2019a, b) conducted 

the vibration of nonlocal effect for double-walled carbon 

nanotubes using wave propagation approach. Many material 

parameters are varied for the exact frequencies of many 

indices of double-walled carbon nanotubes. 

Shahrma et al. (2019) studied the functionally graded 

material using sigmoid law distribution under hygrothermal 

effect. The Eigen frequencies are investigated in detail. 

Frequency spectra for aspect ratios have been depicted 

according to various edge conditions. Arani et al. (2016) 

used the nonlinear buckling of SWCNTs and the mixture 

rule was employed for buckling analysis of embedded 

CNTs with Euler and Timoshenko beam model. The 

influence of geometrical parameter and elastic foundation 

with different boundary conditions was investigated. 

Hussain et al. (2017) demonstrated an overview of Donnell 

theory for the frequency characteristics of two types of 

SWCNTs. Fundamental frequencies with different 

parameters have been investigated with wave propagation 

approach. Chemi et al. (2018) determined the nonlocal 

critical buckling loads of chiral double-walled carbon 

nanotubes embedded in an elastic medium, the nonlocal 

Timoshenko beam theory. The solution for the nonlocal 

critical buckling loads is obtained using governing 

equations of the nonlocal theory. Mehar et al. (2017a, b) 

studied the frequency response of FG CNT and reinforced 

CNT using the simple deformation theory, finite element 

modeling, Mori-Tanaka scheme. They investigated a new 

frequency phenomena with the combination of Lagrange 

strain, Green-Lagrange, for double curved and curved panel 

of FG and reinforced FG CNT. The charactrictics of 

sandwich and grades CNT was found with labeling the 

temperarure environ. The thermoelastic frequency of single 

shaollow panel was determined using Mori-Tanake 

formaulation. The research of these authors have opened a 

new frequency spectra for other material researchers. Salah 

et al. (2019) examined a simple four-variable integral plate 

theory to investigate thethermal buckling properties of 

functionally graded material (FGM) sandwich plates. The 

proposed kinematics considers integral terms which include 

the effect of transverse shear deformations. Bilouei et al. 

(2016) and Zamanian et al. (2017) studied the buckling 

behavior of concrete columns with nanofiber reinforced 

polymer and SiO2 nano-particles. By using the strain-

displacements, Hamilton’s principles and Mori- Tanka 

approach, the governing equation was derived. Numerical 

results were presented with the variation of elastic 

foundations. Narwariya et al. (2018) presented the vibration 

and harmonic analysis of orthotropic laminated composite 

plate. The response of plate is determined using Finite 

Element Method. The eight noded shell 281 elements are 

used to analyze the orthotropic plates and results are 

obtained so that the right choice can be made in 

applications such as aircrafts, rockets, missiles, etc. to 

reduce the vibration amplitudes. Mehar et al. (2018) 

evaluated the frequency behavior of nanolpate structure 

using FEM including the nonlocal theory of elasticity. 

Computer generated results are created by using the 

software first time roubustly to check the vibration of  
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Fig. 1 Hexagonally description of zigzag and chiral 

SWCNTs on the graphene sheet 

 

 

nanoplate. The efficiency was checked by comparing the 

results of available data. Behera and Kumari (2018) 

conducted first time, an exact solution for free vibration of 

the Levy-type rectangular laminated plate considering the 

most efficient Zig-Zag theory (ZIGT) and third order theory 

(TOT). The plate is subjected to hard simply supported 

boundary condition (Levy-type) along x axis. Yazid et al. 

(2018) presented new refined plate theory by employing 

nonlocal small effects. By using the principle of virtual 

displacements, the nonlocal relation for equation of motion 

was obtained. The results presented here may provide a 

useful design for nanostructures. In another study the 

viscoelastic effects of the medium were also studied using 

Kelvin model for the medium surrounding microtubules 

(MTs) but for the MTs the same classical orthotropic elastic 

shell model was used (Safeer et al. 2019). Mehar and Panda 

(2018b) investigated the curved shell and CNT vibration 

with thermal environment using higher order deformation 

theory. These CNT was mixed with different configurations 

of the layers. The results have been verified with the earlier 

investigations. Batou et al. (2019) studied the wave 

propagations in sigmoid functionally graded (S-FG) plates 

using new higher shear deformation theory (HSDT) based 
on two-dimensional (2D) elasticity theory. The current 

higher order theory has only four unknowns, which mean 

that few numbers of unknowns, compared with first shear 

deformations and others higher shear deformations theories 
and without needing shear corrector. Many researchers 
directly used the classical theory for the structure of 

CNTs (He et al. 2005, Hu et al. 2007, Gibson et al. 2007, 

Ghavanloo et al. 2010, Yoon et al. 2002, Mehar et al. 2016, 

Mehar et al. (2019). The use of wave propagation approach 

is important for the study of nanostructures to develop a 

new formulism with different theories. In this approach, 

eigenvalue form is developed with the help of axial modal 

function in matrix representation. With the help of computer 

software MATLAB, frequencies of SWCNTs are extracted. 

