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1. Introduction 
 

During the last decade, the reinforcement of concrete 

and steel beams by bonding a soffit plate fabricated by 

either steel or fibre-reinforced plastics (FRP) has been the 

subject of much research and demonstrated to be a highly 

effective renovation method in civil and structural 

engineering because of its benefits such as significantly 

improving the rigidity and strength of an existing structural 

element with reduced impact on the surrounding 

environment (Hollaway and Leeming 1999, Kreja 2011, 

Panjehpour et al. 2014a, b, Ahmed 2014, Akavci and 

Tanrikulu 2015, Mahi et al. 2015, Draiche et al. 2016, 

Chikh et al. 2017, Aldousari 2017, Sahoo et al. 2017, Zine 

et al. 2018, Kaci et al. 2018). It is largely remarked that in 

such a redeveloped beam, one of the important modes of 

failure is the plate end delaminating of the soffit plate from 

concrete beam, which depends widely on the adhesive shear 

and normal stress concentration at the cut-off points of the 

plate (Teng et al. 2002a). Many investigations have been 

carried out, either numerically, analytically or both, to 

computed the adhesive stresses (Vilnay 1988, Roberts 1989, 
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Roberts and Haji-Kazemi 1989, Taljsten 1997, Malek et al. 

1998, Etman and Beeby 2000, Maalej and Bian 2001, Ye 

2001, Shen et al. 2001, Teng et al. 2002b, Teng et al. 2003, 

Yang et al. 2004, Maalej and Leong 2005, Wu et al. 2005, 

Tounsi et al. 2009, Rabahi et al. 2015, Daouadji et al. 2016, 

Bensaid and Kerboua 2017, Daouadji 2017). However, 

most of these studies did not simultaneously include the 

influences of axial, bending and shear deformations in the 

bonded plate and the concrete beam, which may conduct to 

results with insufficient precision in some cases. Adhesive 

stress investigations considering the impact of shear 

deformation are rare. In some articles, coupled differential 

equations have been changed to decoupled equations, and 

the obtained solutions are insufficiently accurate. Although 

Smith and Teng (2001), Yang and Wu (2007) introduced 

and solved the dominant differential equations, the first 

article neglected the influence of shear strain to determine 

decoupled equations, and the second one portioned the 

differential equations in two parts (with and without the 

effect of shear deformation) and employed the Fourier 

series to increase shear deformation. The superposition and 

the Galerkin method were employed to determine the 

solutions to the differential equations (Yang and Wu 2007). 

A significant number of high-order analytical methods exist 

to obtain the adhesive shear and normal stresses 

(Rabinovitch and Frostig 2000, Shen et al. 2001). It should 
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be also indicated that the method of Rabinovitch and 

Frostig (2000) does not give explicit expressions for the 

adhesive stresses. In this method the constants of 

integration are not provided and only the boundary 

conditions are presented. It thus seems impossible to 

determine results to propose a design rule (Smith and Teng 

2001, Shen et al. 2001). The accuracy of this investigation 

has also been checked (Shen et al. 2001, Smith and Teng 

2001). In another high-level analysis introduced by Shen et 

al. (2001), other explicit relations were obtained but the 

expressions do not take into account the influences of shear 

curvature and shear deformation in the composite beam. It 

is well known that Timoshenko's theory is a refined beam 

theory that considers shear deformation effect (Antes 2003).  

In this paper, an efficient model is developed to 

calculate the interfacial stresses in bonded beam by 

introducing the shear deformation using the equilibrium 

equations of the elasticity. It is believed that the proposed 

formulation will be of interest to civil and structural 

engineers and researchers. 

 

 

2. Mathematical formulation 
 

2.1 Assumptions 
 

The beam and the soffit plate are denoted respectively 

adherents 1 and 2. The assumptions adopted in present 

solution are summarized below. 

• Linear elastic behaviour of adherends 1, 2 and 

adhesive layer is assumed. 

• The interfacial stresses are invariant across its 

thickness of adhesive layer. 

• The curvatures of the RC beam and soffit plate are 

assumed to be the same. 

• The effects of bending deformations are neglected in 

adhesive layer. 

Perfect bonding between the RC beam, the FRP strip, 

and the adhesive and the adhesive layer is assumed. 

It is important to declare that in present paper the interfacial 

stress is under consideration only at the middle of adhesive 

thickness  

 

2.2 Equilibrium and compatibility equations 
 
By referring to Fig. 1 and Fig. 2, the global equilibrium 

equations for the two adherents can be obtained as follows 

𝑑𝑁𝑖(𝑥)

𝑑𝑥
= (−1)𝑖 ⋅ 𝑏𝑖 ⋅ 𝜏(𝑥)  i = 1,2 (1) 

 

 

 

Fig. 1 Schematic configuration of plated beam: geometrical 

and material parameters 

 

𝑑𝑉𝑖(𝑥)

𝑑𝑥
= (−1)𝑖 ⋅ 𝑏𝑖 ⋅ 𝜎(𝑥)   i = 1,2 (2) 

𝑑𝑀𝑖(𝑥)

𝑑𝑥
= 𝑉𝑖(𝑥) − 𝑏𝑖 ⋅ 𝜏(𝑥) ⋅

𝑡𝑖

2
   𝑖 = 1,2  (3) 

The longitudinal normal stresses, 𝜎𝑖(𝑥, 𝑦) 𝑖 = 1,2 are 

assumed to vary linearly with transverse coordinates yi. 

𝜎𝑖(𝑥, 𝑦) =
𝑁𝑖(𝑥)

𝑏𝑖 ⋅ 𝑡𝑖
−
6 ⋅ 𝑀𝑖(𝑥)

𝑏1 ⋅ 𝑡𝑖
2 ⋅ (1 −

2 ⋅ 𝑦

𝑡𝑖
)𝑖 = 1,2 (4) 

Where 0 ≤ 𝑦 ≤ 𝑡𝑖 
From the two-dimensional elasticity theory, these stress 

components defined by Alfredsson and Höberg (2008) 

should satisfy the following equations of equilibrium. 

𝜕𝜎𝑖𝑥

𝜕𝑥
+

𝜕𝜏𝑖

𝜕𝑦
= 0  i = 1,2 (5) 

Substituting Eq. (4) into Eq. (5) and using Eqs. (1), (3), 

(4), after integrating and using the Eq. (6) of shear stress 

continuity conditions at the beam-plate interface and the 

conditions of zero shear stress on the top and bottom 

surfaces respectively of the beam and the plate 

(𝜏1(𝑥, 𝑦 = 0) = 0 , and  

𝜏2(𝑥, 𝑦 = 𝑡2) = 0 

𝜏1(𝑥, 𝑦 = 𝑡1) = 𝜏2(𝑥, 𝑦 = 0)) = 𝜏(𝑥) 

(6) 

The shear stresses are given by the following equations 

𝜏1(𝑥, 𝑦) = (−
2 ⋅ 𝑦

𝑡1
+
3 ⋅ 𝑦2

𝑡1
2 ) ⋅ 𝜏(𝑥) 

+𝑉1(𝑥) ⋅
6

𝑏1 ⋅ 𝑡1
2 ⋅ (𝑦 −

𝑦2

𝑡1
) 

(7a) 

𝜏2(𝑥, 𝑦) = (1 −
4 ⋅ 𝑦

𝑡2
+
3 ⋅ 𝑦2

𝑡2
2 ) ⋅ 𝜏(𝑥) 

+𝑉2(𝑥) ⋅
6

𝑏2 ⋅ 𝑡2
2 ⋅ (𝑦 −

𝑦2

𝑡2
) 

(7b) 

 

 

 

Fig. 2 Free-body stress equilibrium diagram 
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The shear stresses, thus obtained, are shape parabolic 

through thickness of the adherend 

 

2.3 Stress-strain and strain-displacements equations 
 

Shear stresses determined by the Eqs. (7a) and (7b) can 

be expressed as a function of shear strain by the following 

relationship. 

𝛾𝑖(𝑥, 𝑦) =
𝜏𝑖(𝑥, 𝑦)

𝐺𝑖
𝑖 = 1,2 (8) 

With 𝐺𝑖  is the transverse shear modulus of the 

adherend i. 

Shear strain 𝛾𝑖(𝑥, 𝑦) is expressed in terms of horizontal 

and vertical displacements functions 𝑈𝑖
𝑁(𝑥, 𝑦) and 

𝑉𝑖
𝑁(𝑥, 𝑦) by the following relationship. 

𝛾𝑖(𝑥, 𝑦) =
𝜕𝑈𝑖

𝑁(𝑥, 𝑦)

𝜕𝑦
+
𝜕𝑉𝑖

𝑁(𝑥, 𝑦)

𝜕𝑥
𝑖 = 1,2 (9) 

Neglecting the variations of transverse displacement 
𝜕𝑉𝑖

𝑁(𝑥,𝑦)

𝜕𝑥
 , induced by the longitudinal forces with the 

longitudinal coordinate x, the shear deformation is 

expressed by the following equation. 

𝛾𝑖(𝑥, 𝑦) ≈
𝜕𝑈𝑖

𝑁(𝑥, 𝑦)

𝜕𝑦
𝑖 = 1,2 (10) 

The longitudinal displacement functions 𝑈1
𝑁(𝑥, 𝑦) for 

the beam an 𝑈2
𝑁(𝑥, 𝑦) for the plate, due to then longitudinal 

forces, are determined using Eqs. (8) and (10). The 

longitudinal displacements 𝑈𝑖
𝑁(𝑥, 𝑦) of the two adherents 

(Tsai 1998, Tounsi 2006) are given by the following 

equation. 

𝑈𝑖
𝑁(𝑥, 𝑦) = ∫

𝜏𝑖(𝑥, 𝑦)

𝐺𝑖

𝑦

0

⋅ 𝑑𝑦 + 𝑈𝑖
𝑁(𝑥, 𝑦 = 0) (11) 

By substituting Eq. (6) in Eq. (11) and after integration, 

we obtain the following expression of the longitudinal 

displacements.  

