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1. Introduction 
 

Over the last three decades, there has been an increasing 

understanding of the unique features of advanced FRP 

composites among civil engineers and the construction 

industry. Today, designers opt for fibrous composites for a 

range of reasons such as low weight, high stiffness and 

strength, electrical conductivity (or nonconductivity), low 

thermal expansion, low/high rate of heat transfer, corrosion 

resistance, longer fatigue life, optimal design, reduced 

maintenance, retaining properties at high temperatures, etc. 

(Herakovich 1998). The applications will expand even 

faster as better and more economical composites are 

introduced, and as more engineers become knowledgeable 

in the analysis, design, and fabrication of such composites 

(Herakovich 1998). Considering the fact that monolithic 

metals and manufactured alloys are not sufficient for the 

present advanced technologies, one can meet the 

performance requirements solely by combining several 

materials together. This leaves composites as the only 

materials to satisfy such demands (Kaw 2006). In many 

cases, the strengthening of concrete structures seems to be 

essential owing to different reasons including design or 

construction errors, change in structural application, steel 

corrosion, concrete chemical degradation, modification of 

codes and standards, and structural damage caused by 
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natural disasters or accidents. As a result, FRP materials 

have been introduced as an acceptable implement in the 

retrofitting, repairing and enhancing the service life of 

existing structures as well as in creating new ones. 

Moreover, a wide range of methods has been developed in 

joining structural parts together, two of which are the 

mechanical fastening and adhesive bonding, where the latter 

excels in different aspects. Researches have revealed that 

externally bonding of FRP sheet with epoxy resin is an 

efficient procedure for strengthening and repairing 

reinforced concrete (RC) beams under flexural loads 

(Hashemi et al. 2008). 

It has been well established that the adhesively bonded 

members are lighter, more fatigue resistant, easily handled, 

and rapidly implemented (Pattabhi et al. 2012). Besides, in 

this method, the area of interest is strengthened without 

change in the structure’s stiffness or disturbance of the 

architecture; thus the use of advanced FRP composites 

applied to structural members as externally bonded 

reinforcement has come to prominence in the retrofitting 

technology (Karbhari and Abanilla 2007).  

 Researches in the recent years represent the fact that 

obtaining higher load-bearing capacity of concrete elements 

retrofitted with FRP composites, would be unattainable due 

to some parametric effects embracing FRP debonding 

failure prior to reaching the ultimate stresses. This, in turn, 

is greatly affected by the high interfacial stresses near the 

free edges of such elements. However, concrete crushing, 

FRP rupture, shear failure (Hosseini and Mostofinejad 

2013), concrete cover separation failure (Smith and Teng 

2002a, Smith and Teng 2002b, Smith and Teng 2003), plate 

end interfacial debonding (Smith and Teng 2002a, Smith 

and Teng 2002b, Oehlers and Moran 1990), critical 
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diagonal crack debonding (CDC) (Ali et al. 2001, Ali et al. 

2002, Oehlers et al. 2003) and interfacial debonding due to 

intermediate crack (IC) (Teng et al. 2003) are the numerous 

modes of failure in externally strengthened concrete 

members which make the joint analysis more complicated. 

In this context, Dogan and Anil (2010) employed a 

numerical finite element model to find the stress 

distribution, load-displacement behavior, and CFRP 

bonding length as well as the strain field along concrete-

CFRP interface. They then reported a good agreement 

between the modelling results and those obtained from 

experiments. 
High interfacial stresses along the bondline, particularly 

close to edges, exist due to mismatch in Poisson’s ratios and 

coefficients of mutual influence of adherents. Therefore, a 

careful study on the interfacial properties of concrete joints 

strengthened with FRP, as well as the analysis of affecting 

parameters would be indispensable. Considerable attention 

has been paid by the research community to understand the 

mechanical behavior and durability of such joints, either 

analytically or numerically. Puppo and Evensen (1970) 

proposed a finite width composite laminate solution based 

on a model with anisotropic lamina and isotropic shear 

layers with interlaminar normal stress being neglected. 

Pagano (Pagano 1978a, Pagano 1978b) developed an 

appropriate theory based on Reissner's variational principle. 

The stresses were assumed to be in-plane and there was no 

stress singularity in the formulation. Pipes and Pagano 

(1974) presented an approximate elasticity solution to 

calculate the stress fields at straight free-edges of composite 

laminates. Tang (1975), Tang and Levy (1975) developed a 

boundary layer theory to determine such stresses. 

Kassapoglou and Lagace (1986, 1987), outlined a simple 

technique in the analysis of symmetrical laminates. They 

used the principal of minimum complementary energy 

method for laminates under tension/compression loadings. 

The approach was later extended by Kassapoglou (1990) for 

asymmetric laminates under combined in-plane loadings. 

However, it didn’t model the through-thickness mismatch in 

Poisson’s ratios and the coefficients of mutual influence of 

the adjoining layers. Wu and Dzenis (2005) experimentally 

determined the edge delamination of FRP/epoxy composite 

via stress-function variational approach. Wu and Jenson 

(2011) proposed a stress-function variational method which 

could accurately predict interfacial stresses. In another 

work, Wu and Jenson (2014) reported a semi-analytic 

approach to determine the interfacial shear and normal 

stresses in a steel-aluminum bimaterial bonded joint under 

mechanical and thermal loads. Touati et al. (2015) 

employed an analytical approach in finding adhesive 

stresses in a concrete beam bonded with the FRP plate, 

considering the effect of adherend shear deformations. 

Khan et al. (2017) numerically investigated shear behavior 

of RC beams strengthened with CFRP sheets and reported 

that proper modelling of bond behavior of interfaces is of 

significant importance in the shear behavior of such beams. 

