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Abstract.  The modeling of the mechanical behavior of quasi-brittle materials is still a challenge task, 

mainly in failure processes when fracture and plasticity phenomena become important actors in dissipative 

processes which occur in materials like concrete, as instance. Many homogenization-based approaches have 

been proposed to deal with heterogeneous materials in the last years. In this context, a computational 

homogenization modeling for concrete is presented in this work using the concept of Representative Volume 

Element (RVE). The material is considered as a three-phase material consisting of interface zone (ITZ), 

matrix and inclusions-each constituent modeled by an independent constitutive model. The Representative 

Volume Element (RVE) consists of inclusions idealized as circular shapes symmetrically and non-

symmetrically placed into the specimen. The interface zone is modeled by means of cohesive contact finite 

elements. The inclusion is modeled as linear elastic and matrix region is considered as elastoplastic material. 

A set of examples is presented in order to show the potentialities and limitations of the proposed modeling. 

The consideration of the fracture processes in the ITZ is fundamental to capture complex macroscopic 

characteristics of the material using simple constitutive models at mesoscopic level. 
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1. Introduction 
 

The modeling of the mechanical behavior of quasi-brittle materials is still a challenge task, 

mainly in failure processes when fracture and plasticity phenomena play important roles in 

dissipative processes which occur in materials like concrete. In fact, as the concrete is a composite 

material, it presents a very complex mechanical behavior that is very hard to be modeled (see 

Pituba and Fernandes 2011, Brancherie and Ibrahimbegovic 2009, Zhu et al. 2008 and others). 

Initially, the constitutive phenomenological theories have been represented satisfactorily the 

mechanical behavior of such materials. As example, the Continuum Damage Mechanics (CDM) 

provided sophisticated constitutive models to simulate the mechanical behavior of heterogeneous 

materials, mainly concrete, presenting satisfactory results (see Pituba et al. 2016, Pereira Jr et al. 
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2016, Pituba 2015). Nevertheless, in order to improve the representation of the mechanical 

behavior of such heterogeneous materials, that kind of constitutive modeling requires a complex 

formulation as well as a big number of parameters, sometimes hard to identify. However, 

deformation and rupture processes take place at microscopic level. In this context and taking into 

account the advances on the computational mechanics, in the last decades many numerical 

techniques and constitutive models have been proposed to describe the mechanical behavior of 

heterogeneous materials at microscopic level, Needleman and Tvergaard (1987), Miehe (2003) and 

Santos and Pituba (2017). Therefore, the structural behavior at macroscopic level is connected to 

the micromechanical behavior of the material at microscopic level using homogenization 

techniques leading to a more accurate representation of the macro-continuum behavior, Péric et al. 

(2011) and Miehe and Koch (2002). In this context, some works have been developed to model the 

mechanical behavior of the concrete (see Gitman 2006, Wriggers and Moftah 2006, and López et 

al. 2008). 

One of the main advantages of multi-scale modeling is that the physical phenomena of the 

concrete can be better evaluated because the mechanical properties of each material of the 

microstructure and its imperfections and voids can be considered and informations about the 

microstructure are transferred to the macro-continuum. On the other hand, if the analysis is 

performed only at macroscopic level using phenomenological constitutive models, the concrete 

behaves as a continuum material, but its microstructure is composed by several materials 

presenting different mechanical behaviors. 

The phenomena treated by conventional theories, in fact, are a macroscopic reflection of what 

happens at microstructure. Thus, when analyzing heterogeneous materials, especially the concrete, 

more efficient constitutive models can be obtained if its microstructure is observed and a multi-

scale modeling is considered, where adopting simple constitutive models at the microstructure, 

complex phenomena can be reproduced at macroscopic level, Pituba and Souza Neto (2015). 

In this work only the mechanical behavior of the concrete at mesoscopic level is considered in 

order to validate qualitatively the proposed modeling. The presented formulation is developed in 

the context of the multi-scale analysis recently proposed by Fernandes et al. (2015a) and 

Fernandes et al. (2015b), where the RVE must be defined as well as homogenization techniques. 

