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1. Introduction 

 

Fluid-conveying cylindrical pipes have been widely 

used in many civil and mechanical engineering applications 

for example in the submarine industry, oil and gas industry, 

petrochemicals systems, and so on. Such cylindrical 

structures have been analyzed for many of the failures 

and/or operating problems due to flow-induced vibrations 

and instabilities from previous decades (Housner 1952, 

Benjamin 1961, Païdoussis and Issid 1974).  

Several studies have been performed on the dynamical 

response of the pipes with fluid conveying. Gong et al. 

(2000) applied a computational method for safety 

evaluation of submerged pipelines, subjected to underwater 

shock. In this research, the fluid structure interaction 

between the pipeline and sea water were considered based 

on the coupled boundary-element and finite-element 

programs, by means of the Doubly Asymptotic 

Approximation (DAA). Lee and Oh (2003) developed a 

spectral element model for the pipe conveying fluid to study 

the flow induced vibrations of the system by the exact 

constitutive dynamic stiffness matrix. Lam et al (2003) 

examined the dynamic response of a simply supported 

laminated underwater pipeline exposed to underwater 

explosion shock. They concluded that the strength of the 

radial direction for the pipe is weaker than the strengths in 

the longitudinal and the circumferential directions. 

Consequently, the dynamic response of the radial direction 

is larger than those of other directions. Yoon and Son (2007) 

studied the dynamic behavior of simply supported fluid- 
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conveying pipe in due to the effect of the open crack and 

the moving mass. Lin and Qiao (2008) explored vibration 

and instability of an axially moving beam immersed in fluid 

with simply supported conditions along with torsional 

springs. The transient reaction of submerged thin shell 

subjected to mechanical excitations was studied by Leblond 

and Sigrist (2010). Huang et al. (2010) used Galerkin’s 

method to obtain eigen-frequencies of tubes conveying fluid 

having different boundary conditions. Further, they 

calculated the variation of system eigen-frequencies by the 

effect of the Coriolis forces and expressed a correlation 

between a pipe conveying fluid and Euler-Bernoulli beam. 

Zhai et al. (2011) used the Timoshenko beam model for 

obtaining the dynamic response of a fluid-conveying pipe 

under random excitation. They solved the governing 

equations by the pseudo excitation method together with 

complex mode superposition method. Also, they assumed 

that the parameters of load are random. Liu et al. (2012) 

analyzed fluid-solid interaction problem for an elastic 

cylinder by numerical simulations and acquired the 

vibration of cylinder for both laminar and turbulent flows. 

Dynamic behaviour investigation of pipelines under 

earthquake acceleration is a research field with few works. 

Seismic response of natural gas and water pipelines in the 

Ji-Ji earthquake was considered by Chen et al. (2002). They 

conducted a Statistical analysis for understanding the 

relationship between seismic factors (the spectrum intensity, 

peak ground acceleration and peak ground velocity) and 

repair rates. Also, Abdounet al. (2009) studied influencing 

factors on the behavior of buried pipelines subjected to 

earthquake faulting.  

In none of mentioned investigations, the structure is not 

composite. Rationally modeling collapse due to bending 

and external pressure in pipelines was presented by 

Nogueira (2012). Effect of using fiber-reinforced polymer 
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composites for underwater steel pipeline repairs was studied 

by Shamsuddoha et al. (2013). They offered a widespread 

review about of using fiber-reinforced polymer composites 

for in-air, underground and underwater pipeline repairs. Ray 

and Reddy (2013) made a study on the active damping of 

piezoelectric composite cylindrical shells conveying fluid. 

The study of composite and nanocomposite plates was 

presented by Duc et al. (2010, 2013, 2014a, 2014b, 2015, 

2016, 2018). Chung et al. (2013) investigated Polymeric 

Composite Films Using Modified TiO2 Nanoparticles. 

