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Abstract.  Balanced cantilever construction is extensively used in the construction of prestressed concrete 

(PSC) box-girder bridges. Shear-lag effect is usually considered in finished bridges, while the cumulative 

shear-lag effect in bridges during balanced cantilever construction is considered only rarely. In this paper, 

based on the balanced cantilever construction sequences of large-span PSC box-girder bridges, the 

difference method is employed to analyze the cumulative shear-lag effect of box girders with varying depth 

under the concrete segments’ own weight. During cantilever construction, no negative shear-lag effect is 

generated, and the cumulative shear-lag effect under the balanced construction procedure is greater than the 

instantaneous shear-lag effect in which the full dead weight is applied to the entire cantilever. Three cross-

sections of Jianjiang Bridge were chosen for the experimental observation of shear-lag effect, and the 

experimental results are in keeping with the theoretical results of cumulative shear-lag effect. The research 

indicates that only calculating the instantaneous shear-lag effect is not sufficiently safe for practical 

engineering purposes. 
 

Keywords:  box-girder bridges; balanced cantilever construction; shear-lag effect; the cumulative effect; 
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1. Introduction 
 

Due to the advantages of high stiffness, increased riding comfort, fewer expansion joints, low 

maintenance costs and wide span range, prestressed concrete constructed continuous (rigid-frame) 

box girder bridges have become a common design in freeway and urban road projects (Zhou et al. 

2000). At present, most bridges of this kind are built using a cantilever construction technique. 

During construction, and with the cantilever gradually extending to its maximum length, the 

width-to-span ratio and depth-to-span ratio decrease while the self-weight increases. Recently, 

many theories and assumptions regarding the shear-lag effect of box girder bridges have been 

proposed (Cheng 1987, Guo 1983, Graham et al. 2010, Gara et al. 2009, Mondali et al. 2009), and 

some experimental investigations have also been conducted. These achievements solved many 

practical problems related to bridge structures, with some achieving widespread use in bridge  
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Fig. 1 Action points on cantilever by suspension 
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Fig. 2 Illustration of cross-section of box-girder 

 

 

design specifications (National Standard of the People’s Republic of China et al. 2004, AASHTO 

LRFD Bridge Design Specifications (SI Units) 3rd Edition 2004, Collection of German Standards 

for Bridge 1997). Most of the recent shear-lag theories (Luo 2005, Zhang and Wang 2004, Zhang 

et al. 1998) are built based on the mechanical behavior of finished bridges, while the cumulative 

effect of shear-lag induced by the variance of rigidity and shelf-weight during balanced cantilever 

construction of continuous (rigid-frame) box-girder bridges is not considered. Based on the study 

of Jianjiang Bridge, which is part of Xiarong Freeway (in Guizhou Province, China), this paper 

presents theoretical and experimental methods for evaluating the cumulative shear-lag effect in 

concrete box girder bridges during balanced cantilever construction. This research can also serve 

as a reference for the future studies on shear-lag effect in concrete box girder bridges with varying 

cross-sections. 

 

 

2. Theoretical analysis of cumulative shear-lag effect 
 

2.1 Governing equations 
 

For simplification, box girder bridges are generally modeled as cantilevers (Luo 2005, Zhang 

and Wang 2004, Zhang et al. 1998) (shown in Fig. 1) subjected to either uniformly distributed 

loads or concentrated loads, and a typical cross-section of the box girder is shown in Fig. 2. It is 

taken that the plane section assumption suits the webs under symmetrical loads, and the transverse 

deformation as well as the out-of-plane shear deformation in webs are ignored. 

Based on the principle of minimum potential energy, the first-order variation of the total 
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potential energy of the system will be zero, e.g., 

  0U V      (1) 

where U is the strain energy; and V is the potential energy of the loading. 

The potential energy of the loading is  

   
0

l

V q x w x dx   (2) 

where q(x) is the distributed load which is given by the weight per unit length of the bridge, l is the 

length of the bridge. 

The strain energy U  is composed of the strain energy of the webs, the top slab and the bottom 

slab. The strain energy of the webs is 

2

w w 20

1 ( )

2

l d w x
U EI dx

dx
   (3) 

where E is Young’s modulus, and Iw is the moment of inertia of the webs. 

The strain energy of the topslab is  
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G is the shear modulus, tt is the thickness of the top flange. 

The potential energy of the bottom slab is 
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tb is the thickness of the bottom slab. 