𝑈1
𝑁(𝑥, 𝑦) = (−

𝑦2

𝑡1
+
𝑦3

𝑡1
2) ⋅

𝜏(𝑥)

𝐺1
+ 

𝑉1(𝑥)

𝐺1
⋅

6

𝑏1 ⋅ 𝑡1
2 ⋅ (

𝑦2

2
−

𝑦3

3 ⋅ 𝑡1
) + 

𝑈1
𝑁(𝑥, 𝑦 = 0) 

(12a) 

𝑈2
𝑁(𝑥, 𝑦) = 𝑈2

𝑁(𝑥, 𝑦 = 0) + 

(𝑦 −
2 ⋅ 𝑦2

𝑡2
+
𝑦3

𝑡2
2) ⋅

𝜏(𝑥)

𝐺2
+ 

𝑉2(𝑥)

𝐺2
⋅

6

𝑏2 ⋅ 𝑡2
2 ⋅ (

𝑦2

2
−

𝑦3

3 ⋅ 𝑡2
) 

(12b) 

The adhesive layer is subjected in its upper and lower 

edges to longitudinal displacements ( 𝑢1
𝑁(𝑥, 𝑦) and 

𝑢2
𝑁(𝑥, 𝑦)) generated by the beam (adherent 1) and the plate 

(adherent 2). These displacements are obtained by checking 

the following boundary conditions. 

𝑢1
𝑁(𝑥, 𝑦) = 𝑈1

𝑁(𝑥, 𝑦 = 𝑡1) & 

𝑢2
𝑁(𝑥, 𝑦) = 𝑈2

𝑁(𝑥, 𝑦 = 0) (13) 

Thus the longitudinal displacements 𝑈1
𝑁(𝑥, 𝑦)  and 

𝑈2
𝑁(𝑥, 𝑦) based to 𝑢1

𝑁(𝑥, 𝑦) and𝑢2
𝑁(𝑥, 𝑦) respectively are 

given by the following equations. 

𝑈1
𝑁(𝑥, 𝑦) = 𝑢1

𝑁(𝑥) + (−
𝑦2

𝑡1
+
𝑦3

𝑡1
2) ⋅

𝜏(𝑥)

𝐺1

−
𝑉1(𝑥)

𝐺1 ⋅ 𝑏1
⋅ (1 −

3 ⋅ 𝑦2

𝑡1
2 +

2 ⋅ 𝑦3

𝑡1
3 )

 (14a)  

𝑈2
𝑁(𝑥, 𝑦) = 𝑢2

𝑁(𝑥) + (𝑦 −
2 ⋅ 𝑦2

𝑡2
+
𝑦3

𝑡2
2) ⋅

𝜏(𝑥)

𝐺2
+
𝑉2(𝑥)

𝐺2 ⋅ 𝑏2
⋅ (
3 ⋅ 𝑦2

𝑡2
2 −

2 ⋅ 𝑦3

𝑡2
3 )

 (14b) 

The longitudinal resultant forces, 𝑁1 and 𝑁2, for the 

upper and lower adherends, respectively, are 

𝑁1 = 𝑏1 ⋅ ∫ 𝜎1
𝑁(𝑥, 𝑦) 𝑑𝑦

𝑡1

0

 (15a) 

𝑁2 = 𝑏2 ⋅ ∫ 𝜎2
𝑁(𝑥, 𝑦) 𝑑𝑦

𝑡2

0

 (15b) 

Where 𝜎𝑖(𝑥, 𝑦) 𝑖 = 1,2 are longitudinal normal stresses 

for the upper and lower adherends, respectively. By 

changing these stresses into functions of displacements and 

substituting Eqs. (14a) and (14b) into the displacements, 

Eqs. (15a) and (15b) can be rewritten as  

𝑁1 = 𝐸1 ⋅ 𝑏1 ⋅ ∫
𝑑𝑈1

𝑁(𝑥, 𝑦)

𝑑𝑥
𝑑𝑦

𝑡1

0

=

𝐸1 ⋅ 𝐴1 ⋅

(

 
 

𝑑𝑢1
𝑁

𝑑𝑥
−

𝑡1
12 ⋅ 𝐺1

⋅
𝑑𝜏(𝑥)

𝑑𝑥
−

𝑦1
𝐺1 ⋅ 𝐴1

⋅
𝑑𝑉1(𝑥)

𝑑𝑥 )

 
 

 (16a) 

And 

𝑁2 = 𝐸2 ⋅ 𝑏2 ⋅ ∫
𝑑𝑈2

𝑁(𝑥, 𝑦)

𝑑𝑥
𝑑𝑦

𝑡2

0

=

𝐸2 ⋅ 𝐴2 ⋅

(

 
 

𝑑𝑢2
𝑁

𝑑𝑥
−

𝑡2
12 ⋅ 𝐺2

⋅
𝑑𝜏(𝑥)

𝑑𝑥
−

𝑦2
𝐺2 ⋅ 𝐴2

⋅
𝑑𝑉2(𝑥)

𝑑𝑥 )

 
 

 (16b) 

Where 𝐴𝑖 = 𝑏𝑖 ∙ 𝑡𝑖 and 𝑦𝑖 =
𝑡𝑖  

2
 , 𝑖 = 1,2 

The strains in the RC beam near the adhesive interface 

and the external FRP reinforcement can be expressed, as 

휀𝑖(𝑥) =
𝑑𝑢𝑖(𝑥)

𝑑𝑥
= 휀𝑖

𝑀(𝑥) + 휀𝑖
𝑁(𝑥) 𝑖 = 1,2 (17) 

Where and 𝑢1
𝑁(𝑥, 𝑦) are the longitudinal displacements 
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at the bottom of adherend1 and 𝑢2
𝑁(𝑥, 𝑦)  the top of 

adherend2, respectively. The strains induced by the bending 

moment at adherends 휀𝑖
𝑁(𝑥) 𝑖 = 1,2 are written as follows 

휀𝑖
𝑀(𝑥) = ±

𝑦𝑖
𝐸𝑖 ⋅ 𝐼𝑖

⋅ 𝑀𝑖(𝑥) 𝑖 = 1,2 (18) 

Where Ei is the elastic modulus and Ii the second 

moment of area.  

𝑀𝑖(𝑥) is the bending moment while 𝑦1 and 𝑦2 are the 

distances from the bottom of beam and the top of plate to 

their respective centroid. 

휀𝑖
𝑁(𝑥) 𝑖 = 1,2 are the unknown longitudinal strains of 

the RC beam and FRP reinforcement, respectively, at the 

adhesive interface and they are due to the longitudinal 

forces. These strains are given as follows 

휀𝑖
𝑁(𝑥) =

𝑑𝑢𝑖
𝑁(𝑥)

𝑑𝑥
𝑖 = 1,2 (19) 

Hence, the longitudinal strains induced by the 

longitudinal forces (Eq. (19)) can be expressed as 

휀𝑖
𝑁(𝑥) =

𝑑𝑢𝑖
𝑁(𝑥)

𝑑𝑥
=

𝑁𝑖
𝐸𝑖 ⋅ 𝐼𝑖

±

𝑡𝑖
12 ⋅ 𝐺𝑖

⋅
𝑑𝜏(𝑥)

𝑑𝑥
±

𝑦𝑖
𝐺𝑖 ⋅ 𝐴𝑖

⋅
𝑑𝑉𝑖(𝑥)

𝑑𝑥

𝑖 = 1,2 (20) 

The total strains equations for the adherend i are given 

as follows 

휀𝑖(𝑥) = ± ⋅
𝑦𝑖

𝐸𝑖 ⋅ 𝐼𝑖
⋅ 𝑀𝑖(𝑥) +

𝑁𝑖
𝐸𝑖 ⋅ 𝐼𝑖

±

𝑡𝑖
12 ⋅ 𝐺𝑖

⋅
𝑑𝜏(𝑥)

𝑑𝑥
±

𝑦𝑖
𝐺𝑖 ⋅ 𝐴𝑖

⋅
𝑑𝑉𝑖(𝑥)

𝑑𝑥

𝑖 = 1,2 (21) 

 

2.4 Governing differential equations for interfacial 
stresses between an RC beam and soffit plate 
 

 

 

Fig. 3 Bending and shear curvatures in Timoshenko 

composite beam 

2.4.1 Interfacial shear stress 
The shear strain γ in the adhesive layer may be 

represented by Eq. (9) 

𝛾(𝑥, 𝑦) =
𝑑𝑢(𝑥, 𝑦)

𝑑𝑦
+
𝑑𝑣(𝑥, 𝑦)

𝑑𝑥
 (22) 

With  𝑢1(𝑥, 𝑦) = 𝑈1
𝑁(𝑥, 𝑦 = 𝑡1) ,  𝑢2(𝑥, 𝑦) = 𝑈2

𝑁(𝑥, 𝑦 =
0) and 𝑣(𝑥, 𝑦) ≈ 𝑉𝑖

𝑁(𝑥, 𝑦). 
The interfacial shear stress τ(x), which is related to the 

shear strain γ expressed by Smith and Teng (2001), are 

derived from Eq. (22) 

𝜏(𝑥) = 𝐺𝑎 ⋅ 𝛾 = 𝐺𝑎 ⋅ (
𝑑𝑢(𝑥, 𝑦)

𝑑𝑦
+
𝑑𝑣(𝑥, 𝑦)

𝑑𝑥
) (23) 

Where Ga is shear modulus of adhesive layer. The first 

derivative of τ(x) with respect to x is as follow 

𝑑𝜏(𝑥)

𝑑𝑥
= 𝐺𝑎 ⋅ (

𝑑2𝑢(𝑥, 𝑦)

𝑑𝑥 𝑑𝑦
+
𝑑2𝑣(𝑥, 𝑦)

𝑑𝑥2
) (24) 

The second derivative of 𝑣(𝑥, 𝑦)  with respect to x 

defines the total curvature of the Timoshenko composite 

beam at a distance x. This total curvature of the plated beam 
𝑑𝜃

𝑑𝑥
 is the sum of the bending curvature 

𝑑𝜃𝑏

𝑑𝑥
 and shear 

curvature 
𝑑𝜃𝑠

𝑑𝑥
 defined by Edalati and Fereidon (2012). 

