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1. Introduction 
 

Today, there are many applications of continuous 

mechanics models for structural modeling. A comparison of 

the results of the atomic modeling and continuum 

environment mechanics shows that there is an acceptable 

result continuous mechanical modeling in the estimation of 

the dynamic behavior of systems. Therefore, most 

researchers use continuous mechanical modeling to study 

the dynamic and static behavior of different structures. In 

recent years, theoretical and laboratory studies are 

performed on nano-composites. There are applications of 

this structure in industries, because it’s possible to improve 

the static and dynamic behavior of structures using 

excellent mechanical and thermal properties of 

nanoparticles as a booster. Mesia and Seldato (1999) 

studied as free vibrations of composite-cylindrical shells. To 

calculate the equivalent properties of the composite, Tan 

and Wang (2001) presented the micro-electromechanical 

model. The study of free vibrations of composite-cylindrical 

shells containing fluid flow is performed by Cadoli and 

Jensen (2003). Dynamic behavior of composite cylindrical 

shell containing fluid flow was investigated by Seo and his 

colleagues (2015). White and Adali (2005) performed a 

carbon nanotube reinforced beams stress analysis. They 

concluded that the presence of carbon nanotubes as a 

booster phase could increase the stability and toughness of 

the system. Also, Matsuna (2007) investigated the stability 

of a composite-cylindrical shell using a third-order shear 

theory. Formaica (2010) examined the vibrations of 

reinforced sheets of carbon-nanotubes and used the 
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Muritha-Tanaka model to equate the properties of a 

composite equivalent. Liu and his colleagues (2014) studied 

the buckling analysis of nano-composite shells. In this 

study, the mixing rule was used to obtain the equivalent 

properties of the nano-composite and also selected the Non-

mesh method for analyzing the buckling load of the nano-

composite structure. In another similar work, Lee and 

colleagues (2014) analyzed the dynamic stability of carbon-

nanotube reinforced panels. They used the Ashley Bai-

Murita Tanaka model to equate the properties of nano-

composites and with the help of Ritz’s method, obtained the 

range of system instability. The stress of cylindrical shells 

reinforced with carbon a nanotube was analyzed by 

GhorbanpurArani et al. (2015) which was placed under 

anomalous heat load, uniform electrical and magnetic 

charge. Finally, the stresses were calculated using DQM 

method. Buckling of Carbon-Nanotubes Reinforced 

Polymer plates was conducted by Kolahchi et al. (2013), 

which was used in the mixing rule to compute the 

equivalent properties of a composite in this research, and 

used DQM method to obtain the buckling load of the 

structure. In another study, the dynamical buckling of 

reinforced plates with formulated carbon nanotubes was 

evaluated in functional form by Kolahchi et al. (2016). The 

properties of the plate were temperature dependent and 

simulated the elastic environment surrounding the structure 

with the orthotropic Pasternak model. There are very 

limited researches, in the field of mathematical modeling of 

concrete structures. As an example, we can point to the 

work of the by Kolahchi et al. (2016), where simulated 

buckling of concrete beams was reinforced with carbon- 

nanotubes using Euler-Bernoulli and Timoshenko beam 

models. Large amplitude vibration problem of laminated 

composite spherical shell panel under combined 

temperature and moisture environment was analyzed by  
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Fig. 1 Concrete beam reinforced with silica-nanoparticles 

under blast load 

 

 

Mahapatra et al. (2016a). The nonlinear free vibration 

behaviour of laminated composite spherical shell panel 

under the elevated hygrothermal environment was 

investigated by Mahapatra and Panda (2016b). Mahapatra et 

al. (2016c) studied the geometrically nonlinear transverse 

bending behavior of the shear deformable laminated 

composite spherical shell panel under hygro-thermo-

mechanical loading. Nonlinear free vibration behavior of 

laminated composite curved panel under hygrothermal 

environment was investigated by Mahapatra et al. (2016d). 