Thus, the total potential energy of the system in Eq. (1) is 

w st sbU U U V      (8) 

Assuming that the longitudinal displacement of the flange can be described as a quartic 

parabolic distribution (Zhang et al. 1998), the longitudinal displacement of the top flanges ut(x,y) 

in Eq. (5) can be expressed as 
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and the longitudinal displacement of the bottom flanges ub(x,y)  in Eq. (7) is expressed as 

4
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where u(x) is maximum difference of angular rotation due to the shear deformation, w(x) is the 

vertical displacement of the box girder, b is the half-width of the top slab, ξ is the reduction factor 

for the flange, Zt and Zb are the distance from the neutral axis to the center of the top slab and 

bottom slab, respectively. 

The displacement u(x) in Eqs. (9)-(10) is determined by the following differential equations and 

boundary conditions. 

 
2

2

2

( ) ( ) 9
( )

8

d u x du x n
m k u x Q x

dx dx E
    (11) 

2

1

( ) 9 ( )
( ) 0

8 ( )

x

x

du x M x
n u x

dx EI x


 
  

 
  (12) 

where 

9 ( )

10

d x
m n

dx


 , 

1

9
1 ( )

10

n

x





,  
 

 
s

=
I x

x
I x

 , 
2

2

14

45

Eb

Gn
k  ,  

 

 

M xd
Q x

dx I x

 
  

 
, 

Q(x)is the shearing force, M(x) is the bending moment, Is(x) is the moment of inertia of the top 

and bottom slabs, I(x) is the moment of inertia of the entire cross-section. It is noticed that the 

parameter m is close to zero and can be neglected in the equations.  

The shear-lag moment is given by 

s

4 ( )
( )

5
F

du x
M EI x

dx
  (13) 

Taking into account the shear-lag effect, the shear-lag coefficient is defined. The shear-lag 

coefficient at the intersection of the web and the flange is expressed by 
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and the shear-lag coefficient at the center of the top slab is expressed by 
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Fig. 3 Differential grid of cantilever with varying cross-section 
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where σo is the primary bending stress in cross-section, σe is the bending stress at the intersection 

of the web and flange, σc is the bending stress at the center of the top slab.  

 

2.2 Employment of difference method 
 

The general solution is unlikely to be solved from the above differential equations with 

variablecoefficients. Thus, the difference method (Zhang and Wang 2004) is employed to obtain 

theapproximate solutions.  

Choosing an equidistant grid illustrated in Fig. 3, derivative in Eqs. (11)-(12) are replaced with 

the following difference quotient 
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 (16) 

 

in which a is the step size. 

Substituting Eq. (16) into Eq. (11), one can obtain the following equation 
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The boundary conditions of Eq. (12) can be written as follows 
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The shear-lag moment in Eq. (13) and shear-lag coefficients in Eqs. (14)-(15) are, respectively, 

written as follows 
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Table 1 Self-weight of cantilever segments (Unit: kN) 

No. Weight No. Weight No. Weight No. Weight No. Weight 

1 2896.7 6 2744.8 11 2480.9 16 1672.6 21 1472.1 

2 2792.7 7 2630.4 12 2369.6 17 1617.5 22 1458.3 

3 2691.8 8 2520.7 13 2266.2 18 1569.4   

4 2594 9 2416.2 14 2081 19 1528.8   

5 2499.4 10 2599.5 15 1823.9 20 1496.3   

 
Table 2 Geometric sizes of each cross-section (Unit: m) 

Location 

coordinate 

Bottom slab 

thickness 

Web 

thickness 
Section height 

Location 

coordinate 

Bottom slab 

thickness 

Web 

thickness 

Section 

height 

0 

4 

8 

12 

16 

20 

24 

28 

32 

36 

40 

44 

0.350 

0.352 

0.358 

0.368 

0.382 

0.400 

0.421 

0.447 

0.477 

0.511 

0.548 

0.590 

0.5 

0.5 

0.5 

0.5 

0.5 

0.5 

0.5 

0.5 

0.5 

0.5 

0.7 

0.8 

4.500 

4.531 

4.605 

4.713 

4.852 

5.020 

5.215 

5.436 

5.683 

5.954 

6.248 

6.565 

48 

52 

56 

60 

64 

68 

72 

76 

80 

84 

88 

92 

0.636 

0.685 

0.739 

0.797 

0.858 

0.924 

0.993 

1.067 

1.144 

1.225 

1.311 

1.400 

0.8 

0.8 

0.8 

0.8 

0.8 

0.8 

0.8 

0.8 

0.8 

0.8 

0.8 

0.8 

6.905 

7.266 

7.649 

8.054 

8.478 

8.924 

9.389 

9.874 

10.379 

10.903 

11.446 

12.008 
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3. Application of theoretical method 
 