The formulation of WPA is given by Zhang et al. (2001), a 
brief yet simple explanation first time. Recently Hussain 

and Naeem (2019a, b, c, d, 2020) and performed the 
vibration of SWCNTs based on wave propagation 
approach and Galerkin’s method. They investigated 

many physical parameters for the rotating and 

 

Fig. 2 Geometry of SWCNTs. 

 

 

non-rotating vibrations of armchair, zigzag and chiral 

indices. Moreover, the mass density effect of single walled 

carbon nanotubes with in-plane rigidity have been 

calculated for zigzag and chiral indices. Due to the 

exactness of this approach, some researchers have been 

used for the vibration of CNT/shells (Simsek 2010, 

Narendar 2011, Hussain and Naeem 2018).  

In present paper, vibrations of SWCNTs for zigzag 

indices (9, 0), (16, 0), (21, 0) and chiral indices (13, 6), (23, 

8), (26, 11) have been analyzed with specified conditions. 

We developed a new model from the combination of the 

nonlocal Kelvin’s model. The governing equation has been 

developed for the vibrations of SWCNTs considering the 

nonlocal parameter. Effects of nonlocal parameters and 

bending rigidity were fully investigated on the fundamental 

natural frequency (FNF) against aspect ratios. It has been 

shown that frequency curves decrease as an increment in 

the nonlocal parameter and increases by increasing of the 

aspect ratio. Additionally, it can be seen that by increasing 

in-plane rigidity, the frequencies would increase. Also the 

frequency curves for C-F are lower throughout the 

computation than that of C-C curves. 

 

 

2. Materials and methods 
 

When a graphene sheet is rolled with its hexagonal cells, 

the structure can be conceptualized as SWCNTs and its 

circumference and quantum properties depend upon the 

chirality and diameter described as a pair of (n, m). In 

addition, the integer’s n and m represent the orientation of 

the graphene honeycomb lattice. Fig. 1 shows the 

orientation of the graphene sheet as, the nanotubes are 

zigzag, if m=0; nanotubes become chiral, if n≠m; the 

geometry of SWCNTs is shown in Fig. 2. We will apply 

nonlocal orthotropic elastic shell model to analyze the wave 

propagation of CNTs. Surrounding medium of CNTs will be 

modeled by Kelvin model. We will develop nonlocal 

orthotropic Kelvin-like model by the combination of these 

models. We will use wave propagation approach to find the 

wave dispersion relations for CNTs in viscoelastic medium. 
 

2.1 Nonlocal orthotropic Kelvin-like model  
 

Cemal Eringen are pioneers of the nonlocal theory 

(Kröner 1967). For an elastic and homogeneous material the 

stress strain relationships are given below 
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Fig. 3 Resolution of components of stress and moments of 

the middle surface of CNTs 

 

 

𝜎𝑖𝑗,𝑗 = 0                  (1) 

𝜎𝑖𝑗(𝑥) = ∫𝜑(|𝑥
′ − 𝑥|, 𝜓)𝐶𝑖𝑗𝑘𝑙𝜀𝑘𝑙 (𝑥

′)𝑑𝑉(𝑥′), ∀ 𝑥 ∈ 𝑉 (2) 

𝜀𝑖𝑗 =
1

2
(𝑢𝑖,𝑗 + 𝑢𝑗,𝑖)               (3) 

where 𝑗 denotes the derivative with respect to 𝑗, 𝜎𝑖𝑗 and 

𝜀𝑘𝑙  are strain tensor and stress tensor respectively, and 

elastic modulus tensor is denoted by 𝐶𝑖𝑗𝑘𝑙 , 𝑢𝑖 represents 

the displacements, the attenuation function is 𝜑(|𝑥′ −
𝑥|, 𝜏), and |𝑥′ − 𝑥| denotes the usual distance. Also, 𝜓 =
𝑒0𝑎/𝑙 , where 𝑒0  is a material constant, internal 

characteristics length is represented by 𝑎 and 𝑙 denotes 

the external characteristics length. 