Fracture of CFRP-concrete composite bonded interfaces 

was recently considered by Lin et al. (2017). The presented 

fracture models demonstrated that the fracture behavior 

depends on the relative interfacial cohesive strength, as well 

as the concrete tensile strength.  

In addition to the aforementioned efforts, extensive 

research has led to the existing design guidelines to be 

published worldwide such as the American Concrete 

Institute (ACI) 2008; International Federation for Structural 

Concrete (fib) 2001; Japan Society of Civil Engineers 

(JSCE) 2001; National Council of Research (CNR) 2004, 

and Concrete Society 2004. 

 

1.1 Research significance  
 

A good number of researches have been conducted so 

far to investigate the stress fields at the bondline, however, 

these models have been oversimplified in different aspects. 

Firstly, some are limited to the prediction of interlaminar 

stresses at the body of laminated FRP-composite plates and 

shells, rather than considering interfacial stresses on the 

concrete-FRP surface (delamination rather than debonding); 

whereas proper selection of strengthening materials can 

considerably postpone or totally eliminate delamination 

failure. Secondly, they do not precisely satisfy the boundary 

conditions at free edges of the joints. While free edges of 

bonded layers are supposed to be shear-free, these models 

declare that the maximum shear stresses happen at free edge 

of the bondline. The present study extends the recently 

developed (Wu and Jenson 2014) stress-function variational 

method in order to accurately and explicitly determine the 

stress fields in CFRP-concrete interface. In addition to 

accuracy, the proposed approach has two further 

advantages: not only does it satisfy the shear-free conditions 

of free edges of the bondline, it can also be easily 

generalized to joints with different geometries and loading 

configurations, providing a framework for further 

investigations. 

 

 

2. Problem formulation 
 

2.1 Overview 
 

In this section, a systematic extension of the stress-

function variational approach is clarified in order to express 

the interfacial shear and normal stresses in a concrete 

substrate reinforced with a CFRP laminate composite cover. 

The proposed stress fields will be validated via a robust, 

efficient MATLAB code, based on the fundamentals of 

lamination theory and through comparison with the existing 

analytic models in the literature as well as the FEM. To be 

precise, the interfacial stress fields are in 3D state at free 

edges of the bondline. However, to simplify the process of 

analysis, the joint is considered to be in plane-stress state. 

 

2.2 Model formulation 
 
The configuration of a simply supported concrete prism 

strengthened with CFRP-composite cover along with 
interfacial shear and normal stress distributions are shown 
in Fig. 1 (a)-(b). The joint consists of cover layer (CFRP-
composite laminate) and the substrate layer (concrete 
prism) from top to bottom with a uniform width b and an 

overlap bonding length L. Thickness of the CFRP-
composite laminate and concrete prism are h1 and h2,  
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(a) Strengthened joint consisting of CFRP-composite 

laminate and concrete substrate from top to bottom 

 
(b) Distribution of interfacial shear and normal stresses 

along the bondline 

Fig. 1 The configuration of bonded joint 

 

 

respectively. The thickness of CFRP-composite layers are 

considered to be equal. The coordinate system is considered 

from the symmetric mid-span of the joint; the x-axis is 

selected in the centroid of cross sections of each adherent 

along the respective layer axis; y1 and y2 are the vertical 

coordinates of CFRP-composite laminate and concrete 

prism, respectively. The stacking sequence of plies in 

CFRP-composite laminate is [0/90], which denotes fiber 

orientation of 0 and 90 degrees with respect to x-axis from 

bottom to top. The external loading can include axial 

tension, bending moment, shear traction, temperature 

change, hygroscopic loading or a combination of them. The 

joint under study, is subjected to a uniform tensile traction 

P0 at both ends of concrete substrate and far enough from 

the bondline, so that the effects of stress concentrations can 

be ignored. Since the joint is not laterally symmetric, lateral 

deflection is probable in addition to in-plane elongation. 

The concrete prism is considered to be isotropic and the 

CFRP-composite layers are treated as transversely isotropic. 

It is assumed that no slip takes place between layers. 

 
2.3 Static equations of equilibrium 
 

Fig. 2 (a)-(b) illustrates typical representative elements 

of CFRP cover and concrete substrate together with stress 

resultants, which comply the conventional sign standards 

(Beer et al. 2009). For the representative element of 

strengthening cover (Fig. 2(a)), the static equations of 

equilibrium read 

∑𝐹𝑥 = 0:
dN1
dx

= −τb (1) 

∑𝐹𝑦 = 0:
dQ1
dx

= −σb (2) 

∑𝑀 = 0:
dM1

dx
= Q1 −

τh1b

2
 (3) 

Meanwhile, the relevant equilibrium equations for the 

representative segmental element of concrete substrate are 

∑𝐹𝑥 = 0:
dN2
dx

= τb (4) 

 

 
(a) CFRP composite cover 

 
(b) Concrete substrate layer 

Fig. 2 Free-body diagrams of representative segmental 

elements of the adherents 

 

 

∑𝐹𝑦 = 0:
dQ2
dx

= σb (5) 

∑𝑀 = 0:
dM2

dx
= Q2 −

τh2b

2
 (6) 

 

2.4 Stress resultants 
 

Two unknown stress functions are introduced as 𝜏 =
𝜓(𝑥) and  𝜎 = 𝜙(𝑥) to represent the interfacial normal 

and shear stresses. Since the joint is symmetric with respect 

to y-axis, the shear stress function 𝜓(𝑥) and the normal 

stress function 𝜙(𝑥) are to be odd and even functions, 

respectively. 