3.1 Description of Jianjiang bridge  
 

To apply the model, the shear-lag effect of Jianjiang Bridge will be analyzed using the above 

method. The main part of Jianjiang Bridge is a three-span prestressed concrete constructed 

continuous (rigid-frame) box girder bridge with a main span of 200 m and two side spans of 105 

m. The main girder is single-box-single-cell box girder, and its depth is a parabola of order 1.75 
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(with 12 m-depth at the root and 4.5 m-depth at the mid-span). The top slab of the girder is 13 m 

wide and 0.3 m deep. The bottom slab is 7 m wide, and its depth is a quadratic parabola (0.35 m 

deep at the root and 1.4 m deep at the mid-span). Along the bridge span, the width of the webs is 

either 0.5 m or 0.8 m. At the pier, the top and bottom slabs are, respectively, 0.5 m and 1.5 m deep, 

and the webs are 1.0 m wide. The bridge is constructed using the balanced cantilever technique 

with rhombic travelling formworks. Each cantilever consists of 22 segments (except for the 

segment above the pier), in which 5 segments are 3.5 m long, 4 segments are 4 m long and 13 

segments are 4.5 m long. The cantilever of each rhombic travelling formwork is 5.5 m long, and 

the two action points (shown in Fig. 1) of the rhombic travelling formwork are 5 m away from 

each other. The self-weight of the 22 segments are listed in Table 1, and the geometric sizes of 

each cross-section are listed in Table 2. 

 

3.2 Calculation of cumulative shear-lag effect for Jianjiang bridge 
 

The shear lag of representative stage structures upon phase instantaneous load is analyzed. 

Those were selected according to structural stiffness, load characteristics and theoretical analysis 

results. These include construction stages of No. 6, No. 10, No. 16, No. 22 beam cantilever 

construction stages, in which the structural length are respectively close to 1/4,2/5,3/4,1 length of 

the whole cantilever. 

Taken as an example of the shear-lag effect of balanced cantilever construction, the shear-lag 

effect was analyzed when the construction of Jianjiang Bridge reached segment No. 6. The length 

of the cantilever between segment No. 0 and No. 6 is 22 m. Giving the step size of 2 m, 11 integral 

grids were divided, and 11 linear equations were obtained from Eqs. (17)-(18), e.g., 

    K u Q  (22) 

where 
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Q 1010221100

2

,,,
4

9
 is the load matrix. 

Denoting the weight of the newly cast concrete segment as G, the reactions at the two acting 

points of the segment can be derived as FA=0.55G and FB=1.55G, and the bending moment is 

given by the following expression 

 

,                            if     5

5          if     5

B

B A

F x x
M

F x F x x


 
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 (23) 

475



 

 

 

 

 

 

Xingu Zhong, Tianyu Zhang, Xiaojuan Shu and Hongliang Xu 

 
Fig. 4 Shear-lag coefficient λe induced by the action of newly constructed segment No.7 
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Fig. 5 Shear-lag coefficient λe induced by the action of newly constructed segments No.10, No.16 and No.22 

 

 

Thus, the internal force Qi at each integral point can be calculated by 

1

1

1 i i
i

i i i

M M
Q

n I I





 
  

 
 (24) 

The shear-lag coefficients can be calculated from Eqs. (19)-(21). The theoretical analysis of the 

shear lag is calculated by the fortran program written by the author. Fig. 4 illustrates the shear-lag 

coefficients of the previously constructed six segments induced by the weight of the newly 

constructed segment No. 7. The calculation shows that there is a positive shear lag effect in the 

cantilever subjected to the weight of concrete segments. 

Using similar calculations, the shear-lag coefficients of the cantilever induced by the weight of 

segments No. 10, No. 16, and No. 22 were also calculated (shown in Fig. 5), respectively. From 

Fig. 5, it is shown that the shear-lag coefficient of the same segment increases with the ongoing 

cantilever construction.  