Alijani and Amabili (2014) used energy method with the 

Amabili-Reddy nonlinear higher-order shear deformation 

theory for determining the nonlinear vibrations and multiple 

resonances of fluid filled arbitrary laminated cylindrical 

shells. They demonstrated that water-filled composite shells 

may exhibit complex nonlinear dynamic behaviour. Seismic 

reliability analysis of a jacket-type support structure for an 

offshore wind turbine was performed by Kim et al. (2015). 

Thinh and Nguyen (2016) investigated the free vibration of 

composite circular shells containing fluid. They used the 

Dynamic Stiffness Method (DSM) based on the Reissner-

Mindlin theory and non-viscous incompressible fluid 

equations for modelling of structure. Dynamic characteristic 

of steady fluid conveying in the periodical partially 

viscoelastic composite pipeline was studied by Zhou et al. 

(2017). It is shown that the reducing of coverage fraction 

decreases the flutter velocity. Non-linear vibration of 

laminated composite circular cylindrical shells using 

Donnell’s shell theory and Incremental Harmonic Balance 

(IHB) method was analyzed by Dey and Ramachandram 

(2017). Furthermore, the mechanical behavior of structures 

contain ing  nanopar t icles  has  been invest igated 

experimentally and analytically by a number of researchers. 

The influences of nanoparticles on dynamic strength of 

ultra-high performance was tested by Su et al. (2016). 

Frikha et al. (2016) presented a 2-node, 4 DOF/node beam 

element based on higher order shear deformation theory for 

axial-flexural-shear functionally graded material. 

JafarianArani and Kolahchi (2016) studied buckling 

analysis of columns reinforced with carbon nanotubes by 

using Euler-Bernoulli and Timoshenko beam models. 

Buckling of columns retrofitted with Nano-Fiber 

Reinforced Polymerwas investigated by SafariBilouei et al. 

(2016). Inozemtcev et al. (2017) improved the properties of 

lightweight with hollow microspheres with the nanoscale 

modifier. Mathematical modeling of pipes reinforced with 

CNTs conveying fluid for vibration and stability analysis 

was done by Zamani Nouri (2017). Vibration of Silica 

nanoparticles-reinforced beams considering agglomeration 

effects was considered by Shokravi (2017). Also, 

RabaniBidgoli and Saeidifar (2017) studied time-dependent 

buckling of CNT nanoparticles reinforced columns exposed 

to fire. A hybrid pipe-shell element based numerical model 

programed by INP code supported by ABAQUS solver was 

proposed by Liu et al. (2017) to explore the strain 

performance of buried X80 steel pipeline under reverse 

fault displacement. Recently, Seismic response of CNT 

nanoparticles-reinforced surface pipes was investigated by 

Motezaker and Kolahchi (2017). In this research, the pipes 

were unsubmerged. Dynamic response of the horizontal  

 

 

 

Fig. 1 Schematic of nanocomposite pipe conveying fluid 

 

 

beam subjected to seismic ground excitation was 

investigated by Mohammadian et al. (2017). Non-linear 

dynamics analysis of functionally graded material (FGM) 

shell structures was investigated by Hajlaoui et al. (2017) 

using the higher order solid-shell element based on the 

Enhanced Assumed Strain (EAS). Vibration and nonlinear 

dynamic response of eccentrically stiffened functionally 

graded composite truncated conical shells in thermal 

environments were presented by Chan et al. (2018). 

Nonlinear response and buckling analysis of eccentrically 

stiffened FGM toroidal shell segments in thermal 

environment were studied vy Vuong and Duc (2018). 

Sharifi et al. (2018) studied the dynamic analysis of a 

column reinforced with titanium dioxide (TiO2) 

nanoparticles under earthquake load. Hajlaoui et al. (2019a) 

presented a modified first-order enhanced solid-shell 

element formulation with an imposed parabolic shear strain 

distribution through the shell thickness in the compatible 

strain part. Hajlaoui et al. (2019b) investigated buckling 

behaviors of functionally graded carbon nanotube-

reinforced composites (FG-CNTRC) shells using a 

modified first-order enhanced solid-shell element 

formulation. Static behavior of carbon nanotubes (CNTs) 

reinforced functionally graded shells using an efficient 

solid-shell element with parabolic transverse shear strain 

was studied by Hajlaoui et al. (2019c). 