Nonlinear flexural behaviour of laminated composite 

doubly curved shell panel was investigated by Mahapatra et 

al. (2016e) under hygro-thermo-mechanical loading by 

considering the degraded composite material properties 

through a micromechanical model. Examined Arbabi et al. 

(2017) buckling columns were reinforced with silica 

nanoparticles under an electric field. The effect of an 

accumulation on the buckling behavior of concrete columns 

reinforced with nanoparticles of oxide-silica was 

investigated by Zamaniyan et al. (2017). The flexural 

behaviour of the laminated composite plate embedded with 

two different smart materials (piezoelectric and 

magnetostrictive) and subsequent deflection suppression 

were investigated by Dutta et al. (2017). Suman et al. 

(2017) studied static bending and strength behaviour of the 

laminated composite plate embedded with magnetostrictive 

(MS) material numerically using commercial finite element 

tool. Also, it was devoted to the seismic analysis of concrete 

pipes reinforced with silica nano-particles using numerical 

methods by Motazaker et al. (2017). Shim et al. (2018) 

studied Crack control of precast deck loop joint cusing high 

strength concrete. Alhatmey et al. (2018) presented residual 

strength capacity of fire exposed circular concrete-filled 

steel tube stub columns. 

According to the search in the world scientific 

databases, no work has been done on the mathematical 

modeling of concrete columns under the blast load. This 

issue is of great importance in the field of engineering and 

nano-composites. Therefore, the project focuses on the 

dynamic analysis of concrete beams reinforced with silica-

nanoparticles under blast loading. For this purpose, 

reinforced concrete beams used silica nano-particles and 

equilibrated concrete properties through the Mori-Tanaka 

model. The equivalence equation is based on the volumetric 

percentage of nanoparticles that can be studied by changing 

the effect of nanotechnology on stability. Also, the structure 

is modeled using the theory of sinusoidal shear beam 

mathematically and the DQM method is used to obtain the 

dynamic gradient of the structure. 

 

 

2. Mathematical modeling 
 

Fig. 1 shows a reinforced beams of silica Nano 

sizedparticles of length L. This ball is located on two 

supports. A blast hole is located at a distance R from the 

center of the concrete beam. 

 

 

3. Sinusoil shear deformation theory 
 

There are many new theories for modeling of different 

structures. Some of the new theories have been used by 

Tounsi and co-authors (Bessaim 2013, Bouderba 2013, 

Belabed 2014, Ait Amar Meziane 2014, Zidi 2014, Hamidi 

2015, Bourada 2015, Bousahla et al. 2016a, b, Beldjelili 

2016, Boukhari 2016, Draiche 2016, Bellifa 2015, Attia 

2015, Mahi 2015, Ait Yahia 2015, Bennoun 2016, El-Haina 

2017, Menasria 2017, Chikh 2017, Zemri 2015, Larbi Chaht 

2015, Belkorissat 2015, Ahouel 2016, Bounouara 2016, 

Bouafia 2017, Besseghier 2017, Bellifa 2017, Mouffoki 

2017, Khetir 2017).  

The assumptions of this theory are: 

1. There are small displacements in comparison with the 

thickness of the page and consequently, the strains are 

small. 

2. The normal transverse tensile (σzz) is irrelevant 

compared to the stresses of the plate σxx and σyy. 

3. The transverse displacement (w) consists of two 

bandings (wb) and (ws) shear sections, which are functions 

of the frets x and y time t. 

So: 

     (1) 

4. The in-leaf displacements u and v are made up of 

three sections: tensile, bending and shear. 

So 

 (2) 

 (3) 

Where 

 (4) 

 (5) 

Shear components us, vs and ws expresses the sinusoidal 

changes of shear strains γxz and γyz. Therefore, us and vs are 

written according to ws as the followings 
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 (7) 

According to the assumptions given, the displacement 

field of this theory for the beam is as follows 

 (8) 

 (9) 

 (10) 

While u1, u2 and u3 are the displacement of the points of 

the center plan in the longitudinal, transverse and thick 

direction. Also,  and ψ is rotation of cross-

section around the y axis. 