The differential form of Eq. (2) is used as nonlocal 

constitutive relation (Eringen 2002) 

(1 − (𝑒𝑜𝑎)
2∇2)𝜎𝑖𝑗 = 𝐶𝑖𝑗𝑘𝑙𝜀𝑘𝑙             (4) 

where 𝑎 is the internal characteristic length. 

In this study we have taken 𝑒0𝑎 as a single parameter, 

known as small scale parameter which represents the effect 

of size for the nano and micro structures, and ∇2 is the 

Laplace operator. Our coordinate system 𝑥, 𝑦 and 𝑧 are 

axial, circumferential and radial coordinates respectively 

whose dimensionless coordinates are 𝛼 = 𝑥/𝑅, 𝛽 = 𝑦/𝑅 

and 𝛾 = 𝑧/𝑅.  

Along 𝛼 , 𝛽  and 𝛾  directions, the displacement of 

middle surface are 𝑢 , 𝑣  and 𝑤 , respectively. The 

geometrical relations are given by Flugge’s shell theory 

(Flugge 1973, Zou and Foster 1995, Paliwal et al. 1995) 

𝜀𝛼 =
1

𝑅
(
𝜕𝑢

𝜕𝛼 
− 𝛾

𝜕2𝑤

𝜕𝛼2
)             (5) 

𝜀𝛽 =
1

𝑅
(
𝜕𝑣

𝜕𝛽 
+ 𝑤) −

𝛾

𝑅(1+𝛾)
(
𝜕2𝑤

𝜕𝛽2
+ 𝑤)       (6) 

𝜀𝛼𝛽 =
𝛾

𝑅(1+𝛾)
[
𝜕𝑢

𝜕𝛽
+

𝜕𝑣

𝜕𝛼
+ 2𝛾 (

𝜕𝑣

𝜕𝛼
−

𝜕2𝑤

𝜕𝛼𝜕𝛽
) + 𝛾2 (

𝜕𝑣

𝜕𝛼
−

𝜕2𝑤

𝜕𝛼𝜕𝛽
)]  

(7) 

The stress-strain relationships in dimensionless 

coordinates derived from Eq. (4) is as under (Gao and An 

2010) 

𝜎𝛼 − (𝑒𝑜𝑎)
2∇2𝜎𝛼 = 𝐸1(𝜀𝛼 + 𝜇1𝜀𝛽)/(1 − 𝜇1𝜇2)    (8) 

𝜎𝛽 − (𝑒𝑜𝑎)
2∇2𝜎𝛽 = 𝐸2(𝜀𝛽 + 𝜇2𝜀𝛼)/(1 − 𝜇1𝜇2)   (9) 

𝜏𝛼𝛽 − (𝑒𝑜𝑎)
2∇2𝜏𝛼𝛽 = 𝐺𝜀𝛼𝛽          (10) 

where 𝜎𝛼, 𝜎𝛽 and 𝜏𝛼𝛽 are normal and shear stresses, and 

𝜀𝛼 , 𝜀𝛽  and 𝜀𝛼𝛽  are respective strains; 𝐸1  and 𝐸2  are 

moduli of elasticity; Poisson’s ratios in the directions of 𝛼 

and 𝛽  are 𝜇2  and 𝜇1  respectively. G is modulus of 

rigidity or shear modulus. Also we have 𝐸1𝜇1 = 𝐸2𝜇2 and 

∇2= (𝜕2/𝜕𝛼2 + 𝜕2/𝜕𝛽2)/𝑅2  which is the Laplace 

operator in dimensionless coordinates. The element of tube 

in our coordinates is shown in Fig. 3, where (𝑁, 𝑆, 𝑄) are 

the stress resultants and (𝑀) is the moment. The thermal 

expansion causes pre-stress, which is neglected because the 

present temperature is considered as the reference 

temperature. We arrive at the dynamic equilibrium 

equations 

{
 
 

 
 