In this paper, the effect of instantaneous shear lag is the effect of the finished structure under 

the phase load. Because the stage construction load-the weight of current constructing segment and 

the hanging basket was acting on partial segment of the finished structure, the structure produces a 

positive shear lag effect. And the cumulative shear lag effect obtained by superposition of each 

stage effect must be positive, so the shear lag effect of the whole cantilever considering 

construction is positive. 
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Fig. 6 Comparison of cumulative and instantaneous shear-lag coefficients λe 

 

 
Fig. 7 Layout of strain sensor 

 

 

3.3 Comparison between the cumulative and instantaneous shear-lag coefficients 
 

The cumulative shear-lag coefficient λe at any cross-section after the cantilever construction 

was completed can be obtained by accumulating the corresponding shear-lag effect induced by the 

self-weight of each segment during the balanced cantilever construction. The calculated 

cumulative shear-lag coefficient λe  of Jianjiang Bridge is illustrated in Fig. 6. It can be seen that 

the cumulative shear-lag coefficient at any cross-sectionis positive. Ignoring the balanced 

cantilever construction of the bridge, the instantaneous shear-lag coefficient which is based on the 

mechanical behavior of the finished bridge is also calculated and illustrated in Fig. 6. From the 

curve of instantaneous shear-lag coefficient in Fig. 6, it can be seen that a negative value exists at 

the free end. 

From Fig. 6, the comparison between the cumulative and instantaneous shear-lag coefficient 

indicates that the cumulative shear-lag coefficient is always larger than the instantaneous shear-lag 

coefficients, and a large error exists at the free end and fixed end in the calculation of 

instantaneous shear-lag coefficient. It can be seen that these results agree well wi th the 

investigation of other researchers (Zhang et al. 1998). Since the cumulative shear lag effect is the 

superposition effect of different construction stages, while the shear lag effect of a cantilever 

structure is calculated according to the definite stiffness of the maximum cantilever structure  
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Fig. 8 Distribution of strain in measured cross-sections 

 

 

loaded by the self-weight, so they result into big difference. In addition, since the shear lag effect 

is affected by the boundary condition, the error caused by the difference in the calculation of the 

shear lag effect at the ends is also increased.  

 

 

4. Test of shear-lag effect of Jianjiang bridge during cantilever construction  
 

In the construction process of the left half of Jianjiang Bridge, the end sections of segments 

No.6 (cantilever length of 22 m), No. 12 (cantilever length of 39.5 m) and No. 19 (cantilever 

length of 78.5 m) of the cantilever at the sixth pier were instrumented for measuring the 

cumulative shear-lag effect. The strain sensors were embedded in the top slab of the three cross-

sections, and all sensors were fixed on the underside of the top reinforcement. The axis of the 

sensors was parallel to the longitudinal axis of the bridge and the center of the sensors was 10 cm 

away from the top surface of the bridge. The sensors were all vibrating-wire strain sensors, and 

their layout is shown in Fig. 7. All sensors were spaced at 70 cm in the cantilever flange and 35 cm 

in the top flange. 

The readings of the sensors before and after concrete casting were recorded and their 

differences were equal to the self-weight of the newly cast concrete segment. The cumulative 

values of the strains in the three cross-sections are shown in Fig. 8. The abscissa in Fig. 8 

corresponds to the x-axis in Fig. 7). From Fig. 8, it is shown that the largest strain in the cross-

section is located at the intersection of the webs and flange, while the strains at the outer edge of 

the top flange (x=0) and the center of the top slab (x=630) are relatively small. According to the 

definition of cumulative shear-lag coefficient in Eq. (11), the shear lag coefficient at the location 

near the fixed end will be much larger than any location farther away from the fixed end, which 

agrees well with the calculated result of the cumulative shear-lag coefficient. Furthermore, all test 

data of strain in the three cross-sections indicates that the shear-lag effect is always positive, which 

also agrees well with the theoretical result.  

 

 

5. Conclusions 
 

• The theoretical result of the cumulative shear-lag coefficient considering balanced cantilever 

construction of box-girder bridges indicates that the shear-lag effect is always positive, while the 

478



 

 

 

 

 

 

Shear-lag behavior of prestressed concrete box-girder bridges… 

instantaneous shear-lag coefficient without considering balanced cantilever construction provides a 

negative value at the free end. The largest cumulative shear-lag coefficient is located at the fixed 

end, while the instantaneous shear-lag coefficient at the fixed end has a small value. The calculated 

results of the theoretical method considering the balanced cantilever construction agrees well with 

the test results of Jianjiang Bridge. The accordance of the theoretical and test results shows the 

proposed theoretical method used to analyze the shear-lag effect of box-girder bridges is valid. 

• The calculated cumulative shear-lag coefficient is always larger than the instantaneous shear-

lag coefficient, which implies the instantaneous shear-lag coefficient underestimates the shear-lag 

effect of the bridge. Thus, the traditional bridge design based on the calculation method of 

instantaneous shear-lag coefficient is not safe enough. It is necessary to consider the balanced 

cantilever construction procedure in practical bridge construction when studying the shear-lag 

effect of bridges. The research in this paper may supply an improved calculation method of shear-

lag effect for the current bridge design theory. 
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