The stress-strain non-linear displacement of the 

structure is based on the theory of von-carmen as follows.  

By placing the relationships (8) to (10) in the above 

relations, the Von-karmen type nonlinear strain- 

displacement relations are given by 

(11) 
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4. Stress-strain equations 
 

According to Hooke’s law 

)13( 
 

Qij’s are elastic constants. According to the sinusoidal 

shear deformation theory 

11 ,xx xxQ 
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5. Energy method and the Hamilton law  
 

The potential energy of the structure is written as 

follows 

 
1

,
2

xx xx xz xz

V

U dV      (16) 

Submitting Eqs. (11) and (12) into (16), the potential 
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The forces and moment within the page are defined as 

follows 
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Simplifies the potential energy as follows 
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The kinetic energy of concrete beam is calculated as 

follows 
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Submitting Eqs. (8) and (10) into above equations as 

follows 
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Moment of inertia of mass is 
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External work caused by the blast force is 
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Where PS0 is the maximum static pressure and t0 
is 

positive phase time. That they are 
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Where P0 
is the air pressure. 
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In the above relation, R is distance from blast center to 

surface of structure and W is the explosive mass in terms of 

Kg. 

Expressed as Hamilton’s principle 
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In the above relations, δ is system energy changes. The 

following three equations obtained by submitting Eqs. (20), 

(22) and (24) into Eq. (29) and using partial integration and 

ordering relations in the direction of mechanical 

displacements: 
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Can be calculated relations of forces and internal 

moments of beam, by submitting Eqs. (14) and (15) into 

Eqs. (18) and (19) 
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Now, by submitting Eqs. (33) to (36) into Eqs. (30) to 

(32), we obtained relations formed in terms of mechanical 

displacements. These relations are 
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(40) 

The associated boundary conditions can be expressed: 

• Clamped- Clamped boundary condition(C-C) 
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• Clamped -simply boundary condition(C-S) 
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• Simply -simply boundary condition(S-S) 
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6. Mori-Tanaka model 
 

The properties and elastomeric factors of beam 

reinforced with silica nanoparticles from a micro-

mechanical perspective. Assumed the concrete beam is 

isotropic beam, Yank Module and poison’s ratio are 

respectively Em and νm. It’s assumed that silica nano-

particles have transverse elastic properties and 

consequently, the desired structure has transverse elastic 

properties. In this case, the stress-strain of relation is 

expressed in the local coordinates of an elemental element 

as follows 
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(44) 

In the above relation k, l, m, n, p are Hil elastic modulus, 

in which k is volumetric modulus of elasticity that it’s 

Perpendicular to direction of the fiber. n is tensile modulus 

abaxial in the longitudinal direction of the fibers, l is Cross-

sectional modulus, m and p are respectively, shear modulus 

in the parallel and vertical sides of fibers. The Hil elastic 

modulus is obtained by using Murray-Tanaka method as 

follows 
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Dynamic analysis of concrete column reinforcedwith Sio2 nanoparticles subjected to blast load 

 

 

Fig. 2 Selected volumetric element of nano-composite 
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(45) 

In the above relations, kr, lr, nr, pr, mrare the Hil elastic 

modulus for reinforced phase (silica- nanoparticles). 

Finally, the hardness matrix is obtained by calculating 

parametersk, l, m, n, p. Experimental results show that more 

nano-particles are irregular in concrete. It’s observed that a 

large part of the nano-particles are concentrated inside the 

concrete in a region.It’s assumed this region is spherical and 

is the so-called, capacity, Which is different from its 

properties with the material around it. A volumetric element 

of it is shown, in the Fig. 2. 