Furthermore, the x-axis is aligned horizontally, so that 

the two unknowns are expressed as functions of variable 𝑥. 

The shear stress at free edges of the bondline, 𝑥 = −L 2⁄  

and 𝑥 = +𝐿 2⁄  requires that the interfacial shear stress 

function be zero.  

By integrating of Eq. (1) regarding 𝑥 from 𝑥 = −𝐿 2⁄  

and applying the physical condition at 𝑥 = −𝐿 2⁄ , i.e., 

𝑁1(−𝐿/2)  =  0, the normal stress resultant is given by 

N1(x) = −b ∫ ψ(ξ)

x

−L/2

dξ (7) 

At the same time, integration of the Eqs. (2)-(3) with 

respect to 𝑥  from 𝑥 = −𝐿 2⁄  along with applying the 

associated boundary conditions, i.e., 𝑄1(−𝐿/2)  =  0, and 
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𝑀1(−𝐿/2)  =  0, give 

Q1(x) = −b ∫ ϕ(ξ)dξ

x

−L/2

 (8) 

M1(x) = −b ∫ ∫ ϕ(η)dηdξ −
h1b

2
∫ ψ(ξ)dξ

x

−L/2

ξ

−L/2

x

−L/2

 (9) 

The same trend is used for the stress resultants of 

concrete substrate by integration of the Eqs. (4)-(6) with 

respect to 𝑥 from 𝑥 = −𝐿 2⁄  and taking into account the 

relevant boundary conditions, i.e., 𝑁2(−𝐿/2)  =  𝑃0𝑏ℎ2 , 

𝑄2(−𝐿/2)  =  0  and 𝑀2(−𝐿/2)  =  0 , for the traction, 

shear and moment, respectively. The axial traction 𝑁2(𝑥), 
shear force 𝑄2(𝑥) and bending moment 𝑀2(𝑥), can be 

simply computed as 

N2(x) = P0bh2 + b ∫ ψ(ξ)

x

−L/2

dξ (10) 

Q2(x) = b ∫ ϕ(ξ)dξ

x

−L/2

 (11) 

M2(x) = b ∫ ∫ ϕ(η)dηdξ −
h2b

2
∫ ψ(ξ)dξ

x

−L/2

ξ

−L/2

x

−L/2

 (12) 

In order to correlate the interfacial shear 𝜓(𝑥)  and 

normal 𝜙(𝑥) stress functions along the interface, as well 

as to simplify the calculations, the deformation 

compatibility is used in a way that the radii of curvature of 

CFRP-composite laminate and the concrete substrate layer 

are assumed to be approximately the same 

1

ρ1
=
1

ρ2
≡
M1

E1I1
=
M2

E2I2
 (13) 

where 𝐼1 =
1
12⁄ 𝑏ℎ1

3 and 𝐼2 =
1
12⁄ 𝑏ℎ2

3 are moments 

of inertia of CFRP laminate and concrete layer, respectively. 

Hence, substituting from (9) and (12) into (13), it yields 

−
E2
E1
(
h2
h1
)
3

[
 
 
 
∫ ∫ϕ(η)dηdξ −

h1
2
∫ψ(ξ)dξ

x

−
L
2

ξ

−
L
2

x

−
L
2 ]

 
 
 
 

= ∫ ∫ϕ(η)dηd −
h2
2
∫ψ(ξ)dξ

x

−
L
2

ξ

−
L
2

x

−
L
2

 

 

(14) 

By performing a differentiation of Eq. (14) and defining 

the parameters as 𝑒21 = 𝐸2 𝐸1⁄ , ℎ21 = ℎ2 ℎ1⁄  and η0 =

𝑒21ℎ21
3 + 1 (𝑒21ℎ21

2 − 1)⁄ , Eq. (14) can be reduced to 

ψ(x) = −2
η0
h2

∫ ϕ(ξ)dξ

x

−L/2

 (15) 

Accordingly, the bending moments in Eqs. (9)-(12) 

become 

M1(x) = −
h1b

2
(1 − η0

−1h21) ∫ψ(ξ)dξ

x

−
L
2

 (16) 

M2(x) = −
h2b

2
(1 + η0

−1) ∫ψ(ξ)dξ

x

−
L
2

 (17) 

 

2.5 Stress components 
 

According to conventional Euler-Bernoulli beam 

concept, axial normal stress of the CFRP-composite 

laminate is as follows 

σxx
(1)
=
N1
h1b

−
M1y1
I1

= [−
1

h1
+
6y1

h1
2
(1 − η0

−1h21)] ∫ψ(ξ)dξ

x

−
L
2

 (18) 

Besides, integrating the 2D static equilibrium equation  

∂σxx
(1)

∂x
+
∂τy1x

(1)

∂y1
= 0 (19) 

with respect to 𝑦1 from an arbitrary point to the top surface 

𝑦1 = ℎ1 2⁄  and considering the physical condition 

𝜏𝑦1𝑥
(1) (ℎ1 2⁄ ) = 0, the shear stress 𝜏𝑦1𝑥

(1)
= 𝜏𝑥𝑦1

(1)
 of the CFRP 

cover layer is 

τy1x
(1)

= [−
1

h1
(
h1
2
− y1) +

3

h1
2 (
h1
2

4
− 𝑦1

2) 

(1 − η0
−1h21)]ψ(x) 

(20) 

In addition, the normal stress 𝜎𝑦𝑦
(1)

 of the CFRP-

composite laminate is expressed based on the equilibrium 

equation  

∂σyy
(1)

∂y1
+
∂τxy1

(1)

∂x
= 0 (21) 

relative to 𝑦1   from the upper face 𝑦1 = ℎ1 2⁄  which 

reads  

σyy
(1)
= −[

1

h1
(
h1
2
− (

h1
2

8
−
y1
2

2
)) 

−
3

h1
2 (
h1
2

4
− (

h1
3

24
−
y1
3

3
)) (1 − η0

−1h21)]ψ′(x) 

(22) 

Schematic of the CFRP laminae together with induced 

stresses, and global and local axes are depicted in Fig. 3. 