𝜕𝑁𝛼

𝜕𝛼
+

𝜕𝑆𝛽

𝜕𝛽
+ 𝜅 = 𝜌ℎ𝑅

𝜕2𝑢

𝜕𝑡2
 

 
𝜕𝑁𝛽

𝜕𝛽
+

𝜕𝑆𝛼

𝜕𝛼
+ 𝑄𝛽 = 𝜌ℎ𝑅

𝜕2𝑣

𝜕𝑡2

𝜕𝑄𝛼

𝜕𝛼
+

𝜕𝑄𝛽

𝜕𝛽
+ 𝑁𝛽 = 𝜌ℎ𝑅

𝜕2𝑤

𝜕𝑡2

          (11) 

{

𝜕𝑀𝛼𝛽

𝜕𝛼
+

𝜕𝑀𝛽

𝜕𝛽
− 𝑅𝑄𝛽 = 0

𝜕𝑀𝛽𝛼

𝜕𝛽
+

𝜕𝑀𝛼

𝜕𝛼
− 𝑅𝑄𝛼 = 0

            (12) 

where 𝜌 is the mass density. 

The resultants (𝑁, 𝑆, 𝑄) are derived from above set of 

integral equations using the stress components. 

(1 − (𝑒0𝑎)
2∇2) [

𝑁𝛼 , 𝑆𝛼 ,
𝑀𝛼 , 𝑀𝛼𝛽

] = ∫ [
𝜎𝛼 , 𝜏𝛼𝛽 ,

 𝑧 𝜎𝛼 , 𝑧 𝜏𝛼𝛽
]

ℎ
2

−
ℎ
2

(1 +
𝑧

𝑅
) 𝑑𝑧 

      (13) 

(1 − (𝑒0𝑎)
2∇2) [

𝑁𝛽 , 𝑆𝛽 ,

𝑀𝛽 , 𝑀𝛽𝛼
] = ∫ [

𝜎𝛽 , 𝜏𝛽𝛼 ,
𝑧 𝜎𝛽 , 𝑧 𝜏𝛽𝛼

]
ℎ

2

−
ℎ

2

𝑑𝑧   (14) 

(1 − (𝑒0𝑎)
2∇2)(𝑄𝛼 , 𝑄𝛽) = ∫ [𝜏𝛼𝑧 , 𝜏𝛽𝑧]

ℎ

2

−
ℎ

2

𝑑𝑧     (15) 

where ℎ is thickness of the shell. Above equations result in 

𝑁𝛼 − (𝑒𝑜𝑎)
2∇2𝑁𝛼 =

𝐾

𝑅
[
𝜕𝑢

𝜕𝛼
+ 𝜇1 (

𝜕𝑣

𝜕𝛽
+ 𝑤) − 𝑐2

𝜕2𝑤

𝜕𝛼2
] (16) 

𝑁𝛽 − (𝑒𝑜𝑎)
2∇2𝑁𝛽 =

𝐾𝑘1

𝑅
[
𝜕𝑣

𝜕𝛽
+ 𝜇2

𝜕𝑢

𝜕𝛼
+ 𝑤 + 𝑐2 (

𝜕2𝑤

𝜕𝛽2
+ 𝑤)]  

(17) 

𝑆𝛼 − (𝑒𝑜𝑎)
2∇2𝑆𝛼 =

𝐾𝑘2

𝑅
[
𝜕𝑢

𝜕𝛽
+

𝜕𝑣

𝜕𝛼
− 𝑐2 (

𝜕2𝑤

𝜕𝛼𝜕𝛽
−

𝜕𝑣

𝜕𝛼
)]  (18) 

𝑆𝛽 − (𝑒𝑜𝑎)
2∇2𝑆𝛽 =

𝐾𝑘2

𝑅
[
𝜕𝑢

𝜕𝛽
+

𝜕𝑣

𝜕𝛼
+ 𝑐2 (

𝜕2𝑤

𝜕𝛼𝜕𝛽
+

𝜕𝑣

𝜕𝛼
)]  (19) 

𝑀𝛼 − (𝑒𝑜𝑎)
2∇2𝑀𝛼 = −𝐾𝑐

2 [
𝜕𝑢

𝜕𝛼
+ 𝜇1

𝜕𝑣

𝜕𝛽
− (

𝜕2𝑤

𝜕𝛼2
+ 𝜇1

𝜕2𝑤

𝜕𝛽2
)]  

 (20) 

𝑀𝛽 − (𝑒𝑜𝑎)
2∇2𝑀𝛽 = 𝐾𝑘1𝑐

2 (
𝜕2𝑤

𝜕𝛽2
+ 𝑤 + 𝜇2

𝜕2𝑤

𝜕𝛼2
) (21) 
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𝑀𝛼𝛽 − (𝑒𝑜𝑎)
2∇2𝑀𝛼𝛽 = 2𝐾𝑘2𝑐