Vr is the final volume of the nanoparticles where 

inclusion m

r r rV V V  (46) 

Which respectively Vr
inclusion

, Vr
m 

are the volumes of 

nano-particles in the capacity and concrete.The two 

parameters below are used to show accumulation effect in 

the micro-mechanical model 
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The average volume fraction of nanoparticles in a 

concrete beam Cr is given as follows 

 (49) 

The relation of volume fraction nano-particles to 

capacity and concrete using the above relations is as follows 
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Assuming nanoparticles are the transverse isotropic and 

located completely random in the capacity, and also 

assuming Capacity Isotropic, volumetric modulus k and the 

shear modulus G sing Mori-Tanaka method for isotropic 

materials are defined as follows 
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(53) 

In the above relations Kin and Kout are respectively, 

volumetric modulus capacity and composite minus the 

capacity and also omitted, Ginand Goutshear modulus 

capacity and composite minus the capacities which were 

obtained from the following relations 
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Where χr, βr, δr, ηr
 

are 
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Also, Km and Gm are volumetric and shear modulus of 

the base phase 
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Also, β, α
 
in the equations stated before (52) and (53) 

are defined by the following relations 
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Through obtaining volume modulus K and shear 

modulus G of the nano-composite, E and υ of composite 

isotropic material will be achieved by using the above 

relations as following 
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Finally, stiffness matrix of structure with E and υ is 

computed. 

 

 

7. DQM method 
 

Differential quadrature method (DQM) is a numerical 

method, which converts the governing differential equations 

into first-order algebraic equations using weighting 

coefficients. Thus at each point, the derivatives will be 

expressed as a linear sum of weighting coefficients ,values 

of the function at that point and other points of domain and 

in the direction axes of coordinate. The main relation of 

these methods for one-dimensional state  
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f(x) is desired function, N isnumber of sample points, xi 

is the sample point i of the function amplitude, fi is value of 

function at sample point i and Cij is weighting coefficients 

to obtain derivative of function at the sample point i. 

Therefore, it can be seen that two most important factors in 

differential quadrature method are selection of sample 

points and weighting coefficients. 

 
 
8. Chebyshev polynomial roots 
 

To obtain sample points, we apply Chebyshev 

polynomial roots which get good results as the following 
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9. Weighting coefficients 
 

To apply the square differential method to solve a 

differential equation, we must write the derivatives as the 

matrix product of the weight coefficients in the unknown 

vector. Thus, Bellman introduced the test function using 

Lagrange’s transmitted orthogonal polynomial, according to 

the following equation 
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As N is the number of sample points and L(x)
 

is 

Lagrange’s orthogonal polynomial function of order N. 
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Where defined, derivative of by Lagrange’s transmitted 

orthogonal polynomial function from order N is as follows 
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By selecting Lagrange’s orthogonal polynomial roots as 

sample points and substituting g(x) into Eq. (a), a simple 

algebraic relations for calculating weighting coefficients is 

obtained 
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It’s possible to multiply first-order weighting coefficient 

matrix from order n in itself for to obtain weighting 

coefficient of higher derivatives. That’s mean 
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10. Applying DQM 
 

To solve the governing equations, Gridding is a concrete 

beam in length along by Chebyshev and weighting 

coefficients for all derivatives are calculated using the 

relation (74) to (76). Then derivatives will be replaced with 

matrixes of their weighting coefficients. As the result, it’s 

necessary to separate equations of boundary condition and 

field from each other because of existence of weight 

coefficients for coupling with governing equations. The 

governing equations and boundary conditions in the matrix 

form are written as follows 

(77) 
 

 
 

 

 
 0

,
bb

L NL

d dK

dd
K K M

d Fd

                    
            

 

In the above relation, there are the linear part of stiffness 

matrix [K], non-linear part of the stiffness matrix [KNL], 

mass matrix [M], dynamic amplitude vector for boundary 
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condition points {db} 
and dynamic amplitude vector for 

field conditions{dd}. 