Also, the Finite Element Method is used on the RVE modeling. In the proposed modeling, the 

Fracture Mechanics as well as the Plasticity Theory have been considered to model the dissipative 

phenomena in the interface zone as well as inside the matrix taking into account the geometry and 

properties of the materials defined at mesoscopic level. The proposed modeling is an alternative to 

the complex phenomenological constitutive models used to represent the behavior of 

heterogeneous quasi-brittle materials. Therefore, this work intends to contribute to the knowledge 

of some complex characteristics of the concrete using a homogenization-based approach at 

mesoscopic level as well as simple constitutive models. Besides, in future work the proposed 

modeling will be coupled to a macro-continuum formulation considering damage localization 

phenomena (Toro et al. 2016) in order to perform a full coupled multi-scale analysis. 

In what follows, a brief description of the proposed modeling for the concrete is presented in 

section 2, where the homogenization techniques, the constitutive models based on the Contact and 

Fracture Mechanics, the Mohr-Coulomb model adopted to represent the matrix behavior, as well as 

a cohesive contact finite element used to model the interface zone have been discussed. In section 

3, numerical examples are analyzed to show the potentialities and limitations of the proposed 

modeling. Finally, in section 4, final considerations have been discussed. 
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Fig. 1 Multi-scale analysis scheme 

 
 
2. Multi-scale model for the concrete 
 

This section intends to present the homogenization-based approach used to model the material 

at mesoscopic level as well as the constitutive models applied to describe the dissipative 

phenomena which occur during the loading process. Therefore, this section is divided into two 

sections: first one presents the homogenization-based approach applied on the mesoscopic level; 

constitutive models (cohesive law and plasticity), where the constitutive models used on the 

numerical simulations are briefly described. 

The proposed formulation represents the mechanical behavior of a particular point of the 

macro-continuum that can be an integration point of a finite element. By solving the 

macrostructure problem, this point is subjected to a strain tensor that is imposed to the 

microstructure and, then the stress and constitutive tensors related to that point of the macro-

continuum can be computed after solving the microstructure problem, Pèric et al. (2011) and 

Fernandes et al. (2015a). For that, the material microstructure is defined as RVE, whose 

dimensions are not important, but the distribution and proportionality of the materials which 

compose the microstructure affect its behavior, Pituba et al. (2016), Santos et al. (2016), Santos 

and Pituba (2017). Adopting concepts of volumetric average and energy equivalence between the 

macro and micro-continuum, different values for the homogenized stress and constitutive tensors 

can be obtained according to the multi-scale model adopted, which depends on the boundary 

conditions adopted for the RVE. Note that in this work, the material microstructure is analyzed in 

the context of multi-scale analysis, where different RVEs subjected to a strain tensor have been 

analyzed, but a full coupled multi-scale analysis of a structure is not presented. 

Therefore, to simulate the concrete mechanical behavior, a RVE is used to represent the 

material at mesoscopic level, whose discretization by Finite Element Method is shown in Fig. 1. 

The aggregates are considered approximately circular (Nguyen et al. 2010), where elastic 

triangular finite elements are defined, while the matrix can present elastoplastic behavior governed 

by the Mohr-Coulomb model. Besides, cohesive-contact finite elements are used to model the 

interface zone in order to simulate the opening and/or closure of fractures that occur, mainly in this 

region, leading to dissipative phenomena during the fracture process of the concrete 

microstructure. It is important to note that the cohesive contact finite elements used in this work 
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are composed of two surfaces which are coincident in the undeformed configuration of the RVE. 

The cohesive contact finite element is defined as an element with four nodes and its geometry is 

compatible with the two triangule finite elements used to model the matrix and aggregate zones. 

The formulation of the cohesive contact finite element is presented in Pituba and Souza Neto 

(2015) and Pituba et al. (2016). 