Given the conventional Euler-Bernoulli beam concept, 

axial normal stress of the concrete substrate must be 

expressed as  

σxx
(2)
= P0 + [

1

h2
+
6y2

h2
2
(1 + η0

−1)] ∫ψ(ξ)dξ

x

−
L
2

 (23) 

Integration of the 2D static equilibrium equation relative 

to 𝑦2 from a particular point to the upper face 𝑦2 = ℎ2 2⁄  

and adopting the associated boundary condition 

𝜏𝑦2𝑥
(2) (−ℎ1 2⁄ ) = 0 writes 
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τy2x
(2)

= − [
1

h2
(y2 +

h2
2
) +

3

h2
2 (y2

2 −
h2
2

4
) 

1 + η0
−1h21] ψ(x) 

(24) 

Moreover, the normal stress, σyy
(2)

 of the concrete 

substrate layer is expressed by the same procedure which 

reads 

σyy
(2)
= {

1

h2
[
1

2
(y2

2 −
h2
2

4
) +

h2
2
(y2 +

h2
2
)] + 

3

h2
2 [
1

3
(y2

3 −
h2
3

8
) −

h2
2

4
(y2 +

h2
2
)] (1 + η0

−1h21)}ψ′(x) 

(25) 

in which the boundary condition 𝜎𝑦𝑦
(2)(−ℎ2 2⁄ ) = 0  has 

been used. 

 

2.6 Governing equation of the stress functions 
 

The entire strain energy of the CFRP-concrete joint can 

be determined by integrating the strain energy density (per 

unit length) relative to 𝑥 from 𝑥 = −𝐿 2⁄  to 𝑥 = +𝐿 2⁄ . 

This can be seen to be given by 

U = b ∫ ∫ {
1

2
[σxx
(1)
εxx
(1)
+ σyy

(1)
εyy
(1)
] +

1 + ν1
E1

(τy1x
(1)
)
2
} dx dy1

h1 2⁄

−h1 2⁄

L
2

−
L
2

 

+b ∫ ∫ {
1

2
[σxx
(2)
εxx
(2)
+ σyy

(2)
εyy
(2)
] +

1 + ν2
E2

(τy2x
(2)
)
2
} dx dy2

h2 2⁄

−h2 2⁄

L
2

−
L
2

 

 

(26) 

In Eq. (26), εxx
(1)

 and εxx
(2)

 are the normal strains of 

CFRP-composite laminate and concrete substrate layer 

respectively, which are aligned with x-direction. For the 

transversely isotropic CFRP-composite laminate it writes 

εxx
(1) = S̅11σxx

(1) + S̅12σyy
(1)

 (27) 

where 𝑆𝑖̅𝑗  expressions are terms of transformed 

compliance matrix, which is the inverse of transformed 

reduced stiffness matrix; these expressions are functions of 

the compliance coefficients 𝑆𝑖𝑗 , and the fiber orientation, 𝜃. 

Therefore, it reads 

S̅11 = m
4S11 +m

2n2(2S12 + S66) + n
2S22 (28) 

S̅12 = (m
4 + n4)S12 +m

2n2(S11 + S22 − S66) (29) 

where m and n are defined as m=cos(θ) and n=sin(θ) and 𝜃,  

 

 

in degrees, is the angle between the x-axis and the direction 

of fibers in CFRP-composite laminate. Moreover 

S11 =
1

E1
;     S12 = −

ν12

E2
;     S22 =

1

E2
;     S66 =

1

G12
  (30) 

are the individual compliance coefficients in terms of 

engineering constants. The Eqs. (28)-(29) can also be 

expressed in terms of engineering constants of the CFRP-

composite laminate. Then the results are  

S̅11 = [m
4 +m2n2 (−2ν12 +

E1

G12
) + n4

E1

E2
] (

1

E1
)  (31) 

S̅12 = [m
2n2 (1 +

E1

E2
−

E1

G12
) − (m4 + n4)ν12] (

1

E1
)  (32) 

Substitution of the definitions (31) and (32) into Eq. 

(27) gives 

𝜀𝑥𝑥
(1)
= [

𝑚4

𝐸1
(1) +𝑚

2𝑛2 (−2
𝜈21
(1)

𝐸2
(1) +

1

𝐺12
(1)) +

𝑛4

𝐸2
(1)] 𝜎𝑥𝑥

(1)
+

[𝑚2𝑛2 (
1

𝐸1
(1) +

1

𝐸2
(1) −

1

𝐺12
(1)) + (𝑚

4 + 𝑛4)
−𝜈21

(1)

𝐸2
(1) ] 𝜎𝑦𝑦

(1)
  

(33) 

As for the isotropic concrete substrate, the normal strain 

is 

εxx
(2)
=

σxx
(2)

E(2)
− ν(2)

σyy
(2)

E(2)
  (34) 

Likewise, the normal strain of CFRP-composite 

laminate, 𝜀𝑦𝑦
(1)

 along y-axis is 

εyy
(1)
= S̅12σxx

(1)
+ S̅22σyy

(1)
  (35) 

where  

S̅22 = n
4S11 +m

2n2(2S12 + S66) + m
2S22  (36) 