 

 

11. Newmark method 
 

Newmark numerical method is used to obtain the time 

response of the structure under blast load in domain time. 

According to this method, Eq. (22) is written in the 

following general form 

,)( 11

*

  ii QdK

 

(78) 

Where subtitle i+1 represents time (t=ti+1) K
*
(di+1) is 

effective stiffness matrix and Qi+1 
is effective load vector 

written as follows 

*

1 1 0( ) ( ) ,i L NL iK d K K d M   

 

(79) 

 *

1 1 0 2 3 ,i i i i iQ F M d d d       (80) 
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(81) 

Where γ=0.5 and χ=0.25. Based on repeating method, 

Eq. (23) is solved at each time amplitude and calculates 

acceleration and speed modifiedfrom the following relations 

,)( 32101 iiiii ddddd    

 

(82) 

,1761   iiii dddd   (83) 

Then, for the next time, we apply acceleration and speed 

modified into relations (27) and (28) and the steps 

mentioned are repeated. 

 

 

12. Results and charts introduction 
 

In this article, dynamic displacement of concrete beam 

is calculated using differential quadrature and Newark 

method, examines the effect of parameters such as percent 

by volume and percentage of nanoparticles, geometric 

parameters, boundary conditions and external voltage on 

dynamics displacement of structure. For this purpose, a 

concrete beam is considered as with elastic modulus Em=30 

GPa, poison’s ratio vm=0.2, density ρm=2500 Kg/m
3
, section 

is 30-by-30-cm, and length is 3 meters, reinforced with 

silica nano-particles with Er=60 GPa, also air pressure 

P0=100 mbar, blast mas W=5 Kg, thedistance between 

centroid of the concrete beam and blast R=5 m, positive 

phase time ta=10 ms
 
and b=1.06. 

 

Validation of results 
 

Until now, it has not been investigated by any  

 

Fig. 3 Comparing the results of this project with reference 

 

 

Figure The enlarged view of Fig. 3 

 

 

researcher, the dynamic analysis of concrete beam 

reinforced with silica nanoparticles subjected to blast 

loading by numerical methods. Therefore, to validate the 

results, dynamical analysis of a concrete beam subjected 

blast load by sinusoidal shear deformation theory has been 

studied, by removing effect of silica nanoparticles (Cr=0). 

Concrete beam is assumed elastic modulus Em=30 GPa, 

poison’s ratio vm=0.2, density ρm=2500 Kg/m
3
, cross-

section A=3 m
2
, inertial Moment I=0.5625 m

4
 and length 

L=30 m, also air pressure P0=100 mbar, blast mass W=25.5 

Kg, Z=2.5, b=1.06 and positive phase time ta=10 ms. Fig. 3 

show dimensionless dynamic displacement of the structure 

(W
*
=w/L) against dimensionless time ( /m mL kG  ) for 

concrete beam to blast load. As it matches with the 

reference results, this shows accuracy of the results 

achieved. 

 

 

13. The effect of different parameters 
 

The effect of percent by volume silica nanoparticles 
 

The effect of percent by volume silica nano-particles on  
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Fig. 4 Effect of percent by volume nanoparticles on 

dynamic displacement of concrete beam with external 

voltage applied 

 

 

Fig. 5 The enlarged view of Fig. 4 

 

 

dynamic displacement concrete beam in terms of the blast 

time is shown in Figs. 4 and 5. Whatever Increase percent 

by volume of nanoparticles, the decreases the dynamic 

displacement of the concrete beam. 

Maximum dynamicdisplacement for the modes Cr=0
 

and Cr=2%
 

is respectively 0.23 and 0.19 meters, It 

decreases by about 20% dynamic displacement with 

increasing the percent by volume silica nanoparticles. 

Because of increasing percent by volume silica 

nanoparticles, there are more nanoparticles in the concrete 

beam rim. Consequently, it contributes more nanoparticles 

in the division of load and concrete beams are strengthened 

due to the high strength of nanoparticles, it increases its 

strength against the blast load. 