These curvatures may be written as follows 

{
  
 

  
 

𝑑𝜃𝑏
𝑑𝑥

=
𝑑2𝑣𝑏(𝑥, 𝑦)

𝑑𝑥2
=
−𝑀𝑇(𝑥)

(𝐸𝐼)𝑡
𝑑𝜃𝑠
𝑑𝑥

=
𝑑2𝑣𝑠(𝑥, 𝑦)

𝑑𝑥2
=

−1

(𝛼𝐺𝐴)𝑡
⋅
𝑑𝑉𝑇(𝑥)

𝑑𝑥

𝑑𝜃

𝑑𝑥
=
𝑑2𝑣(𝑥, 𝑦)

𝑑𝑥2
=
𝑑𝜃𝑏
𝑑𝑥

+
𝑑𝜃𝑠
𝑑𝑥

 (25) 

In which 𝑉𝑏(𝑥, 𝑦),𝑉𝑠(𝑥, 𝑦) are transversal displacement 

respectively at the bending, at the shear. 𝑉(𝑥, 𝑦) is total 

transversal displacement in a cross-section of the composite 

beam.  𝑉𝑇(𝑥) and  𝑀𝑇(𝑥)=total shear force and the total 

bending moment in the composite section, respectively; 

(𝛼 ∙ 𝐺𝐴)𝑡 and (𝐸𝐼)𝑡 effective shear rigidity and effective 

flexural rigidity in the total composite section, which may 

be obtained by Timoshenko and Gere (1984) and Stafford 

and Coull (1991) 

{
  
 

  
 
(𝛼𝐺𝐴)𝑡 = 𝛼(𝐺1𝐴1 + 𝐺2𝐴2)
(𝐸𝐼)𝑡 = (𝐸1𝐼1 + 𝐸2𝐼2)

𝐼1 =
𝐼1𝑏

1 + 𝑟1e

𝐼2 =
𝐼2𝑏

1 + 𝑟2e

 (26) 

In which 

𝐸𝑖 , 𝐼𝑖 , 𝐺𝑖 𝑎𝑛𝑑 𝐴𝑖 are modulus of elasticity, the reduced 

effective moment of inertia with respect to the centroid. The 

moments of inertia in RC beam and the soffit plate  

𝐼𝑏  are defined by Stafford and Coull (1991). The 

parameters 𝑟𝑖𝑒 𝑖 = 1,2 of the two adherents are given by 

Edalati and Fereidon (2012) from the following 

relationships 
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{
 
 

 
 𝑟1e =

48 ⋅ 𝐸1 ⋅ 𝐼1𝑏
5 ⋅ 𝛼 ⋅ 𝐺1 ⋅ 𝐴1 ⋅ 𝐿

2

𝑟2e =
48 ⋅ 𝐸2 ⋅ 𝐼2𝑏

5 ⋅ 𝛼 ⋅ 𝐺2 ⋅ 𝐴2 ⋅ 𝐿𝑝
2

 (27) 

In which α is shape factor for the shear stresses 

expressed by Cowper (1966) and given with following 

relationship for solid rectangular 

𝛼 =
10 ⋅ (1 + 𝜈)

12 + 11 ⋅ 𝜈
 (28) 

The coefficient ν is Poisson’s ratio. 

Finally, the total curvature of a differential element in 

plated beam Timoshenko may be expressed as follows 

𝑑2𝑣(𝑥, 𝑦)

𝑑𝑥2
=
𝑑𝜃𝑏
𝑑𝑥

+
𝑑𝜃𝑠
𝑑𝑥

=
−𝑀𝑇(𝑥)

(𝐸𝐼)𝑡
+

−1

(𝛼 ⋅ 𝐺𝐴)𝑡
⋅
𝑑𝑉𝑇(𝑥)

𝑑𝑥

 (29) 

The adhesive layer is assumed to be subjected to 

uniform shear stresses and therefore 𝑢(𝑥, 𝑦)  must vary 

linearly across the adhesive thickness ta, so first derivative 

of the displacement𝑢(𝑥, 𝑦) can be obtained by following 

relationship 

𝑑𝑢(𝑥, 𝑦)

𝑑𝑦
=
1

𝑡𝑎
⋅ [𝑢2(𝑥) − 𝑢1(𝑥)] (30) 

The second derivative of Eq. (30) with respect to x is  

𝑑2𝑢(𝑥, 𝑦)

𝑑𝑥 𝑑𝑦
=
1

𝑡𝑎
⋅ [
𝑑𝑢2(𝑥)

𝑑𝑥
−
𝑑𝑢1(𝑥)

𝑑𝑥
] (31) 

Where 𝑢1(𝑥) and 𝑢2(𝑥)  are the longitudinal 

displacements at the base of adherend 1 and the top of 

adherend 2, respectively, and ta is the thickness of the 

adhesive layer. Using Eqs. (29) and (31) in Eq. (24), yields 

𝑑𝜏(𝑥)

𝑑𝑥
=
𝐺𝑎
𝑡𝑎

{
  
 

  
 
𝑑𝑢2(𝑥)

𝑑𝑥
−
𝑑𝑢1(𝑥)

𝑑𝑥
−

𝑡𝑎
(𝐸𝐼)𝑡

⋅ 𝑀𝑇(𝑥) −

𝑡𝑎
(𝛼 ⋅ 𝐺𝐴)𝑡

⋅
𝑑𝑉𝑇(𝑥)

𝑑𝑥 }
  
 

  
 

 (32) 

The strains at the base of adherent 1 and the top of 

adherent 2, considering of the axial force, bending moment, 

interfacial shear stress, shear force, are given as 

휀𝑖(𝑥) = ± ⋅
𝑦𝑖

𝐸𝑖 ⋅ 𝐼𝑖
⋅ 𝑀𝑖(𝑥) +

𝑁𝑖(𝑥)

𝐸𝑖 ⋅ 𝐼𝑖
±

𝑡𝑖
12 ⋅ 𝐺𝑖

⋅
𝑑𝜏(𝑥)

𝑑𝑥
±

𝑦𝑖
𝐺𝑖 ⋅ 𝐴𝑖

⋅
𝑑𝑉𝑖(𝑥)

𝑑𝑥

𝑖 = 1,2 (33) 

According to the third hypothesis, which considers that 

the curvature of the beam and the plate are identical, we 

have the following relation between the bending moments 

𝑀1(𝑥) and 𝑀2(𝑥)  

𝑀1(𝑥)

𝐸1 ⋅ 𝐼1
=
𝑀2(𝑥)

𝐸2 ⋅ 𝐼2
⇒ {

𝑀1(𝑥) = 𝑅 ⋅ 𝑀2(𝑥)

𝑅 =
𝐸1 ⋅ 𝐼1
𝐸2 ⋅ 𝐼2

 (34) 

From Eq. (1), the following relationship can be written 

−
𝑑𝑁1(𝑥)

𝑑𝑥
=
𝑑𝑁2(𝑥)

𝑑𝑥
= 𝑏2 ⋅ 𝜏(𝑥) (35) 

In which  

−𝑁1(𝑥) = 𝑁2(𝑥) = 𝑁(𝑥) = 𝑏2 ⋅ ∫ 𝜏(𝑥) ⋅ 𝑑𝑥

𝑥

0

 (36) 

The total bending moment 𝑀𝑇(𝑥) of the infinitesimal 

element at a distance x, of the plated beam in Fig. 2 is given 

as follows 

𝑀𝑇(𝑥) = 𝑀1(𝑥) + 𝑀2(𝑥) + 𝑁(𝑥) ⋅ (𝑦1 + 𝑦2 + 𝑡𝑎) (37) 

The bending moment in each adherend, expressed as a 

function of the total applied moment and the interfacial 

shear stress, is given as 

𝑀1(𝑥) =
𝑅

𝑅 + 1
[

𝑀𝑇(𝑥) −

𝑏2∫𝜏(𝑥)(𝑦1 + 𝑦2 + 𝑡𝑎) 𝑑𝑥

𝑥

0

] (38) 

𝑀2(𝑥) =
1

𝑅 + 1
[

𝑀𝑇(𝑥) −

𝑏2∫𝜏(𝑥)(𝑦1 + 𝑦2 + 𝑡𝑎) 𝑑𝑥

𝑥

0

] (39) 

The first derivative of the bending moment in each 

adherend give 

𝑑𝑀1(𝑥)

𝑑𝑥
= 𝑉1(𝑥) =

𝑅

𝑅 + 1
[

𝑉𝑇(𝑥) −
𝑏2 ⋅ 𝜏(𝑥)(𝑦1 + 𝑦2 + 𝑡𝑎)

]

 (40) 

And  

𝑑𝑀2(𝑥)

𝑑𝑥
= 𝑉2(𝑥) =

1

𝑅 + 1
[𝑉𝑇(𝑥) − 𝑏2 ⋅ 𝜏(𝑥)(𝑦1 + 𝑦2 + 𝑡𝑎)]

 (41) 

Substituting Eq. (33) into Eq. (32) and differentiating 

the resulting equation once yields  

𝑑𝜏(𝑥)

𝑑𝑥
=
𝐺𝑎
𝑡𝑎

(

 
 
 
 
 
 
 
 
 
 
 

−
𝑦2
𝐸2. 𝐼2

. 𝑀2(𝑥) +
𝑁2(𝑥)

𝐸2. 𝐴2
−

𝑡2
12. 𝐺2

.
𝑑𝜏(𝑥)

𝑑𝑥
−

𝑦2
𝐺2. 𝐴2

.
𝑑𝑉2(𝑥)

𝑑𝑥
−

𝑦1
𝐸1. 𝐼1

. 𝑀1(𝑥) −
𝑁1(𝑥)

𝐸1. 𝐴1
−

𝑡1
12. 𝐺1

.
𝑑𝜏(𝑥)

𝑑𝑥
−

𝑦1
𝐺1. 𝐴1

.
𝑑𝑉1(𝑥)

𝑑𝑥
−

𝑡𝑎
(𝐸𝐼)𝑡

⋅ 𝑀𝑇(𝑥) −

𝑡𝑎
(𝛼 ⋅ 𝐺𝐴)𝑡

⋅
𝑑𝑉𝑇(𝑥)

𝑑𝑥 )

 
 
 
 
 
 
 
 
 
 
 

 (42) 

By rearranging Eq. (42) and introducing new parameters 

𝜉1 and 𝜉2 we have following relationships. 