In order to express Eq. (36) in engineering constants it 

writes 

S̅22 = [n
4 +m2n2 (−2ν12 +

E1

G12
) + m4 E1

E2
] (

1

E1
)  (37) 

Employing Eqs. (32)-(37) into Eq. (35), it can be written 

εyy
(1) = [m2n2 (

1

E1
(1) +

1

E2
(1) −

1

G12
(1)) − (m

4 +

n4) (
ν21
(1)

E2
(1))] σxx

(1) + [
n4

E1
(1) +m

2n2 (−2
ν21
(1)

E2
(1) +

1

G12
(1)) +

m4

E2
(1)] σyy

(1)
  

(38) 

and the normal strain of concrete substrate layer, 𝜀𝑦𝑦
(2)

 is 

εyy
(2) =

σyy
(2)

E(2)
− ν(2)

σxx
(2)

E(2)
  

(39) 

 

Fig. 3 Schematic of the laminae 
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The aforementioned complementary strain energy is a 

functional with respect to the unknown interfacial stress 

function 𝜓(𝑥).  

Based on the theorem of minimum complementary 

strain energy, the complementary strain energy of the joint 

regarding the interfacial stress function 𝜓(𝑥), is at the 

static equilibrium such that 𝛿𝑈 = 0 , where 𝛿  is the 

mathematical variational sign with respect to the unknown 

𝜓(𝑥). Using the stress resultants, i.e., Eqs. (18), (20), (22), 

(23), (24) and (25) in Eq. (26), and with setting it equal to 

zero, yields a 4th-order ordinary differential equation with 

respect to ψ(x) as 

Ψ(IV)(ξ) − 2pΨ"(ξ) + q2Ψ(ξ) + t = 0  (40) 

In Eq. (40) 

Ψ(ξ) = Ψ(
x

h1
) = −(

1

P0h1
) ∫ ψ(x) dx

x

 −L/2
  (41) 

is a dimensionless stress function; the coefficients 𝑝 =

𝐵 −2𝐴⁄ , 𝑞 = √𝐶 𝐴⁄  and 𝑡 = 𝐷 𝐴⁄  are related to the 

properties of the joint. Moreover, each of the coefficients A, 

B, C and D are in turn solved by using an efficient code 

produced by MATLAB.  

Mathematically, when 𝑞 > 𝑝, the solution to Eq. (40) 

gives 

Ψ(ξ) = C1 cosh(μξ) cos(ωξ) +
C2 sinh(μξ) sin(ωξ) + t q

2⁄   
(42) 

where 𝜔 = √(𝑞 − 𝑝) 2⁄  ; 𝜇 = √(𝑝 + 𝑞) 2⁄  and C1 and 

C2 are constants. By applying the shear and axial traction-

free boundary conditions at 𝑥 = ±𝐿 2⁄ , C1 and C2 are 

obtained and therefore 𝜓(𝑥) gives  

ψ(x) = −P0h1
dΨ(ξ)

dx
= −P0[(C1μ +

C2ω) sinh(μx h1⁄ )cos(ωx h1⁄ ) +  (−C1ω +
C2μ) cosh(μx h1⁄ ) sin(ωx h1⁄ )]  

(43) 

In addition, if 𝑝 > 𝑞, the answer of Eq. (40) yields 

Ψ(ξ) = C1 cosh(μξ) + C2 cosh(ωξ) + t q
2⁄   (44) 

where 𝜔 = √𝑝 − √𝑝2 − 𝑞2 ; 𝜇 = √𝑝 + √𝑝2 − 𝑞2 and C1 

as well as C2 are two constants. By plugging the shear and 

axial traction-free boundary conditions at 𝑥 = ±𝐿 2⁄ , C1 

and C2 are derived and 𝜓(𝑥) is organized as 

ψ(x) = −P0h1
dΨ(ξ)

dx
= −P0[C1μ sinh(μx h1⁄ ) +

C2ωsinh(ωx h1⁄ )]  
(45) 

Correspondingly, the interfacial normal stress 𝜙(𝑥) , 

which was related to 𝜓(𝑥) through Eq. (15) can be defined 

as 

ϕ(x) = −
h2

2η0
ψ′(x)  (46) 

 

 

3. Determining the interfacial stress fields through 
lamination theory 

 

In this part, the principles of lamination theory applied 

in a computational MATLAB code have been employed for 

finding the interfacial stresses of the joint. The code 

includes all the mechanical and geometric properties of 

layers in addition to the external loadings of the joint, 

combined with the efficient algorithms offered by 

MATLAB software. The method is based on the lamination 

theory approach (Herakovich 1998) which describes the 

linear elastic response of laminated composites. Individual 

layer properties can be isotropic, orthotropic, or 

transversely isotropic and in a state of plane stress. In order 

to develop the stress-strain relationship of the joint layers, 

2D constitutive equation for each layer has to be formed as 

[

σx
σy
τxy
] = [

Q̅11 Q̅12 Q̅16
Q̅21 Q̅22 Q̅26
Q̅61 Q̅62 Q̅66

] [

εx
εy
γxy
]  (47) 

where 𝑄̅𝑖𝑗  are the transformed reduced stiffness 

coefficients. The [𝑄̅] matrix can be expressed as  

[Q̅] = [T]−1[Q][R][T][R]−1  (48) 

in which [𝑇] is termed the transformation matrix and is 

defined as  

[T] = [
cos2 θ sin2 θ 2 sin θ cos θ
sin2 θ cos2 θ −2 sin θ cos θ

−sin θ cos θ sin θ cos θ cos2 θ − sin2 θ

]  (49) 

and [𝑅]  is the Reuter matrix. The inverse of the 

compliance matrix is [𝑄], the stiffness matrix, i.e., [𝑄] =
[𝑆]−1 . The compliance matrix [𝑆], can be expressed in 

terms of engineering constants of the material which writes 

[S] = [

S11 S12 S16
S21 S22 S26
S61 S62 S66

] =

[
 
 
 