As a general result, it can be noted that the use of 

nanoparticles in reinforcing concrete beams can be effective 

on the strength of the structure. Of course, it should be 

noted that it cannot have any amount of percent by volume 

nanoparticle because it will be reversed from a specific 

value dynamic behavior of the structure, which requires 

laboratory testing. 

 

Fig. 6 The effect of nanoparticle accumulation on the 

dynamic velocity of a concrete beam with the application of 

external voltage 

 

 

Fig. 7 The enlarged view of Fig. 6 

 

 

The effect of accumulation of silica nanoparticles 
 

Figs. 6 and 7 show the effect accumulation of silica 

nanoparticles in a specific area of the concrete beam on 

dynamic displacement of the structure according to time, as 

it can be seen, considering the accumulation has reduced the 

stiffness of the structure and increased dynamic 

displacement of concrete beam. As a result, there 

inforcement concrete beam with silica nanoparticles. The 

less it is, the less will be the accumulation in different 

places the dynamic displacement structure. For example, 

the maximum dynamic displacement concrete beam for a 

state with and without accumulation nano-particles is 

respectively 0.15 and 0.055 m, this indicates a 67% 

reduction in the dynamic displacement concrete beam for 

the distribution of nanoparticles in concrete without 

accumulation. 

 

The effect of boundary conditions 
 

The effect boundary conditions of two sides concrete  
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Fig. 8 Effect of boundary conditions on the dynamic 

gradient of concrete beam with the application of external 

voltage 

 

 

Fig. 9 The enlarged view of Fig. 8 

 

 

column on dynamic displacement according to the blast are 

shown in Figs. 8 and 9. There are three boundary conditions 

clamped- clamped (C-C), clamped- simple (C-S) and 

simple-simple (S-S). As the boundary conditions are 

observed, there’s a significant effect on structure dynamic 

displacement, so that concrete beam with fixed and simple 

boundary conditions, respectively, has a dynamic 

displacement 0.9 and 0.18 meters at two ends. In other 

words, a concrete beam with clamping boundary conditions 

leads to a decrease of about 50% of the maximum dynamic 

displacement relative to a concrete beam with simple 

boundary conditions. That’s because of the binding 

structure with a boundary condition at two ends and as the 

result it’s more stiffness. In general, the effect of boundary 

conditions on dynamic displacement is also respectively a 

clamped- clamped < clamped- simple < simple-simple. 

 

The effect of vibration mode 
 

Figs. 10 and 11 show the effect of vibration modes in 

concrete beam on structure dynamic displacement 

according to time. It’s observed that structure dynamic 

displacement increases with increasing vibrational mode. 

 

Fig. 10 Effect of damage on concrete beam on dynamic 

gradient of concrete beam by applying external voltage 

 

 

Fig. 11 The enlarged view of Fig. 10 

 

 

Fig. 12 The effect of the ratio of length to concrete beam 

thickness on the dynamic gradient of concrete beam with 

the application of external voltage 

 

 

The effect of length to thickness concrete beam ratio 
 

Figs. 12 and 13 Show that effect of length to thickness 

concrete column ratio on dynamic displacement according 

to blast. As it is observed, the concrete column dynamic 

displacement increases with increasing length to thickness  
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Fig. 13 The enlarged view of Fig. 12 

 

 

Fig. 14 Effect of concrete columns under the beam on the 

dynamic gradient of concrete beam with the application of 

external voltage 

 

 

Fig. 15 The enlarged view of Fig. 14 

 

 

concrete beam ratio, because it decreases structure stiffness. 

In other words, by increasing length to thickness concrete 

column ratio from 5 to 15, respectively, it becomes 

maximum dynamic displacement 0.1 and 0.15 meters, 

which shows an increase of 10 times dynamic displacement. 