Note that the proposed model is used to simulate the mechanical behavior of the conventional 

concretes with compressive strength up to 50 MPa. Besides, the proposed modeling presented can 

also be used to model high strength concretes, however the dissipative phenomena which occur at 

the mesoscopic level also includes a quasi-brittle behavior of the aggregates and a more rigid 

behavior of the matrix due to the improvement of its mechanical properties affected by w/c 

relation, porosity and others. Therefore, it is necessary to consider possible fractures in the 

aggregates. Nevertheless, that fracture process with the phase debonding in the ITZ can lead to 

damage localization at mesoscopic level and a consequent macrocrack nucleation. This kind of 

problems will be addressed in future works where the present formulation must be improved, see 

Fernandes et al. (2015a), Fernandes et al. (2015b) and Toro et al. (2016). 

 

2.1 Homogenization-based approach, an overview 
 

The homogenization-based approach is briefly described as follows. More details can be found 

in Fernandes et al. (2015a), Fernandes et al. (2015b) and Pituba et al. (2016). 

The RVE described in Fig. 1 is considered as a continuum medium, therefore the stress concept 

is valid at mesoscopic level. The macroscopic quantities for strain c(x,t) and stress ζ(x,t) at a point 

x of the macro-continuum are defined as the volumetric average of their respective field εμ=εμ(y,t) 

or ζμ=ζμ(y,t) over the RVE, considering all points y of the RVE related to the point x. Thus, for an 

arbitrary instant t the following expressions are defined 












 dVty
V

tx ),(
1

),(  (1) 












 dVty
V

tx ),(
1

),(

 

(2) 

Eqs. (1) and (2) represent the macroscopic or homogenized values for strain and stress because 

the microscopic fields have been transformed into macroscopic quantities by means of a 

homogenization technique. Besides, the microscopic stress can be written in terms of the 

microscopic strain, as follows 

)),((),( tyfty y   
 

(3) 

where fy is the constitutive functional, defined in this work by the Mohr-Coulomb model. 

Moreover, the microscopic strain εμ can be written in terms of the microscopic displacement filed 

uμ of the RVE, as follows 

),(),( tyuty S

 
 

(4) 

where 
s
 is the symmetric gradient operator of the displacement field u. 

224



 

 

 

 

 

 

Analysis of quasi-brittle materials at mesoscopic level using homogenization model 

Without loss of generality, the microscopic displacement filed uμ can be defined as the sum of 

three parts 

),(~),(),(),( tyutyutxutyu  
 

(5) 

being the first one constant representing a rigid body motion coincident to the macroscopic 

displacement u(x,t) related to the point x, the second one is obtained from the macroscopic strain ε 

as follows 

ytxtyu ),(:),(  
 

(6) 

which varies linearly with the coordinate y, and a displacement fluctuation field ),(~ tyu . Thus, 

Eq. (5) can be written as 

),(~),(),( tyuytxtyu   
 

(7) 

as the macroscopic displacement u(x,t) is a rigid body motion, it has no influence in the stress field at 

points y of the RVE, therefore it is not taken into account to obtain the solution of the equilibrium 

problem. Thus, in Eq. (7) u(x,t) has been disregarded, see Giusti et al. (2009). 

In Eq. (7) the part εy varies linearly with y resulting from the multiplication of the macroscopic 

strain ε of the RVE, which is constant, by the coordinates of the point y. In the case of having 

uniform microscopic strain εμ, the displacement fluctuation u~  is null. In the RVE the following 

relations for the microscopic strain εμ and the microscopic strain fluctuation 
~  have to be 

satisfied 

),( tyuS

 
 

(8) 

),(~~ tyuS
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(9) 

Considering Eqs. (7) to (9) the microscopic strain can also be written as 

),(~),(),( tytxty   
 

(10) 

After some manipulations (Fernandes et al. 2015a), Eq. (10) can be written in terms of velocity, 

where a microscopic strain velocity is kinematically admissible if 

  vutytxuty S   ~),(~),(),(
 

(11) 

where µ is the space of kinematically admissible displacements of the RVE. More details can be 

found in Fernandes et al. (2015a). 