 1 E1⁄ −ν12

E1
⁄ 0

−ν12
E1
⁄ 1 E2⁄ 0

0 0 1
G12
⁄ ]

 
 
 
 

  

(50) 

To determine the strains in Eq. (47), it reads 

{

εx
εy
γxy
} = {

ε0x
ε0y

γ0xy

} + z {

κx
κy
κxy
}  (51) 

Eq. (51) expresses the total strains 𝜀, at any z-location of 

the laminate, in terms of midplane strains 𝜀0 , and the 

curvatures 𝜅; z is the point of interest at which stresses and 

strains are calculated and is measured from the midplane. It 

is comprehended that the total strains are the sum of 

midplane strains and the strains associated with curvature, 

which is the fundamental equation of lamination theory. The 

midplane strains and curvatures can be considered using the 

equation 

{
  
 

  
 
ε0x
ε0y

γ0xy
κx
κy
κxy }

  
 

  
 

= [
[A] [B]

[B] [D]
]

{
  
 

  
 
Nx
Ny
Nxy
Mx

My

Mxy}
  
 

  
 

 (52) 
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(a) Forces on the laminate 

 
(b) Moments on the laminate 

Fig. 4 Schematic of the actions 

 

 

where [𝐴] , [𝐵]  and [𝐷]  matrices are termed the 

extensional, coupling and bending stiffness matrices, 

respectively, and are defined as 

{
 

 
𝐴𝑖𝑗 = ∑ [𝑄̅𝑖𝑗]𝑘𝑡𝑘

𝑛
𝑘=1                     𝑖 = 1,2,6

𝐵𝑖𝑗 = 1 2⁄ ∑ [𝑄̅𝑖𝑗]𝑘𝑡
2
𝑘

𝑛
𝑘=1          𝑖 = 1,2,6

𝐷𝑖𝑗 = 1 3⁄ ∑ [𝑄̅𝑖𝑗]𝑘𝑡
3
𝑘

𝑛
𝑘=1           𝑖 = 1,2,6

  (53) 

where 𝑡𝑘 is the thickness of k-th layer. The resulting forces 

and moments are expressed as follows. Nx and Ny are 

normal forces per unit length; Nxy is the shear force per unit 

length; Mx and My are bending moments per unit length and 

Mxy is the twisting moment per unit length. Fig. 4 (a)-(b) 

illustrates the in-plane resultant forces and moments per 

unit length, respectively.  

Therefore, if midplane strains, laminate curvatures, and 

stacking sequence of the composite laminate are known, 

strains and stresses at any z-location can be determined 

directly from Eq. (47). 

 

 

4. Validating example 
 

To validate the present analytic solutions of shear and 

normal interfacial stress fields along the bondline, the 

authors examined an isotropic bimaterial steel-aluminum 

beam. The beam is assumed to be under the action of 

uniform axial tension, P0 which is applied at both ends of 

the tension bar, i.e., the aluminum substrate layer (Fig. 5). 

In this case, the strengthened length in the model is 𝐿 2⁄ =
20 mm. Other geometric and mechanical properties are as 

follows: h1=2 mm, E1=200 GPa and ν1=0.29 for the steel 

reinforcing cover; h2=4 mm, E2=70 GPa and ν2=0.34 for the 

aluminum substrate layer. The given P0 is assumed to be 1 

MPa.  

The accuracy of stress fields in the present model relies 

on the computational process of solving the 4th-order 

ordinary differential equation (Eq. (40)). Applying the 

principles of lamination theory, a MATLAB code was 

instrumented to compare the results obtained from the 

present model and those of Wu and Jenson’s (2014). This 

code also serves to illustrate the behavior of varying free-

edge normal and shear interfacial stresses along the  

 
(a) FEM mesh grid density of the joint with edge points 

prone to debonding 

 
(b) Shear stress field along the interface (τ) 

 
(c) Normal stress field along the interface (σ) 

Fig. 6 Comparison of interfacial shear and normal stresses 

proposed by the present model with those of FEM 

 

 

bondline. Owing to the presence of stress singularities, the 

stresses tend to increase drastically at the free-edges of 

bimaterials. The results of the analysis, shown in Fig. 5 (b)-

(c), suggest good conformity with the present findings in 

the literature. Compared to normal interfacial stress with the 

peak value of 0.093 (MPa), high interfacial shear stress with 

the peak value of -0.296 (MPa) mainly contributes to the 

debonding failure of the joint. 

To further verify the proposed analytic solution, FEM 

based on commercial finite element analysis software 

package ABAQUS 6.13-1 was implemented. During the 

numerical analysis of the abovementioned beam in the case 

of plane-stress state, 8-node linear elements (C3D8R) and 

exclusively hexahedral mesh of size 0.5 mm were 

employed. A nonuniform distribution of elements along the 

bondline was used to precisely capture the trend of singular 

stress variations along the bondline as shown in Fig. 6. 