 

Fig. 16 The effect of concrete columns under the beam on 

the dynamic gradient of concrete beam without applying 

external voltage 

 

 

Fig. 17 The enlarged view of Fig. 16 

 

 

Fig. 18 The effect of the explosion distance to the concrete 

beam on the dynamic beam of concrete beam with the 

application of external voltage 

 

 

The effect of concrete beam length and thickness 
 

Figs. 14 to 17, respectively, show the effect of concrete 

beams on structure dynamic displacement according to 

time. It can be observed that the dynamic displacement  
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Fig. 19 The enlarged view of Fig. 18 

 

 

Fig. 20 The effect of the explosion distance to the concrete 

beam on the dynamic beam of concrete beam without the 

application of external voltage 

 

 

increases by increasing length and reducing thickness of 

concrete beam, because it decreases structure stiffness. 

 

The effect of blast load  
 

Figs. 18 and 19 Show the impact of blast distance to 

concrete beam on dynamic displacement according to blast 

time. It is observed that concrete column dynamic 

displacement decreases by increasing blast distance to 

concrete beam, because the blast wave decreases. 

Effect of blast amount is shown on dynamic 

displacement according to blast time in Figs. 20 and 21. As 

it can be observed the more increase in dynamic 

displacement of concrete beam, the more increase will be in 

the amount blast, due mainly to the increased rate in blast 

wave. Also, it decreases dynamic displacement by applying 

external voltage to structure. 

 

 

14. Conclusions 
 

In this study, the dynamic analysis of a concrete beam 

reinforced with silica nanoparticles subjected blast load was 

 

Fig. 21 The enlarged view of Fig. 20 

 

 

investigated. There’s a concrete beam on two simply 

supports. For structural mathematical modeling, beam 

element and sinusoidal shear deformation theory are used. 

The governing equations on the structure were extracted 

using nonlinear strain-displacement, strain-strain, energy 

method and Hamilton principle. Finally, the dynamic 

displacement of the structure has been calculated using 

numerical methods of the square difference and Newmark. 

The effect of different parameters on the dynamic 

displacement of concrete beam was investigated such as 

effect volumetric and packing volumes of nanoparticles, 

geometric parameters of the beam, boundary conditions and 

blast load. The following results are obtained according to 

the drawn charts: 

The larger the percentage of nanoparticles, the lower the 

dynamic gravity of the concrete beam is. The maximum 

dynamic gradient for states Cr=0 and Cr=2% states is 

respectively 0.23 and 0.19 meters, which indicates a 

decrease of about 20% dynamic gravity by increasing the 

volumetric percent of silica nanoparticles. 

• Considering the accumulation, it caused a decrease in 

stiffness of structure and as a result, increased the 

dynamic displacement of concrete beam. For example, 

the maximum dynamic deflection of concrete beam for a 

state with and without nanoparticle accumulation is 0.15 

and 0.055 m respectively, which indicates that the 

dynamic deflection of concrete beam is decreased by 

67% for distribution condition of nanoparticles in 

concrete without accumulation. 

• Concrete beam with curved and simple boundary 

conditions at the two ends is respectively with a 

maximum dynamic gradient of 0.9 and 0.18 meters. In 

other words, a concrete beam with boundary conditions 

leads to a decrease of about 50% of the maximum 

dynamic gradient relative to a concrete beam with 

simple boundary conditions. 

• By increasing the ratio of length to thickness of the 

concrete column from 5 to 15, respectively, the dynamic 

gradient is maximum 0.1 and 1.05 meters. This indicates 

that the maximum dynamic gradient is increased 10 

times. 

• By increasing the length and reducing the thickness of 
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concrete beam, the dynamic displacement increases 

because stiffness of structure is decreased. 

• By increasing the amount of blast, the dynamic 

displacement concrete beam increased becausethe wave 

increased due to blast. 

• By increasing the blast distance to concrete beam, 

Reduced the dynamic displacement of concrete beam, 

becausethe wave was reduced due to blast. 
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