In order to solve the RVE equilibrium problem boundary, conditions in terms of displacement 

fluctuations must be imposed to the RVE. Then, the numerical response can vary according to the 

boundary condition adopted. 

To simplify the presentation, the inclusion Ω
i
μ and the matrix Ω

m
μ  domains will be considered 

together as the solid domain Ω
S
μ . Neglecting the inertia forces and that the RVE is subjected to the 

body force b=b(y,t) and to surface force field t
e
=t

e
(y,t) acting along the boundary, the Principle of 

Virtual Displacements establishes that the RVE is in equilibrium if, and only if, the stress field σμ  

over Ωμ satisfies the classic variational equation of the elasticity 
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On the other hand, the works of Hill and Mandel (Giusti et al. 2009) have established the 

Macro Homogeneity Principle which defines that the macroscopic stress power in a arbitrary point 

of the macrocontinuum must be equal to the volumetric average of the microscopic stress power 

over the RVE related to that point for any movement kinematically admissible of the RVE (Giusti 

et al. 2009). Taking Eq. (11), assuming  u~  and considering that the voids are in equilibrium, 

after some manipulations (see details in Fernandes et al. 2015a and Fernandes et al. 2015b), we 

can conclude that the Hill-Mandel principle is valid if, and only if, the following integrals are nulls 


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(14) 

Considering Eqs. (8) and (10) and writing σμ as σμ=fy(εμ), the following Equation in terms of 

displacement fluctuation can be obtained to represent the equilibrium problem of the solid part of 

the RVE 

 






0:)),(~),((
S

dVtyutxf SS

y  
(15) 

Finally, the formulation is completed by the appropriated choice of the space νμ, i.e., with the 

choice of the kinematical restrictions to be imposed to the RVE. Thus, the microscopic equilibrium 

problem consists of, given the macroscopic strain tensor ε, finding the field  u~  such that for 

each instant t, the Eq. (15) is satisfied. As η is an arbitrary field, after the RVE domain 

discretization into finite elements, whose domain is referred as Ω
h
μ, the following incremental 

microscopic equilibrium equation must hold for a load increment in time Δtn=tn+1−tn and a domain 