Hitherto, the dynamic behavior of the nanocomposite 

pipes conveying fluid has not been investigated by any 

researcher. So in this research, for the first time, the critical 

fluid velocity response of the nanocomposite pipe 

conveying fluid is analytically considered as the importance 
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of the subject. Mixture method is used to evaluate the 

material properties of the nanocomposite. The governing 

equations of the structure are derived using energy method 

and according to classical theory. The critical fluid velocity 

of the structure is derived using differential quadrature 

method (DQM). In present study, effect of various 

parameters like volume percent of CNTs, boundary 

conditions, geometrical parameters of pipe, internal fluid on 

the critical fluid velocity of the structure is presented. 

 

 

2. Mathematical modeling 
 

As shown in Fig. 1, a nanocomposite cylindrical pipe 

conveying fluid with length a, radius R and thickness h is 

considered.  

  

2.1 Strain-displacement relationships 
 

In order to calculate the middle-surface strain and 

curvatures, using Kirchhoff-Law assumptions, the 

displacement components of cylindrical shell in the axial x, 

circumferential θ, and radial z directions can be written as 

(Brush and Almroth 1975) 
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where (u1, u2, u3) denotes the displacement components at 

an arbitrary point (x,θ,z) in the shell, and (u,v,w) are the 

displacement components of the middle surface of the shell 

in the axial, circumferential and radial directions, 

respectively. Also, z is the distance from an arbitrary point 

to the middle surface. Using Donnell’s linear theory and 

applying Eqs. (1)-(3), strain-displacement relationships may 

be written as 
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where (εxx, εθθ) are the normal strain components and (εxθ) is 

the shear strain component. 

The constitutive equation for stresses σ and strains ε 

matrix may be written as follows 
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2.2 Mixture rule 
 

According to this theory, the effective Young and shear 

moduli of structure may be expressed as (Liew 2014, Zhang 

2015h) 
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where Er11, Er22 and Em are Young’s moduli of CNTs and 

matrix, respectively; Gr11 and Gm are shear modulus of 

CNTs and matrix, respectively; VCNT and Vm show the 

volume fractions of the CNTs and matrix, respectively; ηj 

(j=1, 2, 3) is CNT efficiency parameter for considering the 

size-dependent material properties. Noted that this 

parameter may be calculated using molecular dynamic 

(MD). However, the CNT distribution for the mentioned 

patters obeys from the following relations (Zhang 2015h, 

Liew et al. 2014) 
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Furthermore, the thermal expansion coefficients in the 

axial and transverse directions respectively (α11 and α22) and 

the density (ρ) of the nano-composite structure can be 

written as (Liew et al. 2014) 
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where wCNT is the mass fraction of the CNT; ρm and ρCNT 

present the densities of the matrix and CNT, respectively; 

vr12 and vm are Poisson’s ratios of the CNT and matrix, 

respectively; αr11, αr22 and αm are the thermal expansion 

coefficients of the CNT and matrix, respectively. Noted that 

v12 is assumed as constant. 

 

 

3. Motion equations  
 

In this part, the governing equation of motion can be 
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obtained using energy method. 

 

3.1 Energy method 
 

The total potential energy, V, of the cylindrical shell 

conveying fluid is the sum of strain energy U, kinetic 

energy K, and the work done by the fluid W. 