It can be observed that interfacial stresses are highly 

localized at the near-free end of the bondline. Obviously, 

the interfacial shear stresses predicted by the present  
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Table 1 The mechanical properties of the concrete layer 

E1 (GPa) Axial 

modulus 

G12 (GPa) 

Shear modulus 

ν12 Poisson’s 

ratio 

f′
c (MPa) Concrete 

cylinder strength 

30 10.5 0.2 40 

 

Table 2 The mechanical properties of the CFRP laminate 

Type 
E1 

(GPa) 

E2= E3 

(GPa) 

G12=G13 

(GPa 

G23 

(GPa) 
ν12=ν13 ν23 

T300/5208 132 10.8 5.65 3.38 0.24 0.59 

 

Table 3 The mechanical and geometric properties of 

materials with respect to different values of 𝛼 

𝛼 l1 l2 h1 h2 b P0 
Stacking 

Sequence 

1 400 400 2 10 10 20 [0/90] 

1.5 266 400 2 10 10 20 [0/90] 

2 200 400 2 10 10 20 [0/90] 

3 134 400 2 10 10 20 [0/90] 

l and h values are in mm; P0 values are in MPa 

 

 

lamination theory approach exactly satisfy the shear-free 

BCs in the joint as required by the theoretical formulation. 

Even though the normal stresses adopt the very similar 

varying trend for the FEM along the bondline, shear stresses 

are not zero at the very ending edges of the cover layer, 

which is because of the singular state of such stresses; 

however the peak values happen to correspond with those 

of proposed method.  

 

 

5. Scaling analysis of interfacial shear and normal 
stresses 

 

This section triggers evaluating the effects of geometric 

and mechanical changes of adherents on the interfacial 

shear and normal stress distributions along the bondline in 

the beam under study (Fig. 1(a)). The mechanical properties 

of concrete substrate layer and CFRP-composite laminate 

are given in Tables 1-2, respectively. It is noted that the 

elastic modulus of concrete and CFRP are kept constant 

throughout this section.  

Furthermore, an inclusive computational MATLAB 

code was designed to study the dependencies of such stress 

fields upon the mechanical/geometric parameters. Some 

parameters are introduced as follows: 

Define 𝛼 = 𝑙2 𝑙1⁄  as the length ratio where l2 is the 

length of concrete substrate layer and l1 is the CFRP-

composite laminate length. Table 3 presents the details of 

geometric dimensions and mechanical properties of 

materials used in the analysis. Four length ratios (𝛼 =
1, 1.5, 2, 3) were implemented in this section.  

Fig. 7 (a)-(b) plots the variations of interfacial shear and 

normal stresses along the CFRP-concrete bondline with 

respect to different values of 𝛼. It can be seen that high 

interfacial shear and normal stress concentrations occur 

near the free edges of the adherents, i.e., the boundary layer 

region, while the points close to mid-span (the central 

region) are almost stress free. Moreover, a change in the  

 
(a) Interfacial shear stress (τ) 

 
(b) Interfacial normal stress (σ) 

Fig. 7 Variations of interfacial stress fields along the 

interface with respect to different values of α 

 

Table 4 The mechanical and geometric properties of 

materials with respect to different values of 𝛽 

𝛼 𝛽 l1 l2 h1 h2 b P0 
Stacking 

Sequence 

2 2.5 200 400 4 10 10 20 [0/90] 

2 5 200 400 2 10 10 20 [0/90] 

2 10 200 400 1 10 10 20 [0/90] 

l and h values are in mm; P0 values are in MPa 

 

 

length ratio does not substantially influence the interfacial 

stress variations. 

Another parameter to define is 𝛽 = ℎ2 ℎ1⁄  as the 

thickness ratio, where h2 is the thickness of concrete layer 

and h1 is the CFRP laminate thickness. Table 4 reports the 

detailed properties of concrete layer and CFRP laminate 

with respect to different values of 𝛽. Furthermore, Fig. 8 

(a)-(b), respectively depicts the trend of interfacial shear 

and normal stress variations along the CFRP-concrete 

interface. It is discerned that as the thickness ratio increases, 

i.e., decrease in the CFRP laminate thickness, the peak 

shear and normal stresses decline. In other words, thicker 

reinforcing patches produce larger stresses on the interface.  

The third parameter to investigate is the depth ratio, 

𝛾 = ℎ2 𝑏⁄ , where h2 is the thickness of concrete layer and b 

is the width of joint. The properties of materials utilized in 

this part for various values of 𝛾 are provided in Table 5.  

Variations of stresses along the interface for different 

values of 𝛾 are shown in Fig. 9 (a)-(b). Along with the 

increment in depth ratio, both interfacial shear and normal 

stresses decrease at free edges. Given the rest of parameters  
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(a) Interfacial shear stress (τ) 

 
(b) Interfacial normal stress (σ) 

Fig. 8 Variations of interfacial stress fields along the 

interface with respect to different values of 𝛽 

 

Table 5 The mechanical and geometric properties of 

materials with respect to different values of 𝛾 

𝛼 𝛾 l1 l2 h1 h2 b P0 
Stacking 

Sequence 

2 1.5 200 400 2 15 10 20 [0/90] 

2 2 200 400 2 20 10 20 [0/90] 

2 3 200 400 2 30 10 20 [0/90] 

l and h values are in mm; P0 values are in MPa 

 

 

be fixed, it is concluded that interfacial stresses produce 

lower values for deep concrete prisms strengthened with 

CFRP laminates. As it is illustrated in Fig. 9, akin to 

previous figures, the shear stresses satisfy all the shear-free 

boundary conditions at the adherents’ free edges. 

To examine the dependency of stresses upon the elastic 

modulus of adherents, three modulus ratios, 𝜑 = 𝐸𝑓 𝐸𝑐⁄ , 

(𝜑 = 2, 4, 6) are defined as the fourth parameter. 𝐸𝑓 and 

𝐸𝑐 are respectively the Young’s moduli of CFRP composite 

and concrete. Table 6 summarizes the properties of 

materials utilized in this part. The effect of 𝜑 on the stress 

fields are plotted in Fig. 10 (a)-(b). It should be noted that 

the variation in 𝜑  stems from the change in elastic 

modulus of concrete. It is then comprehended, according to 

Fig. 10, that a change in 𝐸𝑓, does not considerably affect 

the stress field distributions.  