2 (
𝜕𝑣

𝜕𝛼
−

𝜕2𝑤

𝜕𝛼𝜕𝛽
)   (22) 

𝑀𝛽𝛼 − (𝑒𝑜𝑎)
2∇2𝑀𝛽𝛼 = 𝐾𝑘2𝑐

2 (
𝜕𝑢

𝜕𝛽
−

𝜕𝑣

𝜕𝛼
+ 2

𝜕2𝑤

𝜕𝛼𝜕𝛽
) (23) 

𝑄𝛼 − (𝑒𝑜𝑎)
2∇2𝑄𝛼 =

𝐾𝑐2

𝑅
[

𝜕2𝑢

𝜕𝛼2
− 𝑘2

𝜕2𝑢

𝜕𝛽2
+ (𝑘2 + 𝜇1)

𝜕2𝑣

𝜕𝛼𝜕𝛽
−

𝜕3𝑤

𝜕𝛼3
− (2𝑘2 + 𝜇1)

𝜕3𝑤

𝜕𝛼𝜕𝛽2
 

]  

  (24) 

𝑄𝛽 − (𝑒𝑜𝑎)
2∇2𝑄𝛽 =

𝐾𝑘1𝑐
2

𝑅
[

2
𝑘2

𝑘1

𝜕2𝑣

𝜕𝛼2
−

𝜕3𝑤

𝜕𝛽3
−

𝜕𝑤

𝜕𝛽
− (2

𝑘2

𝑘1
+ 𝜇2)

𝜕3𝑤

𝜕𝛼2𝜕𝛽
 
]  (25) 

where 𝐾 = 𝐸1ℎ/(1 − 𝜇1𝜇2) , 𝑘1 = 𝐸2/𝐸1 , 𝑘2 = 𝐺(1 −
𝜇1𝜇2)/𝐸1, 𝑐2 = ℎ𝑜

3/(12𝑅2ℎ). 
Using Kelvin model and Eqs. (11) and (12), we get 

Kelvin-like nonlocal orthotropic elastic shell model.  

The obtained model is as follows 

[
𝜕2

𝜕𝛼2
+ 𝑘2(1 + 𝑐

2)
𝜕2

𝜕𝛽2
] 𝑢 + [(𝜇1 + 𝑘2)

𝜕2

𝜕𝛼𝜕𝛽
] 𝑣 +

[6 +
𝜕

𝜕𝛼
+ 𝑐2 (𝑘2

𝜕3

𝜕𝛼𝜕𝛽2
−

𝜕3

𝜕𝛼3
)]𝑤 =

𝜌ℎ𝑅2[1−(𝑒𝑜𝑎)
2∇2]

𝐾

𝜕2𝑢

𝜕𝑡2
  

 (26) 

[(𝜇1 + 𝑘 2)
𝜕2

𝜕𝛼𝜕𝛽
 ] 𝑢 + [𝑘2(1 + 3𝑐

2)
𝜕2

𝜕𝛼2
+ 𝑘1

𝜕2

𝜕𝛽2
] 𝑣 +

[𝑘1
𝜕

𝜕𝛽
− 𝑐2(𝜇1 + 3𝑘2)

𝜕3

𝜕𝛼2𝜕𝛽
 ] 𝑤 =

𝜌ℎ𝑅2[1−(𝑒𝑜𝑎)
2∇2]

𝐾

𝜕2𝑣

𝜕𝑡2
   

  (27) 

[𝜇1
𝜕

𝜕𝛼
− 𝑐2 (

𝜕3

𝜕𝛼3
− 𝑘2

𝜕3

𝜕𝛼𝜕𝛽2
)] 𝑢 + [𝑘1

𝜕

𝜕𝛽
− 𝑐2(𝜇1 +

3𝑘2)
𝜕3

𝜕𝛼2𝜕𝛽
] 𝑣 + [(1 +

1

𝑐2
) 𝑘1 +

𝜕4

𝜕𝛼4
+ 𝑘1

𝜕4

𝜕𝛽4
+ 2𝑘1

𝜕2

𝜕𝛽2
+

(2𝜇1 + 4𝑘2)
𝜕4

𝜕𝛼2𝜕𝛽2
] 𝑐2𝑤 +

𝑅2

𝐾
(1 − (𝑒0𝑎)