𝑑𝜏(𝑥)

𝑑𝑥
= 
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𝐾𝑖

{
 
 
 
 
 

 
 
 
 
 −

𝑦2
𝐸2. 𝐼2

. 𝑀2(𝑥) +
𝑁2(𝑥)

𝐸2. 𝐴2
−

𝑦2
𝐺2 ⋅ 𝐴2 ⋅ 𝜉2

⋅
𝑑𝑉2(𝑥)

𝑑𝑥
−

𝑦1
𝐸1. 𝐼1

. 𝑀1(𝑥) −

𝑁1(𝑥)

𝐸1. 𝐴1
−

𝑦1
𝐺1 ⋅ 𝐴1 ⋅ 𝜉1

⋅
𝑑𝑉1(𝑥)

𝑑𝑥
−

𝑡𝑎
(𝐸𝐼)𝑡

⋅ 𝑀𝑇(𝑥) −

𝑡𝑎
(𝛼 ⋅ 𝐺𝐴)𝑡

⋅
𝑑𝑉𝑇(𝑥)

𝑑𝑥 }
 
 
 
 
 

 
 
 
 
 

 (43) 

In which 

{
  
 

  
 𝐾1 =

1

𝐾𝑖
𝑖 = 2,3

𝐾2 =
𝑡𝑎
𝐺𝑎
+

𝑡1
12 ⋅ 𝐺1

+
𝑡2

12 ⋅ 𝐺2

𝐾3 =
𝑡𝑎
𝐺𝑎

 (44) 

Where 𝜉1 = 𝜉2 = 1 are parameters shear deformation 

defined by Guenaneche (2014) and 𝜉1 = 𝜉2 = −
5

6
 are 

parameters defined by Edalati and Fereidon (2012) and 

Smith and Teng (2001) 

𝐾2  coefficient defined in this paper by Guenaneche 

(2014) and 𝐾3  coefficient defined by Smith and Teng 

(2001) and Edalati and Fereidon (2012) 

Differentiating the above expression with respect to x 

and substituting Eqs. (34)- (41) Into Eq. (43) yields 

𝑑2𝜏(𝑥)

𝑑𝑥2
− 𝑎0 ⋅ 𝜏(𝑥) + 𝑏0 ⋅

𝑑𝜎(𝑥)

𝑑𝑥
= 𝑓(𝑥) (45) 

in which the constants 𝑎0 and 𝑏0 and function 𝑓(𝑥) are 

defined as follows 

𝑎0 = 𝐾1 ⋅

[
 
 
 

1

𝐸1 ⋅ 𝐴1
+

1

𝐸2 ⋅ 𝐴2
+

(𝑦1 + 𝑦2) ⋅ (𝑦1 + 𝑦2 + 𝑡𝑎)

𝐸1 ⋅ 𝐼1 + 𝐸2 ⋅ 𝐼2 ]
 
 
 

⋅ 𝑏2 (46) 

𝑏0 = (
𝑦2

𝜉2 ⋅ 𝐺2 ⋅ 𝐴2
−

𝑦1
𝜉1 ⋅ 𝐺1 ⋅ 𝐴1

) ⋅ 𝐾1 ⋅ 𝑏2 (47) 

𝑓(𝑥) = −𝐾1 ⋅
(𝑦1 + 𝑦2 + 𝑡𝑎)

(𝐸1 ⋅ 𝐼1 + 𝐸2 ⋅ 𝐼2)
⋅ 𝑉𝑇(𝑥) −

𝐾1 ⋅
𝑦1

𝛼 ⋅ 𝐺1⋅𝐴1
⋅
𝑑𝑞

𝑑𝑥
−

𝐾1 ⋅ 𝑡𝑎
(𝛼 ⋅ 𝐺𝐴)𝑡

⋅
𝑑2𝑉𝑇(𝑥)

𝑑𝑥2

 (48) 

Eq. (45) is the first differential equation cougoverning 

interfacial stresses for plated beam. 

Differential equation for interfacial normal stresses 

Due to the loading of the plated beam, the adherend 1 

and the adherend 2 is subjected to distinct vertical 

displacements respectively 𝑉1(𝑥) and 𝑉2(𝑥), thus creating 

normal stresses in the adhesive layer. 

The normal stress 𝜎(𝑥)  in the adhesive layer is 

obtained by Smith and Teng (2001) and expressed with 

following equation. 

𝜎(𝑥) =
𝐸𝑎
𝑡𝑎
⋅ [𝑣2(𝑥) − 𝑣1(𝑥)] (49) 

In which 𝐸𝑎=elastic modulus of the adhesive layer; and 

𝑡𝑎=thickness of the adhesive layer. 

Differentiating Eq. (49) twice results in  

𝑑2𝜎(𝑥)

𝑑𝑥2
=
𝐸𝑎
𝑡𝑎
⋅ [
𝑑2𝑣2(𝑥)

𝑑𝑥2
−
𝑑2𝑣1(𝑥)

𝑑𝑥2
] (50) 

Considering the moment-curvature relationships for the 

beam and the external reinforcement, respectively, gives 

𝑑2𝑣𝑖(𝑥)

𝑑𝑥2
= −

1

𝐸𝑖 ⋅ 𝐼𝑖
⋅ 𝑀𝑖(𝑥) ∓

1

𝛼 ⋅ 𝐺𝑖 ⋅ 𝐴𝑖
⋅
𝑑𝑉𝑖(𝑥)

𝑑𝑥

𝑖 = 1,2 (51) 

The equilibrium of adherents 1 and 2, leads to the 

following relationships: 

Adherent 1 

𝑑𝑀1(𝑥)

𝑑𝑥
= 𝑉1(𝑥) − 𝑏2 ⋅ 𝑦1 ⋅ 𝜏(𝑥) (52) 

𝑑𝑉1(𝑥)

𝑑𝑥
= −𝑏2 ⋅ 𝜎(𝑥) − 𝑞(𝑥) (53) 

Adherent 2 

𝑑𝑀2(𝑥)

𝑑𝑥
= 𝑉2(𝑥) − 𝑏2 ⋅ 𝑦2 ⋅ 𝜏(𝑥) (54) 

𝑑𝑉2(𝑥)

𝑑𝑥
= 𝑏2 ⋅ 𝜎(𝑥) (55) 

Consecutively differentiating Eq. (51) and using Eqs. 

(52)-(55), the following expressions are obtained. 

For the adherent 1:  

𝑑4𝑣1(𝑥)

𝑑𝑥4
=

1

𝐸1 ⋅ 𝐼1
⋅ 𝑏2 ⋅ 𝜎(𝑥) +

1

𝐸1 ⋅ 𝐼1
⋅ 𝑞(𝑥) + 

𝑏2 ⋅ 𝑦1
𝐸1 ⋅ 𝐼1

⋅
𝑑𝜏(𝑥)

𝑑𝑥
−

1

𝛼 ⋅ 𝐺1 ⋅ 𝐴1
⋅
𝑑2𝑞(𝑥)

𝑑𝑥2
− 

𝑏2
𝛼 ⋅ 𝐺1 ⋅ 𝐴1

⋅
𝑑2𝜎(𝑥)

𝑑𝑥2
 

(56) 

For the adherent 2: 

𝑑4𝑣2(𝑥)

𝑑𝑥4
= −

1

𝐸2 ⋅ 𝐼2
⋅ 𝑏2 ⋅ 𝜎(𝑥) +

𝑏2 ⋅ 𝑦2
𝐸2 ⋅ 𝐼2

⋅
𝑑𝜏(𝑥)

𝑑𝑥
+

𝑏2
𝛼 ⋅ 𝐺2 ⋅ 𝐴2

⋅
𝑑2𝜎(𝑥)

𝑑𝑥2

 (57) 

By substituting Eq. (56) and Eq. (57) into the forth-

order derivative of Eq. (49), we obtain the following 

coupled differential equation.  

𝑑4𝜎(𝑥)

𝑑𝑥4
− 𝑐0 ⋅

𝑑2𝜎(𝑥)

𝑑𝑥2
+

𝑑0 ⋅ 𝜎(𝑥) + 𝑒0 ⋅
𝑑𝜏(𝑥)

𝑑𝑥
= 𝑔(𝑥)

 (58) 

In which constants 𝑐0 , 𝑑0  and 𝑒0  and function 

𝑔(𝑥) are defined as follows 
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𝑐0 =
𝐸𝑎
𝑡𝑎
⋅
𝑏2
𝛼
⋅ (

1

𝐺1 ⋅ 𝐴1
+

1

𝐺2 ⋅ 𝐴2
) (59) 

𝑑0 =
𝐸𝑎 ⋅ 𝑏2
𝑡𝑎

⋅ (
1

𝐸1 ⋅ 𝐼1
+

1

𝐸2 ⋅ 𝐼2
) (60) 

𝑒0 =
𝐸𝑎 ⋅ 𝑏2
𝑡𝑎

⋅ (
𝑦1

𝐸1 ⋅ 𝐼1
−

𝑦2
𝐸2 ⋅ 𝐼2

) (61) 

𝑔(𝑥) =
𝐸𝑎
𝑡𝑎
⋅

1

𝛼 ⋅ 𝐺1𝐴1
⋅
𝑑2𝑞(𝑥)

𝑑𝑥2
−

𝐸𝑎
𝑡𝑎
⋅

1

𝐸1 ⋅ 𝐼1
⋅ 𝑞(𝑥)

 (62) 

Eq. (58) is the second differential equation coupled 

governing interfacial stresses for plated beam. 

 

 

3. General solution for the coupled differential 
equations for interfacial stresses 
 

The Eqs. (48) and (58) form a system of coupled 

differential equations. To decouple Eqs. (48) and (58), we 

use the method defined in the paper of Edalati and Fereidon 

(2012) by multiplying the Eq. (48) by −𝑒0 ∙
𝑑

𝑑𝑥
 and Eq. (58) 

by  
𝑑2

𝑑𝑥2
− 𝑎0 . The interfacial shear stress 𝜏(𝑥) is this 

eliminated in the inhomogeneous coupled differential Eqs. 

(48) and (58). The solution obtained is given by the 

following expression. 