discretization h, finding the displacement fluctuation      nnn uuu 
~~~

1   

0)~( )1(1

1  
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
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where B is the global matrix relating strain and displacement, Ω
h
μ is the RVE discretized domain. 

If the load increment is non-linear, Eq. (16) is solved by applying the Newton-Raphson Method 

which consists of finding the fluctuation correction 1~ iu


  for iteration i+1, such that 

0~ 1  iii uKF 
 

(17) 

where F is the force vector and K the tangent stiffness matrix of the RVE. After computing the 
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correction 1~ iu


  defined in Eq. (17), the next step is to obtain the displacement fluctuation field to 

be considered at iteration i+1 given by: 11 ~~~   iii uuu


 . 

The homogenized stress is computed from Eq. (2), considering that the RVE is composed by 

voids and a solid part (matrix and aggregates) 
vS

  , resulting into 
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The RVE equilibrium problem is completed with the choice of the kinematical restrictions to be 

imposed to the RVE, leading to different classes of multi-scale models and consequently to 

different numerical results (Peric et al. 2011). In this work only periodic displacement fluctuations 

is considered. For that, each RVE side 
i

 whose normal direction is 


in , must correspond to an 

equal side 
i

 with normal direction 


in , being 
  ii nn . Similarly, for each point y

+
 defined on 

i  must exists a point y
−
 on the side 

i .To have periodic displacement fluctuation on the 

boundary of the RVE, for every pair of points (y
+
, y

−
)
,
 the following relation must be verified 

     yytyutyu ,),(~),(~  
(19) 

 

2.2 Constitutive models (cohesive law and plasticity) 
 

Pituba and Souza Neto (2015) have proposed an extension of a cohesive fracture law presented 

in Cirak et al. (2005) in order to deal with damage process leading to the complete failure of 

microstructures in ductile media. In general way, this model has been developed to represent the 

cracking process where traction is still possible to be transmitted between fracture surfaces. The 

cohesive free energy is assumed as 

( , ,q)n S     (20) 

where, n is the normal opening displacement due to mode I; s is the sliding opening 

displacement due to mode II and q is the internal variable that describes the inelastic processes 

related to decohesion. 

It is possible to assume that the deformation due to sliding opening process is a scalar value 

independent of the direction of sliding on the cohesive surface, thus s = |s|, therefore the 

behavior has an isotropic characteristic and the cohesive law is written introducing an effective 

opening displacement expressed by 
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(21) 

The parameter β assumes different values (from 0 to 1) to the sliding and normal opening 

displacements given a weight ratio between the sliding and normal directions. On the other hand, 

the  free energy potential depends of , and the cohesive law is expressed as 
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t
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where, n is the unit normal to the cohesive surface; s is the sliding opening vector located on the 

cohesive surface, t is the cohesive traction on the crack; t is a scalar effective traction. 

On the other hand, the released cohesive energy in the microstructure of the material proposed 

in this work (Eq. (20)) is given by 

1

1 C

C Ce e




  

  
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   

 
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 
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 (23) 

where the law for the scalar effective traction for the loading cases is obtained from Eq. (23) 

/
max 0c

ct e if and
 

   



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

 (24) 

For the scalar effective traction for the unloading cases is proposed a law considering an elastic 

behavior, i.e., without residual effective opening displacement as follows 

max
max

max

0
t

t if or   


    (25) 

where e is the e-number, ζc is the maximum tension cohesive normal traction and c is a 

characteristic opening displacement that indicates a critical opening. Thus, β, ζc and c are 

parameters of the cohesive model. Besides,   is the opening displacement rate. 

On the other hand, accordingly to Ortiz and Pandolfi (1999), there is a relation between the 

cohesive law and the critical energy released rate (GC) for crack propagation in the microstructure. 

Assuming the direction 1 as the direction on the fracture surface and towards to its propagation, GC 

can be written as 

1

0

1,. dxtG

R

C    (26) 

where R is the cohesive zone length. The Eq. (26) can also be defined as 