2∇ 2) [𝐸𝑤 +

𝜂
𝜕𝑤

𝜕𝑡
] = −

𝜌ℎ𝑅2[1−(𝑒𝑜𝑎)
2∇2]

𝐾

𝜕2𝑤

𝜕𝑡2
                   (28) 

where 𝐾 =
E1h

1−μ1μ2
, medium has stiffness 𝐸 , and the 

viscosity of the medium is 𝜂 and the nonlocal parameter is 

ℑ=(𝑒𝑜𝑎)
2 . Two kinds of boundary conditions may be 

assumed while solving such problems. These three 

conditions are 

Clamped-clamped 

𝛼 = 𝛽 = 𝛾 =
𝜕𝛾

𝜕𝛼
= 0,  at  𝛼 = 0, 𝛼 = 𝐿/𝑅    (29) 

Clamped-free 

{
𝛼 = 𝛽 = 𝛾 =

𝜕𝛾

𝜕𝛼
= 0                                 at           𝛼 = 0

𝑁𝛼𝛼 = 𝑀𝛼𝛼 = 𝑁𝛼𝛽 = 𝑀𝛼𝛽=0                  at      α = 𝐿/𝑅
 (30) 

where 𝐿 is the length of CNTs. 

Using any combination of above three conditions we 

come close to nonlocal Flugge’s shell model. Above system 

of equations is the nonlocal orthotropic Kelvin-like shell 

model for CNTs. To understand the waves propagating in 

CNTs, we need to derive the dispersion relations. 

 

2.2 Application of wave propagation approach 
 

Here, we will discuss wave solutions for single-walled 

carbon nanotubes. Over the past several years vibration of 

Table 1 Comparison of Kelvin’s model CNT frequencies 

with Loy et al. (1999) 

L/R h/R Method 
N 

1 2 3 4 5 6 

20 0.01 

Loy et al. 
(1999) 

0.016102 0.009382 0.022105 0.042095 0.06801 0.09973 

Present 0.016101 0.009378 0.022103 0.042094 0.04209 0.09973 

 

Table 2 Kelvin’s model frequencies of clamped SWCNTs 

(h/R=0.05, L/R=2.5) 

M V N 
Heydarpour 

et al. (2014) 
Present 

0 

0.12 

7 0.6240 0.6228 

9 0.6240 0.6234 

11 0.6240 0.6239 

0.17 

7 0.8157 0.8143 

9 0.8157 0.8152 

11 0.8157 0.8155 

0.28 

7 0.8553 0.8541 

9 0.8553 0.8547 

11 0.8553 0.8550 

 

 

tube/shell and plate structures of various configurations and 

boundary conditions have been extensively studied 

(Hussain et al. 2018a, Hussain et al. 2018b, Hussain et al. 

2018c, Hussain and Naeem 2018b, Hussain et al. 2019a, 

Hussain et al. 2019b, Hussain et al. 2020a, Sehar et al. 

2020, Hussain et al. 2020b). 

The solutions of system of Eqs. (26)-(28) for 

axisymmetric waves is given by Wang and Gao (2016) 

{
 
 

 
 𝑢(𝛼, 𝑡) = 𝑈e𝑖𝑘 

(𝛼− 
𝜈𝑡

𝑅
)

𝑣(𝛼, 𝑡) = 𝑉e𝑖𝑘 
(𝛼− 

𝜈𝑡

𝑅
)

𝑤(𝛼, 𝑡) = 𝑊e𝑖𝑘 
(𝛼− 

𝜈𝑡

𝑅
)

            (31) 

where 𝑈, 𝑉 and 𝑊 are the amplitudes of waves along the 

direction of 𝑥 , 𝑦  and 𝑧  respectively, the dimensionless 

wave vector in the longitudinal direction is 𝑘 =
πmR

L
, in 

longitudinal direction m is the half axial wave number and 

𝜈 is the wave phase velocity.  

Substituting Eq. (31) in system of Eqs. (26)-(28) and 

simplifying, in matrix form, we get the following system 

[𝑀(1)(𝑘, 𝜈)]3×3 [
𝑈
𝑉
𝑊
] = [0 0 0]𝑇       (32) 

For the nontrivial solution of above equation, we have 

𝐷𝑒𝑡[𝑀(1)(𝑘, 𝜈)] = 0             (33) 

 

 

3. Results and discussion 
 

In this portion of writing, the significance of boundary 

conditions on the vibration behavior of single-walled CNT 

is investigated employing wave propagation approach. This 

study specifically scrutinizes the small scale effect in the 

vibration analysis of single-walled CNT. It is assumed that  
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the mass density of CNTs is 2300 kg/m3 (Gupta et al. 