The strain energy can be written as 
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By substituting Eqs. (4)- (6) into (10) yields 

(11 ) 
dAdz

xR

w
z

x

w

R

w

x

v

R

u

R

w
z

R

w

R

w

R

v

x

w
z

x

w

x

u
U

x

h

h A

x



















−








+




+




+











−



















++




+

























−












+




=  

−













2

22

2

22

2

2

22

2

5.05.0

 

dAdz
xR

w
z

x

w

R

w

x

v

R

u

R

w
z

R

w

R

w

R

v

x

w
z

x

w

x

u
U

x

h

h A

x



















−








+




+




+











−



















++




+

























−












+




=  

−













2

22

2

22

2

2

22

2

5.05.0 dAdz
xR

w
z

x

w

R

w

x

v

R

u

R

w
z

R

w

R

w

R

v

x

w
z

x

w

x

u
U

x

h

h A

x



















−








+




+




+











−



















++




+

























−












+




=  

−













2

22

2

22

2

2

22

2

5.05.0

 

dAdz
xR

w
z

x

w

R

w

x

v

R

u

R

w
z

R

w

R

w

R

v

x

w
z

x

w

x

u
U

x

h

h A

x



















−








+




+




+











−



















++




+

























−












+




=  

−













2

22

2

22

2

2

22

2

5.05.0

 

By introducing force and moment resultants as Eqs. 

(12)-)13) and substituting in Eq. (11), Eq. (14) yields 
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The kinetic energy may be expressed as 
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By substituting Eqs. (1)-(3) into (15) and defining the 
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The fluid structure interaction is described by linear 

potential flow theory. The flow velocity V may be 

expressed as (Amabili et al. 2008)  

= - ,V  (18) 

where ψ is a potential function including two components 

due to mean undisturbed flow velocity vx and the shell 

motions. Hence 

,xv x = − +  (19) 

The potential of the unsteady component Φ satisfies the 

Laplace equation 

2 2
2

2 2 2 2

1 1
0,

x r r r r 

     
  = + + + =

   
 (20) 

In order to obtain the perturbed pressure (P) in term of 

velocity potential, the Bernoulli's equation is used as 
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2
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2
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e e
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 (21) 

where P  and p are the mean pressure and perturbation 

pressure, respectively and for small perturbations we have 

( )
22 2 ,x xV v v

x


= −


 (22) 

However, combining Eqs. (21) and (22) yields the 

perturbation pressure as follows 

e xp v
t x


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  

 (23) 

Assuming that there is no cavitation at the fluid-pipe 

interface, the boundary condition between the pipe wall and 

the flow is 
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w w
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r t x=
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 (24) 

in which w is the transverse deflection of the structure. 

Using the method of variables separation for Φ, we have 
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Substituting Eq. (38) into Eq. (33) and assuming 

regularity condition at r=0 for the for potential of 

perturbation velocity yields 
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(26) 

where In is the first kind modified Bessel function in the 

order of n. Combining Eqs. (25) and (26) yields 
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in which I′
n is first derivative of In.  

 

3.2 Hamilton’s principle 
 

The governing equations of the structure are derived 

using the Hamilton’s principle which is considered as 

follows 

0
( ) 0.

t

U K dt − =  (28) 

Now, by applying the Hamilton’s principle and after 

integration by part and some algebraic manipulation, three 

equations of motion can be derived as follows 
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By integrating the stress-strain relations of the structure 

and introduced Eqs. (12)-(13), we have 
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By substituting stress resultants, Eqs. (32)-(37), in 

governing equations, Eqs. (29)-(31), relations can be 

obtained in terms of only the displacement fields. 

Also, the boundary conditions are taken into account as 

below 
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3.3 DQ method 
 

In recent years, the method of DQ has become 

increasingly popular in the numerical solution of problems 

in analysis of structural and dynamical problems. In these 

method, the derivative of the function may be defined as 

follows (Kolahchi et al. 2015) 
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where Nx and Nθ denote the number of points in x and 

θdirections, f(x,θ) is the function, and Aik, Bjl are the 

weighting coefficients defined as 
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where M and P are Lagrangian operators defined as 
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and for higher-order derivatives, we have 
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The Chebyshev polynomialsare used as below for 

selecting sampling grid points  
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Assuming Eqs. (52)-(54) (for changing relations to 

standard eigenvalue problem form) and applying above 

equations into the motion equations, the matrix form of 

governing equations can be written as Eq. (53) 

,),(),,( teyxutyxu =  (52) 

,),(),,( teyxvtyxv =  (53) 
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 (55) 

where KL, KNL, C, M, db and dd represent the linear stiffness 

matrix, the nonlinear stiffness matrix, the damping matrix, 

the mass matrix, the boundary points and domain points, 

respectively. Finally, based on eigenvalue problem, the 

critical fluid velocity can be obtained. 