   1

0

1,. dxtGC
 (27) 

For the cohesive law presented in this work, using Eq. (24), the critical energy released rate is 

given by 

CCC eG 
 

(28) 

Obviously, the GC for conventional modeling is developed with phenomenological constitutive 

models applied on the homogenized macrocontinuum. In the present work, the concept of fracture 

energy is closely related to that which occurs in the ITZ of the microstructure at mesoscopic level. 

Also, in initial loading levels, the cohesive fracture has to be kept closed. Besides, it is 

necessary to not allow penetration of the surfaces of the fracture when unloading process occurs. 

Therefore, a strategy based on penalty factor is assumed to create stiffness between the nodes of 

the embedded cohesive contact finite elements in the matrix zone. This penalty factor effectively  
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Fig. 2 Representative volume element with 4 inclusions 
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Fig. 3 Representative volume element with 8 inclusions 

 

 

replaces the initial rigid part of the cohesive law by a linear response given by Eq. (29). 

p P ct if       (29) 

On the other hand, to deal with plastic strains presented on the macrostructure of the concrete 

when the material is subjected mainly to compression stress, the well-known Mohr-Coulomb 

model is used to represent the mechanical behavior of the cement matrix. Therefore, this is another 

dissipative process to be modeled in the microstructure of the material together the possible 

microcracking nucleation that occurs mainly in the ITZ. In case of predominant tension regimes, 

the proposed modeling evidences the microcracking process in the ITZ as the most important 

dissipative phenomenon, mainly in the initial loading stages. Obviously, the microcracking process 

in the matrix zone that occurs in the softening regime of the macrostructure of the material is also 

important leading to insertion of cohesive contact finite elements in the matrix zone. However, 

these embedded finite elements can generate numerical instabilities, mainly in the peak stress 

regime. Besides, in predominant compression regimes, the yielding process in the matrix is 

understood as principal phenomenon in conjunction with the microcracking process in the ITZ.  

 

 

3. Results and discussions 
 

In order to evaluate the proposed formulation, some numerical analyses applied to quasi-brittle 

material focusing on mechanical behavior of the concrete microstructure are performed. Initially, 

RVEs with dimensions l×l and thickness l/10 containing inclusions placed into a matrix are 

generated. Obviously, the inclusions (aggregates) and matrix have different mechanical properties 

evidencing the heterogeneous characteristic of the medium submitted to plane stress states. For the 

matrix zone, an elastopplastic behavior is assumed following the Mohr-Coulomb criterion with the 

parameter values given by, Assad et al. (2014): Young’s modulus E is 20 GPa and Poisson ration  
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Fig. 4 Homogenized stress in the x-direction versus imposed macroscopic strain on the x-direction  for 

the RVE with 4 inclusions 
 

 
Fig. 5 Homogenized stress in the x-direction versus imposed macroscopic strain on the x-direction for 

the RVE with 8 inclusions 

 

 
Fig. 6 Stress distribution on the x-direction inside the RVE with 4 inclusions considering perfectly 

bonded inclusions (aggregates) 
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Fig. 7 Stress distribution on the x-direction inside the RVE with 4 inclusions considering phase 

debonding in the ITZ 
 

 
Fig. 8 Homogenized stress on the x-direction versus imposed macroscopic strain for the RVE with 4 

inclusions 
 

 

 is 0.2, friction angle and dilatation angle are =5º and Ψ=10%, respectively. The aggregates are 

considered elastic media with E=35 GPa and =0.26, Mehta and Monteiro (2008). 

For the ITZ, in the situations where the fracture process has been evaluated, cohesive contact 

finite elements have been used. The parameters for the cohesive law are given by: λp=200000 

N/mm
3
, β=0.7, c=0.09 MPa and δc=0.02 mm, Ortiz and Pandolfi (1999), Oliver et al. (2014), 

Pituba and Souza Neto (2015). 

 

3.1 Influence of the fracture process in the ITZ 
 

In this section, RVEs containing 4 and 8 inclusions with circular shape placed in the matrix 

zone are analyzed. Fig. 2 presents the RVE with 4 inclusions which represent 12% of volume 

fraction. For the RVE discretization, 798 triangular finite elements are used as well as 64 cohesive  
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Fig. 9 Homogenized stress on the x-direction versus imposed macroscopic strain for the RVE with 8 

inclusions 
 

 

contact finite elements, when phase debonding is considered in the analyses. Besides, Fig. 3 