𝑑6𝜎(𝑥)

𝑑𝑥6
− (𝑎0 + 𝑐0) ⋅

𝑑4𝜎(𝑥)

𝑑𝑥4
+

(𝑎0 ⋅ 𝑐0 + 𝑑0 − 𝑏0 ⋅ 𝑒0) ⋅
𝑑2𝜎(𝑥)

𝑑𝑥2

−𝑎0 ⋅ 𝑑0 ⋅
𝑑𝜎(𝑥)

𝑑𝑥
=

𝑑2𝑔(𝑥)

𝑑𝑥2
− 𝑎0 ⋅ 𝑔(𝑥) − 𝑒0 ⋅

𝑑𝑓(𝑥)

𝑑𝑥
= 𝐹(𝑥)

 

(63) 

By multiplying the Eq. (48) by 
𝑑4

𝑑𝑥4
− 𝑐0 ∙

𝑑2

𝑑𝑥2
+ 𝑑0 and 

Eq. (58) by −𝑏0 ∙
𝑑

𝑑𝑥
. The interfacial shear stress 𝜎(𝑥) is 

this eliminated in the inhomogeneous coupled differential 

Eqs. (48) and (58). Then 

𝑑6𝜏(𝑥)

𝑑𝑥6
− (𝑎0 + 𝑐0) ⋅

𝑑4𝜏(𝑥)

𝑑𝑥4
+

(𝑎0 ⋅ 𝑐0 + 𝑑0 − 𝑏0 ⋅ 𝑒0) ⋅
𝑑2𝜏(𝑥)

𝑑𝑥2

−𝑎0 ⋅ 𝑑0 ⋅
𝑑𝜏(𝑥)

𝑑𝑥
=
𝑑4𝑓(𝑥)

𝑑𝑥4
− 𝑐0 ⋅

𝑑2𝑓(𝑥)

𝑑𝑥2
+

𝑑0 ⋅
𝑑𝑓(𝑥)

𝑑𝑥
− 𝑏0 ⋅

𝑑𝑔(𝑥)

𝑑𝑥
= 𝐺(𝑥)

 (64) 

The equation characteristic of the differential Eq. (63) is 

the same as that of Eq. (64). It is given by the following 

relationship 

𝑟6 − (𝑎0 + 𝑐0) ⋅ 𝑟
4 +

(𝑎0 ⋅ 𝑐0 + 𝑑0 − 𝑏0 ⋅ 𝑒0) ⋅ 𝑟
2 − 𝑎0 ⋅ 𝑑0 = 0

 (65) 

Using a change of variables, = 𝑟2 , obtains 

𝑚3 − (𝑎0 + 𝑐0) ⋅ 𝑚
2 +

(𝑎0 ⋅ 𝑐0 + 𝑑0 − 𝑏0 ⋅ 𝑒0) ⋅ 𝑚 − 𝑎0 ⋅ 𝑑0 = 0
 (66) 

To solve this equation we use the method of Tartaglia-

Cardan cited in Wikipedia (2018). By eliminating the 

second term of this equation, it is given by the following 

expression 

𝑚3 +
𝑛2
3
⋅ 𝑚 −

𝑛1
27

= 0 (67) 

Where 𝑛1  and 𝑛2  are given by followings 

relationships 

𝑛1 = 2 ⋅ 𝑎0
3 − 3 ⋅ 𝑎0

2 ⋅ 𝑐0 − 3 ⋅ 𝑎0 ⋅ 𝑐0
2 + 2 ⋅ 𝑐0

3 +
18 ⋅ 𝑎0 ⋅ 𝑑0 − 9 ⋅ 𝑐0 ⋅ 𝑑0 +

9 ⋅ 𝑎0 ⋅ 𝑏0 ⋅ 𝑒0 + 9 ⋅ 𝑏0 ⋅ 𝑐0 ⋅ 𝑒0

 (68) 

𝑛2 = −𝑎0
2 + 𝑎0 ⋅ 𝑐0 − 𝑐0

2 + 3 ⋅ 𝑑0 − 3 ⋅ 𝑏0 ⋅ 𝑒0 (69) 

The solutions of this Eq. (67) depend on the following Δ 

parameter. 

𝛥 =
𝑛1
2 + 4 ⋅ 𝑛2

3

272
 (70) 

If Δ is positive yield three solutions  

𝑚1 =
1

3
⋅ [𝑎0 + 𝑐0 −

√2
3

⋅ 𝑛2
𝑛3

+
𝑛3

√2
3 ] (71) 

𝑚2 =
1

3
⋅

[
 
 
 
 𝑎0 + 𝑐0 +

(1 + 𝑖√3) ⋅ 𝑛2

√4
3

⋅ 𝑛3
−

(1 − 𝑖√3) ⋅ 𝑛3

2 ⋅ √2
3 ]

 
 
 
 

 (72) 

𝑚3 =
1

3
⋅

[
 
 
 
 𝑎0 + 𝑐0 +

(1 − 𝑖√3) ⋅ 𝑛2

√4
3

⋅ 𝑛3
−

(1 + 𝑖√3) ⋅ 𝑛3

2 ⋅ √2
3 ]

 
 
 
 

 (73) 

Where 𝑚1  is positive real number and  𝑚2 , 𝑚3  are 

conjugate complex numbers. 

The parameter 𝑛3 is defined by following relationship 

𝑛3 = √𝑛1 +√𝑛1
2 + 4 ⋅ 𝑛2

3
3

 (74) 

The solutions of the differential Eqs. (63) and (64) are 

given by the following expressions.  

𝜎(𝑥) = 𝐶1 ⋅ 𝑒
−𝜓1⋅𝑥 + 𝑒−𝜓2⋅𝑥 ⋅ [

𝐶2 ⋅ cos(𝜓3 ⋅ 𝑥) +
𝐶3𝑠𝑖𝑛(𝜓3 ⋅ 𝑥)

] 

+𝐶4 ⋅ 𝑒
𝜓1⋅𝑥 + 𝑒𝜓2⋅𝑥 ⋅ [

𝐶5 ⋅ cos(𝜓3 ⋅ 𝑥) +
𝐶6𝑠𝑖𝑛(𝜓3 ⋅ 𝑥)

] −
𝐹(𝑥)

𝑎0 ⋅ 𝑑0
 

(75) 

𝜏(𝑥) = 𝐾1 ⋅ 𝑒
−𝜓1⋅𝑥 + 𝑒−𝜓2⋅𝑥 ⋅ [

𝐾2 ⋅ cos(𝜓3 ⋅ 𝑥) +
𝐾3𝑠𝑖𝑛(𝜓3 ⋅ 𝑥)

] 

+𝐾4 ⋅ 𝑒
𝜓1⋅𝑥 + 𝑒𝜓2⋅𝑥 ⋅ [

𝐾5 ⋅ cos(𝜓3 ⋅ 𝑥) +
𝐾6𝑠𝑖𝑛(𝜓3 ⋅ 𝑥)

] −
𝐺(𝑥)

𝑎0 ⋅ 𝑑0
 

(76) 

Where 𝐶1  to 𝐶6  and 𝐾1  to 𝐾6  are the constants of 
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integration which can be determined from appropriate 

boundary conditions. 

The coefficients 𝜓1 , 𝜓2 𝑎𝑛𝑑 𝜓3 are obtained by the 

following expressions 

𝜓1 = √𝑚1 (77) 

𝜓2 = √0.5 ⋅ (√𝜒1
2 + 𝜒2

2 + 𝜒1) (78) 

𝜓3 =
𝜒2

2 ⋅ 𝜓2
 (79) 

Where 𝜒1, 𝜒2, are respectively real and imaginary of 

complex number 𝑚2 and  𝑚3 

𝜒1 =
1

3
⋅ [𝑎0 + 𝑐0 +

𝑛2

√4
3

⋅ 𝑛3
−

𝑛3

2 ⋅ √2
3 ] (80) 

𝜒2 =
1

3
⋅ [
√3 ⋅ 𝑛2

√4
3

⋅ 𝑛3
+
𝑛3 ⋅ √3

2 ⋅ √2
3 ] (81) 

The positive exponential terms in Eqs. (75) and (76) are 

considered neglected by Narayamurty (2016) for almost all 

practical plated beams so that 𝐶4 = 𝐶5 = 𝐶6 = 𝐾4 = 𝐾5 =
𝐾6 = 0. The expressions of 𝜏(𝑥) and 𝜎(𝑥) are simplified. 

𝜎(𝑥) = 𝐶1 ⋅ 𝑒
−𝜓1⋅𝑥 +

𝑒−𝜓2⋅𝑥 ⋅ [
𝐶2 ⋅ cos(𝜓3 ⋅ 𝑥) +
𝐶3𝑠𝑖𝑛(𝜓3 ⋅ 𝑥)

] −
𝐹(𝑥)

𝑎0 ⋅ 𝑑0

 (82) 

𝜏(𝑥) = 𝐾1 ⋅ 𝑒
−𝜓1⋅𝑥 +

𝑒−𝜓2⋅𝑥 ⋅ [
𝐾2 ⋅ cos(𝜓3 ⋅ 𝑥) +
𝐾3𝑠𝑖𝑛(𝜓3 ⋅ 𝑥)

] −
𝐺(𝑥)

𝑎0 ⋅ 𝑑0

 (83) 

By simultaneous substitution of Eqs. (82) and (83) into 

one of the coupled differential Eq. (45), the constants 𝐾1 

through 𝐾3 can be evaluated as functions of 𝐶1 through 

𝐶3 

𝐾1 =
𝑏0 ⋅ 𝜓1 ⋅ 𝐶1
𝜓1
2 − 𝑎0

 

𝐾2 = 𝛿5 ⋅ 𝐶2 + 𝛿6 ⋅ 𝐶3 

𝐾3 = −𝛿6 ⋅ 𝐶2 + 𝛿5 ⋅ 𝐶3 

(84) 

Where 𝜆1, 𝛿1, 𝛿2, 𝛿3, 𝛿4, 𝛿5 𝑎𝑛𝑑 𝛿6  are given by 

following relationships 

𝜆1 =
𝑏0 ⋅ 𝜓1
𝜓1
2 − 𝑎0

 (85) 

𝛿1 = 𝜓2
2 − 𝜓3

2 − 𝑎0 

𝛿2 = 2 ⋅ 𝜓2 ⋅ 𝜓3 

𝛿3 = 𝑏0 ⋅ 𝜓2 

𝛿4 = 𝑏0 ⋅ 𝜓3 

(86) 

𝛿5 =
𝛿1 ⋅ 𝛿3 + 𝛿2 ⋅ 𝛿4

𝛿1
2 + 𝛿2

2 , 𝛿6 =
𝛿2 ⋅ 𝛿3 − 𝛿1 ⋅ 𝛿4

𝛿1
2 + 𝛿2

2  (87) 

If Δ is negative, then 𝑚4, 𝑚5 and 𝑚6 are positive real 

numbers, the solutions of differential Eqs. (63) and (64) are 

expressed by following relationships 

𝜎(𝑥) = 𝐶7 ⋅ 𝑒
−𝜓4⋅𝑥 + 𝐶8 ⋅ 𝑒

𝜓4⋅𝑥 +

𝐶9 ⋅ 𝑒
−𝜓5⋅𝑥 + 𝐶10 ⋅ 𝑒

𝜓5⋅𝑥

+𝐶11 ⋅ 𝑒
−𝜓6⋅𝑥 + 𝐶12 ⋅ 𝑒

𝜓6⋅𝑥 −
𝐹(𝑥)

𝑎0 ⋅ 𝑑0

 (88) 

𝜏(𝑥) = 𝐾7 ⋅ 𝑒
−𝜓4⋅𝑥 + 𝐾8 ⋅ 𝑒

𝜓4⋅𝑥 +

𝐾9 ⋅ 𝑒
−𝜓5⋅𝑥 + 𝐾10 ⋅ 𝑒

𝜓5⋅𝑥 +

𝐾11 ⋅ 𝑒
−𝜓6⋅𝑥 + 𝐾12 ⋅ 𝑒

𝜓6⋅𝑥 −
𝐺(𝑥)

𝑎0 ⋅ 𝑑0

 (89) 

Where the parameters 𝜓𝑖 , 𝑖 = 4,5 and 6 are determined 

by the solutions of the equation characteristic of the 

differential Eq. (63). 