The fifth parameter to probe, is the CFRP fiber 

orientation 𝜃, and the stacking sequence. Firstly, four 

stacking sequences [0/0], [0/90], [90/0] and [90/90] were 

adopted. Fig. 11 (a)-(b) sketches the way interfacial shear 

and normal stresses vary with respect to different stacking 

sequences. It is perceived that the [90/90] sequence 

 
(a) Interfacial shear stress (τ) 

 
(b) Interfacial normal stress (σ) 

Fig. 9 Variations of interfacial stress fields along the 

interface with respect to different values of 𝛾 

 

 
(a) Interfacial shear stress (τ) 

 
(b) Interfacial normal stress (σ) 

Fig. 10 Variations of interfacial stress fields along the 

interface with respect to different values of 𝜑 

 

Table 6 The mechanical and geometric properties of 

materials with respect to different values of 𝜑 

𝛼 𝛽 𝛾 𝜑 l1 l2 h1 h2 b P0 
Stacking 

Sequence 

2 5 1 2 200 400 2 10 10 20 [0/90] 

2 5 1 4 200 400 2 10 10 20 [0/90] 

2 5 1 6 200 400 2 10 10 20 [0/90] 

l and h values are in mm; P0 values are in MPa 
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(a) Interfacial shear stress (τ) 

 
(b) Interfacial normal stress (σ) 

Fig. 11 Variations of interfacial stress fields along the 

interface with respect to different stacking sequences 

 

Table 7 The mechanical and geometric properties of 

materials for 𝜃 dependency evaluation 

𝛼 𝛽 𝛾 𝜑 l1 l2 h1 h2 b P0 

2 5 1 4.4 200 400 2 10 10 20 

2 5 1 4.4 200 400 2 10 10 20 

2 5 1 4.4 200 400 2 10 10 20 

l and h values are in mm; P0 values are in MPa 

 

 

produces lower interfacial stresses in comparison to others, 

hence it is more favorable in designing the joint. 

The same procedure was reiterated with stackings [0/0], 

[0/45], [45/0] and [45/45] and both shear and normal 

stresses in [45/45] were lower. It was concluded that 

amongst the aforementioned stacking sequences, [𝜃 ∕ 𝜃] 

would result in lower peak values of stress. Secondly, a 

comparison was conducted to find out the lowest maximum 

stress values with 𝜃 from 0 to 90 degrees at every 15 

degrees of intervals. The presumed values of properties are 

given in Table 7. 

Fig. 12 (a)-(b) implies that as the fiber orientation, 𝜃 

increases form its initial value, i.e., from 𝜃 =0 to 𝜃 =90, 

the interfacial shear and normal stresses tend to decrease in 

the boundary layer region. 

 

 

6. Conclusions 
 

This paper aimed at proposing a systematic approach on 

determining the prominent interfacial normal and shear 

stresses of a CFRP-concrete bonded joint. Accordingly, two 

normal and shear stress functions were introduced using the 

semi-analytic stress-function variational approach. The two 

stress functions satisfy all the traction boundary conditions 

 
(a) Interfacial shear stress (τ) 

 
(b) Interfacial normal stress (σ) 

Fig. 12 Variations of interfacial stress fields along the 

interface with respect to different [θ∕θ] stacking sequences 

 

 

including the shear-free condition at free edges of the 

adherents, which has been normally neglected in the 

majority of joint models within the literature. Applying the 

complementary strain energy theory, the governing ordinary 

differential equation was determined. A concise MATLAB 

code was then designed by implementing the highly robust 

and efficient lamination theory approach in order to 

determine the entire stress field throughout the examined 

joint. It is capable of taking into account different types of 

loading, stacking sequence, material properties, orientations 

and the thickness of layers. Furthermore, a scaling analysis 

was conducted to analyze the effective issues on the 

interfacial stresses using this code. The following 

conclusions were drawn:  

• Intense stresses at the interface occur in the vicinity of 

adherent free ends (also termed the boundary layer 

region), while the central region (close to mid-span) is 

almost stress-free. 

• Shear stresses satisfy all the shear-free boundary 

conditions at the free ends of adherents for all types of 

geometric configurations. 

• The change in length ratio (concrete layer to CFRP 

laminate length ratio) does not considerably affect the 

peak interfacial stress values. 

• As compared with the maximum interfacial normal 

stresses, debonding failure of the joint in all 

configurations is attributable to the high interfacial shear 

stresses. 

• As the thickness ratio (concrete layer to CFRP 

laminate thickness ratio) increases, both interfacial shear 

and normal stresses tend to decrease. 

• The depth ratio (concrete layer to joint width ratio) has 

an inverse relation with the interfacial stress values. 

52



 

A stress-function variational approach toward CFRP-concrete interfacial stresses in bonded joints 

 

• Taking into account the dependency of interfacial 

stresses on the elastic modulus ratio (CFRP laminate to 

concrete layer modulus ratio), the elastic modulus of 

concrete has more influence on the stresses rather than 

that of CFRP. 

• Among different values for θ, from 0 to 90 degrees in 

[𝜃 ∕ 𝜃] stacking, θ=0 generates higher interfacial shear 

and normal stresses; in addition, as θ increases, the peak 

stress values decrease such that θ=90 produces the 

lowest stress values.  
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