 

 

4. Numerical results and discussion 
 

A computer program based on the DQM being written 

in MATLAB to solve the nonlinear motion equations. It is 

assumed the flowing liquid is water. The mass density of 

water is equal to (9982 Kg/m3) and (10-3 Pas) respectively. 

Poly methyl methacrylate (PMMA) is selected for the 

matrix which have constant Poisson’s ratios of vm=0.34, and 

Young moduli of Em=3.52 GPa. In addition, CNTs have the 

density of ρCNT=6700 Kg/m3, elastic constants of 

11 5.6466(TPa)CNTE = , 
22 7.080(TPa)CNTE = and 

12 1.9445(TPa)CNTG = . Furthermore, the cylindrical shell is 

investigated with three kinds of boundary conditions: two 

edges simply supported (SS), clamped (CC), and simply 

supported and clamped (SC). 

 

4.1 Validation 
 

In order to show the accuracy of the present work, 

neglecting the CNTs and fluid, the results are compared 

with the work of Amabili (2008). However, considering a 

pipe with elastic mudulus of E=206 GPa, Poisson's ratio of 

v=0.3, density ρ=7850 Kg/m3, length to radius ration of 

L/R=2 and thickness to radius ration of h/R=0.01, the 

dimensionless frequency (   
0.5

2 2/ / /L D h   = ) is  

 
(a) 

 
(b) 

Fig. 2 Validation of present work (a) frequency (b) damping 

 

 

plotted versus dimensionless fluid velocity (

  
0.5

2/ / /xV v L D h = ) in Fig. 2. As can be seen, present 

results are agree well with the results of Amabili (2008). 

 

4.1 The convergence of present method 
 

Fig. 3 shows the effect of DQ point number on the 

dimensionless natural frequency ( Im( / )R E = ) and 

damping (Re(Ω)) of pipe versus dimensionless flow 

velocity (
xf vCV 11/= ), respectively. As can be seen, 

Im(Ω)
 

decreases with increasing V, while the Re(Ω) 

remains zero. These imply that the system is stable. When 

the natural frequency becomes zero, critical velocity is 

reached, which the system loses its stability due to the 

divergence via a pitchfork bifurcation. Hence, the eigen-

frequencies have the positive real parts, which the system 

becomes unstable. In this state, both real and imaginary 

parts of frequency become zero at the same point. 

Therefore, with increasing flow velocity, system stability 

decreases and became susceptible to buckling. It can be 

seen that the dimensionless frequency is decreased with 

increasing the grid point number and for N=17, the results 

become converge. 
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4.3 Effect of various parameters 
 

Fig. 4 illustrates the effect of nanoparticles volume 

percent on the dimensionless frequency and damping of the 

structure. A direct relationship can be fine between 

nanoparticles volume percent and frequency of the structure 

so that with increasing the nanoparticles volume percent, 

the dimensionless frequency and critical fluid velocity is 

increased. It is because with increasing the nanoparticles  

 

 

 

 

volume percent, the fluid velocity which leads to instability 

educes.  