𝜓𝑖 = √𝑚𝑖 𝑖 = 4,5 𝑎𝑛𝑑 6 (90) 

The constants K7 through K12 can be evaluated as 

functions of C7 through C12 

𝐾𝑖 =
𝑏0 ⋅ 𝜓𝑖 ⋅ 𝐶𝑖
𝜓𝑖
2 − 𝑎0

𝑖 = 7,12 (91) 

The positive exponential terms in Eqs. (75) and (76) are 

considered neglected by Narayamurty (2016) for almost all 

practical plated beams so that  𝐶8 = 𝐶10 = 𝐶12 = 𝐾8 =
𝐾10 = 𝐾12 = 0 . The expressions of 𝜏(𝑥)  and 𝜎(𝑥)  are 

simplified.  

𝜎(𝑥) = 𝐶7 ⋅ 𝑒
−𝜓4⋅𝑥 + 𝐶9 ⋅ 𝑒

−𝜓5⋅𝑥 +

𝐶11 ⋅ 𝑒
−𝜓6⋅𝑥 −

𝐹(𝑥)

𝑎0 ⋅ 𝑑0

 (92) 

𝜏(𝑥) = 𝐾7 ⋅ 𝑒
−𝜓4⋅𝑥 +

𝐾9 ⋅ 𝑒
−𝜓5⋅𝑥 + 𝐾11 ⋅ 𝑒

−𝜓6⋅𝑥 −
𝐺(𝑥)

𝑎0 ⋅ 𝑑0

 (93) 

 

3.1 General boundary conditions  
 

The general boundary conditions are expressed by the 

following relations  

𝑁1(0) = 𝑁2(0) = 𝑀2(0) = 0 (94) 

𝑀1(0) = 𝑀𝑇(0) (95) 

𝑉2(0) = 0 , 𝑉1(0) = 𝑉𝑇(0) (96) 

Substitution of Eqs. (94) and (95) into Eq. (43) gives 

Eq. (97). The same manner by substitution of the Eqs. (51) 

and (95) into the second derivative of Eq. (49) with respect 

to x gives Eq. (98). Finally substitution of the third 

derivative of Eq. (51) with respect to x into right side of the 

third derivative of Eq. (49) with respect to x and using Eq. 

(96) arrives at Eq. (99). 

𝑏0 ⋅ 𝜎(𝑥)|𝑥=0 +
𝑑𝜏(𝑥)

𝑑𝑥
|𝑥=0 = 𝑓1(𝑥)|𝑥=0 + 

𝑔1(𝑥)|𝑥=0 

(97) 

− 𝑐0 ⋅ 𝜎(𝑥)|𝑥=0 +
𝑑2𝜎(𝑥)

𝑑𝑥2
|𝑥=0 = 1(𝑥)|𝑥=0 + 

𝑚1(𝑥)|𝑥=0 

(98) 
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𝑒0 ⋅ 𝜏(𝑥)|𝑥=0 − 𝑐0 ⋅
𝑑𝜎(𝑥)

𝑑𝑥
|𝑥=0 +

𝑑3𝜎(𝑥)

𝑑𝑥3
|𝑥=0 = 𝑛1(𝑥)|𝑥=0

 (99) 

The functions 𝑓1(𝑥) , 𝑔1(𝑥) , 1(𝑥) , 𝑚1(𝑥)  and 

𝑛1(𝑥)  depend on the applied load. 

𝑓1(𝑥)|𝑥=0 = −𝐾1 ⋅ [

𝑦1
𝐸1 ⋅ 𝐼1

+

𝑡𝑎
𝐸1 ⋅ 𝐼1 + 𝐸2 ⋅ 𝐼2

] ⋅ 𝑀𝑇(𝑥)|𝑥=0 (100a) 

𝑔1(𝑥)|𝑥=0 = 𝐾1 ⋅

[
 
 
 
 

𝑦1
𝐺1 ⋅ 𝐴1

+

𝑡𝑎

𝛼 ⋅ (
𝐺1 ⋅ 𝐴1 +
𝐺2 ⋅ 𝐴2

)
]
 
 
 
 

⋅ 𝑞(𝑥)|𝑥=0 (100b) 

1(𝑥)|𝑥=0 =
𝐸𝑎
𝑡𝑎
⋅

1

𝐸1 ⋅ 𝐼1
⋅ 𝑀𝑇(𝑥)|𝑥=0 (100c) 

𝑚1(𝑥)|𝑥=0 =
𝐸𝑎
𝑡𝑎
⋅

1

𝛼 ⋅ 𝐺1 ⋅ 𝐴1
⋅ 𝑞(𝑥)|𝑥=0 (100d) 

𝑛1(𝑥)|𝑥=0 =
𝐸𝑎
𝑡𝑎
⋅

1

𝐸1 ⋅ 𝐼1
⋅ 𝑉𝑇(𝑥)|𝑥=0 (100e) 

𝑟1(𝑥)|𝑥=0 =
𝐸𝑎
𝑡𝑎
⋅ (

1

𝛼 ⋅ 𝐺1 ⋅ 𝐴1
) ⋅
𝑑𝑞(𝑥)

𝑑𝑥
|𝑥=0 (100f) 

 

3.1.1 Calculating constants C1 through C3 in the Δ 
positive case 

By substituting 𝜏(𝑥)|𝑥=0 

,  𝜎(𝑥)|𝑥=0,
𝑑𝜏(𝑥)

𝑑𝑥
|𝑥=0.

𝑑𝜎(𝑥)

𝑑𝑥
|𝑥=0,

𝑑2𝜎(𝑥)

𝑑𝑥2
|𝑥=0  and 

𝑑3𝜎(𝑥)

𝑑𝑥3
|𝑥=0  in Eqs. (95), (96) and (97) we obtain a 

system of three equations with three unknowns 𝐶1, 𝐶2 and 

𝐶3 

{
 
 
 
 
 

 
 
 
 
 (𝑏0 −

𝑏0 ⋅ 𝜓1
2

𝜓1
2 − 𝑎0

) ⋅ 𝐶1 +

(𝑏0 −𝜓2 ⋅ 𝛿5 − 𝜓3 ⋅ 𝛿6) ⋅ 𝐶2 +
(𝜓3 ⋅ 𝛿5 −𝜓2 ⋅ 𝛿6) ⋅ 𝐶3 = 𝑧1

(𝜓1
2 − 𝑐0) ⋅ 𝐶1 +

(𝜓2
2 − 𝜓3

2 − 𝑐0) ⋅ 𝐶2 − 2 ⋅ 𝜓2 ⋅ 𝜓3 ⋅ 𝐶3 = 𝑧2

(
𝑒0 ⋅ 𝜓1 ⋅ 𝑏0
𝜓1
2 − 𝑎0

+ 𝑐0 ⋅ 𝜓1 − 𝜓1
3) ⋅ 𝐶1 +

(𝑒0 ⋅ 𝛿5 + 𝑐0 ⋅ 𝜓2 −𝜓2
3 + 3 ⋅ 𝜓2 ⋅ 𝜓3

2) ⋅ 𝐶2
+(𝑒0 ⋅ 𝛿6 − 𝑐0 ⋅ 𝜓3 − 𝜓3

3 + 3 ⋅ 𝜓2
2 ⋅ 𝜓3) ⋅ 𝐶3 = 𝑧3

 (101) 

Where 𝑍1  𝑍2, and 𝑍3 depend on the applied load 

𝑧1 =
𝑏0

𝑎0 ⋅ 𝑑0
⋅ 𝐹(𝑥)|𝑥=0 −

1

𝑎0 ⋅ 𝑑0
⋅ 

𝑑𝐺(𝑥)

𝑑𝑥
|𝑥=0 + 𝑓1(𝑥)|𝑥=0 + 𝑔1(𝑥)|𝑥=0 

(102) 

 

𝑧2 = −
𝑐0 ⋅ 𝐹(𝑥)

𝑎0 ⋅ 𝑑0
|𝑥=0 + 

1

𝑎0 ⋅ 𝑑0
⋅
𝑑2𝐹(𝑥)

𝑑𝑥2
|𝑥=0 + 1(𝑥)|𝑥=0 +𝑚1(𝑥)|𝑥=0 

(103) 

𝑧3 =
𝑒0 ⋅ 𝐺(𝑥)|𝑥=0

𝑎0 ⋅ 𝑑0
−

𝑐0
𝑎0 ⋅ 𝑑0

⋅
𝑑𝐹(𝑥)

𝑑𝑥
|𝑥=0 

+
1

𝑎0 ⋅ 𝑑0
⋅
𝑑3𝐹(𝑥)

𝑑𝑥3
|𝑥=0 + 𝑛1(𝑥)|𝑥=0 + 𝑟1(𝑥)|𝑥=0 

(104) 

The analytical relationships for C1, C2, and C3 can be 

calculated using free mathematical code (GNU Octave) or 

commercial mathematical code (Matlab or Maple). 

 

3.1.2 Calculating constants C1 through C3 in the Δ 
negative case 

By substituting 𝜏(𝑥)|𝑥=0 

,  𝜎(𝑥)|𝑥=0,
𝑑𝜏(𝑥)

𝑑𝑥
|𝑥=0.