presents the RVE with 8 inclusions which represent 14% of volume fraction, where 1184 

triangular finite elements are used as well as 128 cohesive contact finite elements, when phase 

debonding is considered in the analyses. 

The RVEs have been submitted to a total macroscopic strain εx=0,0001 and εy=-0,00001 

divided in 20 increments. The distortional strain has been considered null. The homogenized 

stresses versus imposed macroscopic strain for x-direction are plotted in Figs. 4 and 5. Note that 

the numerical responses considering perfect bonding or fracture process in the ITZ are the same in 

each RVE for initial loading levels presenting an elastic response. Nevertheless, when the 

microcrack nucleation in the ITZ is evidenced, the numerical responses present different values. 

The consideration of fracture process in the ITZ shows an important contribution in the non-linear 

behavior of the material at mesoscopic level. This conclusion is in agreement with others authors 

(Metha and Monteiro 2008, Nguyen et al. 2010 and Kim and Al-Rub 2011). The cohesive fracture 

model decreases the stiffness of the RVE beyond the yielding limit which occur in the matrix. 

In order to visualize the stress distribution on the x-direction over the RVE, Figs. 7 and 8 

illustrate the impact on the numerical response when fracture process in the ITZ is considered. Fig. 

6 shows the stress distribution for the RVE containing 4 inclusions considering perfect bonding 

between inclusions and matrix whereas Fig. 7 represents the RVE considering the fracture process 

in the ITZ. Note in Fig. 6 that the stresses are perfectly transmitted to rigid inclusions which are 

responsible for strength of the RVE evidenced by the high stress levels in the inclusions. 

Therefore, when perfectly bonded inclusions (aggregates) are considered, the homogenized 

stiffness is higher than the RVE with phase debonding, please see Fig. 4 in the final loading levels. 

This phenomenon is more evident on the RVE with 8 inclusions due to the more extensive ITZ. 

On the other hand, the stress values in the aggregates presented in Fig. 7 are smaller when 

compared to the Fig. 6 due to the consideration of phase debonding represented by the insertion of 

the cohesive contact finite elements. Thus, the impact of the aggregates on the homogenized 

stiffness of the material is smaller, as shown in Figs. 4 and 5. 

Therefore, the modeling of the microcracking process in the ITZ is fundamental to estimate the 

collapse of the concrete microstructure, mainly in predominant tension regimes. This assertion is  
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Fig. 10 RVE proposed by Nguyen et al. (2010) 

 

 
Fig. 11 Homogenized stress on the x-direction versus imposed macroscopic strain on the x-direction 

for predominant tension regime 
 

 
Fig. 12 Homogenized stress (compression) on the x-direction versus imposed macroscopic strain 

(shortening) on the x-direction for predominant compression regime 
 

 

based on results obtained by Pituba and Souza Neto (2015) and Kim and Al-Rub (2011). For 

Pituba and Souza Neto (2015), even considering elastic behavior for the matrix and aggregates, the 

fracture process in the ITZ modeled by cohesive contact finite elements together with the 
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geometry of the aggregates allows the simulation of homogenized plastic macroscopic strains in 

unloading and reversal loadings situations, leading to the capture of the unilateral effect behavior 

of the concrete. 
 

3.2 Anisotropic behavior 
 

In order to check if the proposed modeling is capable to obtain complex responses on the 

macrostructure, but as a consequence of which happens in the microstructure, for example, the 

anisotropic behavior of the concrete is investigate. For this reason, a set of analyses has been 

performed using the RVEs described in Figs. 2 and 3. Initially, the macro strains εx=0.0001 and 

εy=-0.00001 have been imposed. Soon after, εy=0.0001 and εx=-0.00001 have been applied. The 

numerical results are presented in Figs. 8 and 9 and they have been expressed by homogenized 

stress versus imposed macroscopic strains. In Fig. 8 is presented the numerical results for RVE 

with 4 inclusions whereas Fig. 9 presents the numerical results for RVE with 8 inclusions. 

Fig. 8 shows that the mechanical behavior in different directions has been the same. This due to 

the RVE has symmetry related to the axes x and y. But in Fig. 9, the mechanical behaviors in 

different directions present evident differences when the fracture nucleation in the ITZ takes place. 

In this last case, the non-symmetric distribution of the inclusions in the RVE is responsible for this 

phenomenon. Therefore, the proposed modeling is capable to capture the anisotropy of the 