Depicted in Fig. 5 is the non-dimensional frequency and 

damping for the UD and three types of FG distributions of 

nanoparticles versus dimensionless flow velocity. As can be 

seen, the frequency and critical fluid velocity of FGA- and 

FGO- CNTRC cylindrical shell are smaller than those of 

UD-CNTRC cylindrical shell while the FGX- CNTRC 

cylindrical shell has higher frequency and critical fluid  

 

  

 

(a) (b) 

Fig. 3 Convergence of present solution method (a) frequency (b) damping 

 

  

 

(a) (b) 

Fig. 4 The effect of CNT nanoparticles on the (a) frequency (b) damping 

 

  

 

(a) (b) 

Fig. 5 The effect of CNT nanoparticles distribution type on the (a) frequency (b) damping 
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velocity with respect to three other cases. It is due to the 

fact that the stiffness of CNTRC cylindrical shell changes 

with the form of CNT distribution in matrix. However, it 

can be concluded that CNT distribution close to top and 

bottom are more efficient than those distributed nearby the 

mid-plane for increasing the stiffness of plates.  

Fig. 6 presents the effect of different boundary condition 

on the dimensionless frequency and damping of the pipe 

versus the dimensionless fluid velocity. It can be observed 

 

 

 

 

that the clamped-clamped (CC) boundary condition leads to 

higher dimensionless frequency and critical fluid velocity 

with respect to other considered boundary conditions. It is 

due to the fact that the cylindrical shell with CC boundary 

condition has higher bending rigidity. 

Fig. 7 demonstrates the effect of length to radius ratio of 

the cylindrical shell on the dimensionless frequency and 

damping of the pipe against the dimensionless fluid 

velocity. As can be seen, with increasing the length to 

 

  

 

(a) (b) 

Fig. 6 The effect of boundary conditions on the (a) frequency (b) damping 

 

  

 

(a) (b) 

Fig. 7 The effect of length to radius ratio of pipe on the (a) frequency (b) damping 

 

  

 

(a) (b) 

Fig. 8 The effect of thickness to radius ratio of pipe on the (a) frequency (b) damping 
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radius ratio of the cylindrical shell, the dimensionless 

frequency and critical fluid velocity are decreased due to 

reduction in the stiffness of the structure. 

Fig. 8 presents the effect of thickness to radius ratio of 

the cylindrical shell on the dimensionless frequency and 

damping of the pipe against the dimensionless fluid 

velocity. As can be seen, with increasing the thickness to 

radius ratio of the cylindrical shell, the dimensionless 

frequency and critical fluid velocity are enhanced due to 

increase in the stiffness of the structure. 

 

 

5. Conclusions 
 

The critical fluid velocity response of nanocomposite 

pipeline conveying fluid was investigated in this study. The 

nanotechnology was used for improving the mechanical 

behavior of pipe and it was strengthened with CNT 

nanoparticles. The mixture rule was applied for determining 

the elastic coefficients of nanocomposite assuming FG 

distribution for nanoparticles. Perturbation equation was 

employed to calculate the internal fluid effect in the pipe. 

The motion equations were derived using an energy method 

and Hamilton’s principle and solved via DQM. The effects 

of boundary conditions, volume percent of CNT 

nanoparticles, geometrical parameters of pipe and the fluid 

on the critical fluid velocity of the structure were taken into 

considerations. Results indicate: 

1-With increasing the nanoparticles volume percent, the 

dimensionless frequency and critical fluid velocity was 

increased..  

2-The frequency and critical fluid velocity of FGA- and 

FGO- CNTRC cylindrical shell were smaller than those 

of UD-CNTRC cylindrical shell while the FGX- 

CNTRC cylindrical shell has higher frequency and 

critical fluid velocity with respect to three other cases. 

3-It can be observed that the clamped-clamped (CC) 

boundary condition leads to higher dimensionless 

frequency and critical fluid velocity with respect to 

other considered boundary conditions. 

4-With increasing the length to radius ratio of the 

cylindrical shell, the dimensionless frequency and 

critical fluid velocity were decreased due to reduction in 

the stiffness of the structure. 

5-With increasing the thickness to radius ratio of the 

cylindrical shell, the dimensionless frequency and 

critical fluid velocity were enhanced due to increase in 

the stiffness of the structure. 
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