2010), with the bending rigidity (EI) of (5.1122×10-9 nm) 

(Gupta et al. 2010, Swain et al. 2013). Moreover, 

distinguished values of inner tube radius together with 

nonlocal parameter signify the present non-local shell-based 

model to analyze frequency spectra. CNT is well known 

structure in shapes of zigzag and chiral, here the orthotropic 

vibration analysis is carried out subjected to two conditions 

C-C, C-F. For the convergence rate of CNT, the non-

dimensional frequency parameters enumerated in the 

current work, i.e., using nonlocal Kelvin’s model, are 

happened to be in a good consistency along with the so-

called exact results furnished (Loy et al. 1999), those were 

established by working out with the deformation theory 

provided in Table 1. 

The percentage difference is negligible as n=1, 3, 4 are 

0.006%, 0.01%, 0.002% and at n=2 by 0.0061% and present 

nonlocal Kelvin’s model result are lower than equivalent 

results executed by Loy et al. (1999). The frequency 

parameters for circumferential wave numbers n=5, 6 are 

same with the outcomes of Loy et al. (1999). The results are 

 

 

 

well matched as shown in Table 2 with the result of 

Heydarpour et al. (2014). The frequency values of zigzag 

(8, 0) SWCNTs at (𝔗=0.5, 1, 1.5, 2), when L/d (=1~10) are 

0.0358, 0.0297, 0.0242, 0.0179 and 3.5842, 2.5344, 2.0613, 

1.7921 as shown in the Fig. 4. As it is noted that by 

increasing the nonlocal parameter, the frequencies decrease. 

Similarly for zigzag (16, 0), the frequency values are 

0.4190, 0.2963, 0.2419, 0.2095 and 41.9000, 29.6278, 

24.1910, 20.9500 as shown in the Fig. 4. 

For this case, the frequency curves are much lower than 

that of above clamped-clamped CNTs. In deepness, to 

understand the vibration characteristics of carbon 

nanotubes, namely zigzag carbon nanotubes (9, 0), (16, 0), 

with bending rigidity, different nonlocal parameters and 

length-to-diameter ratios of 1~10 are considered and the 

results are discussed. Fig. 5 show the C-F frequencies of 

different zigzag indices with different nonlocal parameters. 

Next, the frequency values with C-F zigzag (9, 0) at 

(L/d, 𝔗)=(1, 0.5 & 2) are f (Hz)~0.0279, 0.0140 and at 

(L/d, 𝔗)=(10, 0.5 & 2) are f (Hz)~2.7905, 1.3952 as shown 

in the Fig. 5. For the same parameter with C-F zigzag (16,  
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Fig. 4 Aspect ratios against frequencies of C-C zigzag (a) (9, 0), (b) (16, 0) with 𝔗=0.5, 1, 1.5, 2
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Fig. 5 Aspect ratios against frequencies of C-F zigzag (a) (9, 0), (b) (16, 0) with 𝔗=0.5, 1, 1.5, 2
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0), the computed values are f (Hz)~36.6680, 18.3340 as 

shown in Fig. 5. It is again noted that the frequency peaks 

of C-C zigzag are greater than C-F zigzag with same 

indices. 

Figs. 4-5 show the variation of the frequency with 

zigzag indices (9, 0), and (16, 0) with different nonlocal p. 

Fig. 6, show that C-C chiral SWCNTs with (13, 6), (23, 

8) with different nonlocal parameters. When 𝔗=2 then the 

frequency peaks are 0.1387, 0.5547, 1.2481, 2.2188, 

3.4669, 4.9923, 6.7951, 8.8752, 11.2326, 13.8675 are 

shown in the Fig. 6. In Fig. 6, for C-C (=23, 8), with same 

parameters the 1st ten frequencies at 𝔗=0.5 and 2 are 

2.6958, 10.7833, 26.2624, 43.1331, 67.3955, 97.0496, 

132.0953, 172.5326, 218.3616, 269.5822 and 1.3472, 

5.3886, 12.1244, 21.5566, 33.6788, 48.4975, 66.0105, 

86.2178, 109.1808, 134.7152. To illustrates the influence of 

different nonlocal parameter on the natural frequencies for 

clamped free chiral SWCNTs with indices (13, 6) and (23,  

 

 

 

8) based on nonlocal Kelvin’s model as shown in Fig. 7. 