𝑑𝜎(𝑥)

𝑑𝑥
|𝑥=0,

𝑑2𝜎(𝑥)

𝑑𝑥2
|𝑥=0  and 

𝑑3𝜎(𝑥)

𝑑𝑥3
|𝑥=0 in Eqs. (95), (96) and (97) we obtain a 

system of three equations with three unknowns 𝐶7 𝐶9  , 

and 𝐶11 

{
 
 
 
 
 
 

 
 
 
 
 
 (

1

𝜓4
2 − 𝑎0

) ⋅ 𝐶7 + (
1

𝜓5
2 − 𝑎0

) ⋅ 𝐶9 +

(
1

𝜓6
2 − 𝑎0

) ⋅ 𝐶11 = 𝑧1

(𝜓4
2 − 𝑎0) ⋅ 𝐶7 + (𝜓5

2 − 𝑎0) ⋅ 𝐶9 +

(𝜓6
2 − 𝑎0) ⋅ 𝐶11 = 𝑧2

(
𝑏0 ⋅ 𝑒0 ⋅ 𝜓4
𝜓4
2 − 𝑎0

+ 𝑐0 ⋅ 𝜓4 −𝜓4
3) ⋅ 𝐶7 +

(
𝑏0 ⋅ 𝑒0 ⋅ 𝜓5
𝜓5
2 − 𝑎0

+ 𝑐0 ⋅ 𝜓5 − 𝜓5
3) ⋅ 𝐶9 +

(
𝑏0 ⋅ 𝑒0 ⋅ 𝜓4
𝜓6
2 − 𝑎0

+ 𝑐0 ⋅ 𝜓6 − 𝜓6
3) ⋅ 𝐶11 = 𝑧3

 (105) 

Where  𝑍1, 𝑍2 and 𝑍3 depend on the applied load. The 

expressions of  𝑍1, 𝑍2 and  𝑍3 are identical to those given 

by Eqs. (102), (103) and (104).  

The analytical relationships for C7, C9, and C11 can be 

calculated using free mathematical code (GNU Octave) or 

commercial mathematical code (Matlab or Maple). 

 

3.1.3 Calculating the parameters z1, z2 and z3 for 
UDL case 

The relations of the total shear force and the total 

bending moment, in the case of UDL [𝑞(𝑥) = 𝑞] are as 

follows 

𝑉𝑇(𝑥) =
𝑞

2
⋅ (𝐿𝑝 − 2 ⋅ 𝑥) (106) 

𝑀𝑇(𝑥) =
𝑞

2
⋅ [𝑥 ⋅ (𝐿𝑝 − 2 ⋅ 𝑥) + 𝐿𝑓𝑠 ⋅ (𝐿𝑝 + 𝐿𝑓𝑠)] (107) 

For 0 ≤ 𝑥 ≤  𝐿𝑝 

Substituting Eq. (106) in Eq. (49) we obtain the 

following relationship 
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𝑓(𝑥) = −
𝐾1 ⋅ 𝑞

2
⋅
(𝑦1 + 𝑦2 + 𝑡𝑎)

(𝐸1 ⋅ 𝐼1 + 𝐸2 ⋅ 𝐼2)
⋅ (𝐿𝑝 − 2 ⋅ 𝑥) (108) 

The loading of the plated beam being uniform and 

constant [𝑞(𝑥) = 𝑞], Eq. (63) takes the following form 

𝑔(𝑥) = −
𝐸𝑎
𝑡𝑎
⋅

1

𝐸1 ⋅ 𝐼1
⋅ 𝑞 (109) 

Substituting Eqs. (108) and (109) in Eqs. (63a) and 

(64a) gives the following relationships 

𝐹(𝑥) =
𝐸𝑎
𝑡𝑎
⋅
𝑞 ⋅ 𝑎0
𝐸1 ⋅ 𝐼1

− 𝐾1 ⋅ 𝑞 ⋅ 𝑒0 ⋅
(𝑦1 + 𝑦2 + 𝑡𝑎)

(𝐸1 ⋅ 𝐼1 + 𝐸2 ⋅ 𝐼2)
 (110) 

𝐺(𝑥) = 𝐾1 ⋅ 𝑞 ⋅ 𝑑0 ⋅
(𝑦1 + 𝑦2 + 𝑡𝑎)

(𝐸1 ⋅ 𝐼1 + 𝐸2 ⋅ 𝐼2)
 (111) 

By substituting 𝑞(𝑥)|𝑥=0 ,
𝑑2𝑞(𝑥)

𝑑𝑥2
|𝑥=0 , 

𝑉(𝑥)|𝑥=0, 
𝑑𝑉(𝑥)

𝑑𝑥
|𝑥=0, 𝑀(𝑥)|𝑥=0 , 

𝐹(𝑥)|𝑥=0 , 𝐺(𝑥)|𝑥=0 , 
𝑑𝐹(𝑥)

𝑑𝑥
|𝑥=0, 

𝑑𝐺(𝑥)

𝑑𝑥
|𝑥=0,

𝑑2𝐹(𝑥)

𝑑𝑥2
|𝑥=0, 

𝑑3𝐹(𝑥)

𝑑𝑥3
|𝑥=0, 

𝑓1(𝑥)|𝑥=0, 𝑔1(𝑥)|𝑥=0, 1(𝑥)|𝑥=0, 𝑚1(𝑥)|𝑥=0, 𝑛1(𝑥)|𝑥=0, and 

𝑟1(𝑥)|𝑥=0 in Eqs. (102), (103) and (104) we obtain the 

following equations of parameters 𝑧1, 𝑧2 and z3 

𝑧1 =
𝐸𝑎

𝑡𝑎 ⋅ 𝑑0
⋅
𝑞 ⋅ 𝑏0
𝐸1 ⋅ 𝐼1

−
𝐾1 ⋅ 𝑞 ⋅ 𝑏0 ⋅ 𝑒0

𝑎0 ⋅ 𝑑0
⋅
(𝑦1 + 𝑦2 + 𝑡𝑎)

(𝐸1 ⋅ 𝐼1 + 𝐸2 ⋅ 𝐼2)
− 

𝐾1 ⋅ 𝑞 ⋅ 𝐿𝑓𝑠 ⋅ (𝐿𝑝 + 𝐿𝑓𝑠)

2
⋅ [

𝑦1
𝐸1 ⋅ 𝐼1

+
𝑡𝑎

𝐸1 ⋅ 𝐼1 + 𝐸2 ⋅ 𝐼2
] + 

𝐾1 ⋅ 𝑞 ⋅ [
𝑦1

𝐺1 ⋅ 𝐴1
+

𝑡𝑎
𝛼 ⋅ (𝐺1 ⋅ 𝐴1 + 𝐺2 ⋅ 𝐴2)

] 

(112

) 

𝑧2 = −
𝑐0

𝑎0 ⋅ 𝑑0
[
𝐸𝑎
𝑡𝑎
⋅
𝑞 ⋅ 𝑎0
𝐸1 ⋅ 𝐼1

− 𝐾1 ⋅ 𝑞 ⋅ 𝑒0 ⋅
(𝑦1 + 𝑦2 + 𝑡𝑎)

(𝐸1 ⋅ 𝐼1 + 𝐸2 ⋅ 𝐼2)
] +

𝐸𝑎
𝑡𝑎
⋅

1

𝐸1 ⋅ 𝐼1
⋅
𝑞 ⋅ 𝐿𝑓𝑠 ⋅ (𝐿𝑝 + 𝐿𝑓𝑠)

2
+

𝐸𝑎
𝑡𝑎
⋅

𝑞

𝛼 ⋅ 𝐺1 ⋅ 𝐴1

 
(113

) 

𝑧3 =
𝑒0

𝑎0 ⋅ 𝑑0
⋅ 𝐾1 ⋅ 𝑞 ⋅ 𝑑0 ⋅

(𝑦1 + 𝑦2 + 𝑡𝑎)

(𝐸1 ⋅ 𝐼1 + 𝐸2 ⋅ 𝐼2)
 

+
𝐸𝑎
𝑡𝑎
⋅

1

𝐸1 ⋅ 𝐼1
⋅
𝑞 ⋅ 𝐿𝑝
2

 

(114

) 

 

3.1.4 Calculating the parameters z1, z2  and z3  for 
one concentrated load case 

For a point load, two domains are defined (see Fig. 4). 

The computation of the interface stresses in domain 1 (Fig. 

4 Section 1) is similar to that of the plated beam subjected 

to uniform loading. In order to calculate the interfacial 

stresses in the domain 2 represented by section 2, Fig. 4 is 

turned over and the direction of the x-axis is changed. This 

method makes it possible to avoid the use of the continuity 

conditions at the point of application of the concentrated 

load and the boundary conditions at the right end of the 

plate. With this technique, the integration constants are 

easily obtained. 

The relations of the total shear force and the total 

bending moment, in the case of single point load are in 

 

Fig. 4 Simply supported beam bonded with a soffit plate 

under a point load 

 

 Fig. 5 Simply supported beam bonded with a soffit plate 

under a point load a two point loads

  

 

domain 1 as follows: 

For 0 ≤ 𝑥 ≤ 𝑏 − 𝐿𝑓𝑠 𝑉𝑇(𝑥) =
𝑃

𝐿
. (𝐿 − 𝑏) and 

𝑀𝑇(𝑥) =
𝑃 ⋅ (𝐿 − 𝑏)

𝐿
⋅ (𝐿𝑓𝑠 + 𝑥) (115) 

The parameters z1, z2 and z3 are given by following 

equations.  

𝑧1 = −
𝐾1 ⋅ 𝑃 ⋅ 𝐿𝑓𝑠 ⋅ (𝐿 − 𝑏)

𝐿
⋅ [

𝑦1
𝐸1 ⋅ 𝐼1

+

𝑡𝑎
𝐸1 ⋅ 𝐼1 + 𝐸2 ⋅ 𝐼2

] (116) 

𝑧2 =
𝐸𝑎
𝑡𝑎
⋅

1

𝐸1 ⋅ 𝐼1
⋅
𝑃 ⋅ 𝐿𝑓𝑠 ⋅ (𝐿 − 𝑏)

𝐿
 (117) 

𝑧3 =
𝐸𝑎
𝑡𝑎
⋅

1

𝐸1 ⋅ 𝐼1
⋅
𝑃 ⋅ (𝐿 − 𝑏)

𝐿
 (118) 

 

3.1.5 Calculating the parameters z1, z2 and z3 for two 
concentrated load 

To determine the interfacial stresses in the case of a 

plated beam subjected to two concentrated loads (Fig. 5) the 

superposition principle is used. The calculation of the 

normal and shear stresses in the case of Figs. 6 and 7 is 

similar to that of the point load. 

 

 

4. Comparison of interfacial stress and discussion 
 

In this section, the results of the present method for 

interfacial stress are checked for accuracy. For that, two  
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 Fig. 6 Simply supported beam bonded with a soffit plate 

under a point load

 
 

Table1 Material and geometric properties 

 
Stephen et al. 

(2008) 

Present with 

shear lag 

 (stage 4) 

Present without 

shear lag 

(stage 2) 

Beam 10 series C 2.12 2.297 4.445 

Beam 12 series D 2.14 2.75 3.976 

Beam 19 series F 1.381 1.326 2.303 

Beam 20 series F 1.05 1.697 2.922 

 

 

comparisons are made. The first results are compared with 

theoretical solutions and the second with experimental 

results. In this comparison we distinguish four stages: 

Stage 1: the interfacial stresses are calculated with 

theory of Timoshenko beam without the effect of the 

reduced second moment of area. 

Stage 2: the interfacial stresses are calculated with 

theory of Timoshenko beam with the effect of the reduced 

second moment of area. 

Stage 3: the interfacial stresses are calculated with shear 

deformation obtained with theory of elasticity without the 

effect of the reduced second moment of area. 

Stage 4: the interfacial stresses are calculated with shear 

deformation obtained with theory of elasticity with the 

effect of the reduced second moment of area. 

 

4.1 Comparison with theoretical solutions 
 

A simply supported beam subjected to a single point 

load or a uniformly distributed load is considered. The RC 

beam is assumed to be bonded with a CFRP soffit plate. A 

summary of the material and geometric properties is shown 

in Table 1. The span of RC beam is L=3000 mm, the 

distance from the support to the end of the plate is a=300 

mm, the mid-point load is 150 KN and UDL is 50 KN/m. 

To validate the present analysis, direct comparisons are 

made between our results and the existing closed-form 

solutions. For that, the present interfacial stresses are 

compared with the solution of Smith and Teng (2001) where 

the effect of adherend shear deformations is not taken into 

consideration, the analytical method of Edalati and 

Fereidoon (2012) where the shear deformations where 

included in beam, adhesive layer and soffit plate, the 

solution of Yang and Wu (2007) which takes into account 

the transverse shear deformation in both the concrete beam 

and bonded plate, the solution of Guenaneche et al. (2014)  
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Fig. 7 Comparison of interfacial shear stresses for an RC 

beam with a bonded CFRP soffit plate subjected to a 

uniformly distributed load (UDL) 
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Fig. 8 Comparison of interfacial normal stresses for an RC 

beam with a bonded CFRP soffit plate subjected to a 

uniformly distributed load (UDL) 

 

 

where the variation of the shear stresses induced by 

adherends shear deformations effect is obtained directly 

from the equilibrium equations of stresses and finally the 

theoretical solution of Tounsi (2006) where the adherend 

shear deformations have been included with a linear 

variation across the thickness. 

The interfacial shear and normal stress distributions in 

the concrete beam bonded with CFRP soffit plate subjected 

to a uniformly distributed load (UDL) of the present method 

are compared in Fig. 7 and Fig. 8 with other previously 

mentioned solutions. 

From these figures, it can be seen that the highest values 

of the interfacial stresses are obtained by the solution of 

Edalati and Fereidoon (2012) and present solution in stage 1 

and 2 and the lower are given by the solution of Tounsi 

(2006). 

The interfacial stresses calculated from the other 

solutions including the present are between the two 

aforementioned methods. In addition, the results of this 

method in stage 3 and 4 coincide perfectly with those of 

Guenaneche et al. (2014). The difference which exists  
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Fig. 9 Comparison of interfacial shear stresses for an RC 

beam with a bonded CFRP soffit plate subjected to a single 

point load (SPL) 
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Fig. 10 Comparison of interfacial normal stresses for an RC 

beam with a bonded CFRP soffit plate subjected to a single 

point load (SPL). 

 

 

between the results of the different solutions can be 

explained by the taking or not of the shear deformations in 

the adherents namely beam, soffit plate and adhesive layer 

and the way in which the latter has been formulated. 

A second comparison of the interface stresses of the 

present method with those of the literature is presented in 

Figs. 9 and 10. This time the beam is subjected to a single 

point load (SPL) of a value 150 Kn. The same observation 

as in the case of a distributed load is observed. 

Therefore, it is clear that the inclusion of shear 

deformations reduces the concentration of interface stresses 

and leads to a more uniform distribution. 

In a general, we can say that there is a concordance 

between the different results. 

 

4.2 Comparison with experimental results 
 

In this section another comparison of the results of the 

present method is made. Four beams bonded with a FRP 

plate tested by Stephen et al. (2008), beam 10 of the series 

C, beam 12 of the series D and the beams 19 and 20 of the 

series F, were analyzed here using the present improved 

solution. The schema of beams 10, 12, 19 and 20 is 

presented in Fig. 5. 

A summary of the geometric and material properties of 

the beams and FRP plate are listed below: 

The Young modulus of FRP plate and the adhesive layer 

are respectively is 259000 MPa and 2960 MPa. The 

thickness of the adhesive is 0,5 mm. 

Series F Beams 19 and 20: f c=55 MPa, FRP tp=0.330 

mm, FRP length Lp=2,235 mm 

Series C Beam 10: f c=21 MPa, FRP tp=0.660 mm, FRP 

length Lp=2,235 mm 

Series D Beam 12: f c=21 MPa, FRP tp=0.660 mm, FRP 

length Lp=2,235 mm 

The comparison of the peak interfacial shear stresses is 

given in Table 2. From this table, it is clear the results of the 

present method with the taking into account of shear lag 

effect (shear deformations in the adherents) are in excellent 

agreement with the experimental results. However, there is 

a significant gap with those without taking into account the 

shear lag effect. This confirms what was involved earlier 

than the inclusion of shear deformations reduces the 

concentration of interface stresses.  

 

 

5. Theoretical parametric study 
 

In this section, numerical results are presented to study 

and analyze the effect of various parameters on the 

distributions of the interfacial stresses in an RC beam 

bonded with an FRP plate.  

 

5.1 Effect of elasticity modulus of the strengthening 
plate 

 

Figures give interfacial normal and shear stresses for the 

RC beam bonded with FRP plate. Different Young's 

modulus values are used which demonstrate the effect of 

plate material properties on interfacial stresses. 

As can be seen from this figure; when the plate material 

becomes stiffer, the interfacial stresses increase. This is 

because, under the same load, the tensile force developed in 

the plate is bigger, which leads to increase interfacial 

stresses.  

 

5.2 Effect of the plate thickness 
 

In Fig. 11we represent the effect of the plate thickness 

on the interfacial stresses. This parameter is very important 

in design practice. From this figure, it can be seen that peak 

stresses are very influenced by the variation of the thickness 

of the FRP plate. It is shown that the interfacial stresses 

increase as the thickness of FRP plate increases. 

 
5.3 Effect the adhesive layer thickness 

 

The effects of the thickness, of the adhesive layer on the 
interfacial stresses, is represented in Fig. 12 .It can be seen 
that increasing the thickness of the adhesive layer leads to 
significant reduction in the peak interfacial stresses. Thus it 
is recommended to use a variable thickness of the adhesive 
layer. In the vicinity of the edge, where the stresses are 
high, it is recommended using thick adhesive layer. 
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Fig. 11 Effect of the Young modulus of the FRP plate on 

interfacial stresses in strengthened beam 
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Fig. 12 Effect of plate thickness on interfacial stresses 
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Fig. 13 Effect of the adhesive layer thickness on interfacial 

stresses 

 

 

5.4 Effect of the elasticity modulus of the RC beam 
 

The effects of Young’s modulus of the RC beam on the 

interfacial edge stresses are shown in Fig. 14 

As seen, the stresses decrease when the Young modulus 

of the RC beam increases. Hence, a RC beam with a higher 

modulus and strength is suggested for reducing the level 

and concentration of interfacial stresses. 
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Fig. 14 Effect of the elasticity modulus of the RC beam on 

interfacial stresses 
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Fig. 15 Effect of the elasticity modulus of the adhesive 

layer on interfacial stresses 

 

 

5.5 Effect of the elasticity modulus of the adhesive 
layer 
 

The adhesive layer is a relative soft isotropic material 

with a low stiffness. In Fig. 15 we depict the variation of the 

peak interfacial stresses versus the elasticity modulus of the 

adhesive layer.  

The figure revels that the peak stresses at the end of the 

plate increase as Young’s modulus of the adhesive 

increases. 

 

 

6. Conclusions 
 

The deboning failure in plated beams plates is due to the 

high concentrations of the stresses at the edges. It is 

therefore very important to quantify these stresses in order 

to save the reinforced structures. In this paper interfacial 

stresses in FRP-RC beam were studied by an accurate 

analytical method taking account the effect of shear 

deformations by using the equilibrium equations of the 

elasticity. The solution has been developed including stress-

strain and strain-displacement relationships for the adhesive 

and adherends. The resolution of the coupled differential 

equations gives new explicit closed-form solution including 
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shear deformations effects. A comparison shows that the 

new solution is in close agreement in both interfacial shear 

and normal stresses with those of literature. The solution 

methodology is general in nature and may be applicable to 

the analysis of other types of composite structures. In future 

other type of reinforcement can be considered as concrete 

columns or polymer matrix reinforced with nano-materials 

(Arani and Kolahchi 2016, Bilouei et al. 2016, Madani et 

al. 2016; Zamanian et al. 2017; Kolahchi et al. 2017a, 

Hajmohammad et al. 2017, Kolahchi and Cheraghbak 2017, 

Zarei et al. 2017, Hajmohammad et al. 2018a,b,c, Amnieh 

et al. 2018, Golabchi et al. 2018, Hosseini and Kolahchi 

2018, Bakhadda et al. 2018). In addition, other theories and 

other types of materials (Bousahla et al. 2014, Belkorissat 

et al. 2015, Attia et al. 2015, Kolahchi et al. 2016, Kolahchi 

et al. 2016a,b, Beldjelili et al. 2016, Kolahchi 2017, 

Menasria et al. 2017, Kolahchi et al. 2017b,c, Fahsi et al. 

2017, El-Haina et al. 2017, Bellifa et al. 2017, Fakhar and 

Kolahchi 2018, Fourn et al. 2018, Attia et al. 2018, Younsi 

et al. 2018, Benchohra et al. 2018, Belabed et al. 2018, 

Abualnour et al. 2018, Bourada et al. 2018, 2019, Bouhadra 

et al. 2018, Meksi et al. 2019) will be also employed to 

study this of problems.  
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