These figures indicated that, obviously, the C-C FNF value 

is higher than that of C-F value of chiral SWCNTs. As, it is 

noted that the natural frequency decreases with 
increasing non-local parameters (𝔗=0.5, 1, 1.5, 2). It has 

been observed that from zigzag and chiral SWCNTs case 

for both C-C and C-F, that the frequency patterns of these 

nanotubes are clearly visible at peaks. In comparison of 

frequencies with zigzag and chiral tubes we get a new 

phenomenon according to the structure of the tube. Due to 

easy deformation in the cross-section of tube, the 

frequencies are totally different of zigzag and chiral tubes. 

Sometimes, when cross section is deformed but not remains 

circular then different irregular circumferential waveforms, 
torsional and longitudinal modes can be observed. It is 

predicted that cross section have no deformation in 
zigzag and chiral tubes. The frequency values for 
zigzag tubes with four different nonlocal parameters  
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Fig. 6 Aspect ratios against frequencies of C-C chiral (a) (13, 6), (b) (23, 8) frequencies versus aspect ratio with 𝔗=0.5, 

1, 1.5, 2
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Fig. 7 Aspect ratios against frequencies of C-F chiral (a) (13, 6), (b) (23, 8) with 𝔗=0.5, 1, 1.5, 2
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are slightly greater than the corresponding values of 

four nonlocal parameters in chiral case. Therefore, the 

longitudinal and flexural rigidity of the chiral CNTs are 

expected to be lower than those of the zigzag CNTs. Figs. 

8-9, show the natural frequency behavior of the calculated 

SWCNT system under bending rigidity (EI). These figures 

show the frequencies of zigzag (9, 0), (16, 0) and (21, 0) 

SWCNTs, computed with nonlocal parameter 𝔗=1 based 

on Kelvin’s model. It is evident from these figures that the 

FNF C-C, C-F=(9, 0), (16, 0) values are lower than C-C, C-

F=(21, 0). As indicated by the figures that the fundamental 

frequencies increases with the increase of aspect ratio and 

its value increases with the bending rigidity. 

Figs. 10-11 show the natural frequency behavior of the 

calculated SWCNT system under bending rigidity (EI) 

parameters. A trend of increasing frequencies of indices 

with bending rigidity is as (26, 11)>(23, 8)>(13, 6). 

 

 

 

4. Conclusions 
 

A comprehensive estimation regarding nonlocal 

Kelvin’s model based on wave propagation approach has 

been considered for vibrational behavior of the SWCNTs 

with distinct nonlocal parameters. Vibrations of SWCNTs 

for zigzag indices (9, 0), (16, 0), (21, 0) and chiral indices 

(13, 6), (23, 8), (26, 11) have been analyzed. We developed 

a new model from the combination of orthotropic nonlocal 

Kevin’s model with wave propagation approach. It is noted 

that the frequencies of C-C is higher than that of C-F. Also, 

Kelvin’s theory has been utilized for first time to consider 

the effects of bending rigidity on SWCNTs vibration. This 

modified model has less complication and has been 

compared with the earlier methods. The computational 

results indicated that there is inverse relation of nonlocal 

parameters and frequencies. The frequency curves of 
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Fig. 8 Aspect ratios against frequencies of C-C (9, 0), (16, 0) and (21, 0) zigzag SWCNTs with (a) EI=5.1122e-9 nm (b) 

EI=7.2617e-9 nm and 𝔗=1
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Fig. 9 Aspect ratios against frequencies of C-F (9, 0), (16, 0) and (21, 0) zigzag SWCNTs with (a) EI=5.1122e-9 nm (b) 

EI=7.2617e-9 nm and 𝔗=1
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clamped-free are lower throughout the computation than the 

clamped-clamped carbon nanotube. The obtained results 

show that by increasing aspect ratio of carbon nanotubes, 

frequency value increases at all boundary conditions. In our 

measurement we indicated that with higher aspect ratio, the 

boundary conditions have a momentous influence on 

vibration of CNT. It can be concluded that frequencies 

would increase by increasing of the bending rigidity. This 

means that smaller effects play an important role in 

predicting SWCNT frequencies, which local theory cannot 

capture. For future concerns, the present model can be used 

for viscoelastic vibration of CNTs. 
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