material, a macro-continuum phenomenon, by means the consideration of the inclusion geometries 

and phase debonding in the ITZ using simple constitutive models at mesoscale level. 
 

3.3 Homogenized responses in tension and compression regimes 
 

In this section, the fracture process in the ITZ for RVEs in predominant tension and 

compression regimes is evaluated. The RVE proposed by Nguyen et al. (2010) is used, see Fig. 10. 

The first analysis consists in the application of the macroscopic strain simulating a predominant 

tension regime given by: εx=0.0001 and εy=-0.00001, where γxy is approximately null. After that, a 

predominant compression regime has been considered with the same magnitude. (εx=-0.0001 and 

εy=0.00001). The Figs. 11 and 12 present results of the homogenized stress on x-direction versus 

imposed macroscopic strain on x-direction. For the visualization proposes, Fig. 12 presents 

positive signals for compressive homogenized stress and macroscopic strains. 

Fig. 11 shows the important contribution of the fracture process in predominant tension regime 

leading to a decreasing of the homogenized stiffness and strength of the material. Fig. 12 shows 

that the fracture process is not so important in predominant compression regimes. This assertion is 

based on the mechanical behavior of the cohesive contact finite elements placed in the ITZ. The 

traction transmission reducing between the fracture surfaces is evident when the value of the 

cohesive traction increases, but this is not happen in many cohesive contact finite elements in the 

RVE submitted to predominant compression regime. Therefore, for the analysis displayed in Fig. 

12, many cohesive contact finite elements are submitted to compression loading conditions, where 

the contact law is activated. 
 

3.4 Influence of the fracture process in the matrix zone 
 

In this numerical application, cohesive contact finite elements have been inserted in the matrix 

zone in order to evaluate the influence of the fracture process on the macroscopic behavior of the 

concrete. Note that the fracture nucleation in the ITZ is taking into account. The RVE proposed by  
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Fig. 14 Homogenized stress on the x-direction versus imposed macroscopic strain on the x-direction 

for predominant tension regime 
 

 
Fig. 15 Homogenized stress (compression) on the x-direction versus imposed macroscopic strain 

(shortening) on the x-direction for predominant compression regime 
 

 

Oliver et al. (2014) is used (see Fig. 13), where the cracking path is assumed known. The 

aggregate volume fraction is 22.5% and 3002 triangular finite elements are used. Besides, 120 and 

139 cohesive contact finite elements are used in the ITZ and in the matrix zone, respectively. 

Three kind of numerical analysis have been performed: the fracture processes are not 

considered in the matrix and interface transition zones; the second analysis has consisted in the 

insertion of cohesive fracture finite elements in the ITZ; finally, in the third analysis, the cohesive 

contact finite elements are inserted in a path in the matrix zone following Oliver et al. (2014) as 

well as the fracture process in the ITZ is considered. For the aggregates, Young’s modulus E=100 

GPa and Poisson’s ratio v=0,2 have been assumed. For the matrix, the parameters for the cohesive 

law and Mohr-Coulomb model are the same used in previous sections, however for the Young’s 

modulus E=20 GPa and Poisson’s ratio v=0,2 have been adopted. The first analysis consists in the 

application of the macroscopic strain simulating a predominant tension regime given by:  
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Fig. 16 Finite element mesh in failure regime for the RVE proposed by Oliver et al. (2014) 

 

 
Fig. 17 Homogenized stress on the x-direction versus imposed macroscopic strain on the x-direction 

for the RVE proposed by Oliver et al. (2014)-compression and tension predominant regimes without 

fracture process 
 

 

εx=0.00007 and εy=-0.000007, where γxy is approximately null. After that, a predominant 

compression regime has been considered with the same magnitude (εx=-0.00007 and εy=0.000007). 

The Figs. 14 and 15 present results of the homogenized stress on x-direction versus imposed 

macroscopic strain on x-direction. For the visualization proposes, Fig. 15 presents positive signals 

for compressive homogenized stress and macroscopic strains. 

In Fig. 14 is possible to note that the homogenized responses considering or not fracture 

process in ITZ have presented the expected behaviors accordingly with section 3.1. However, 

when the fracture process in the matrix zone is considered the RVE has presented a massive 

strength reduction evidencing an important contribution of the fracture process into the matrix to 

simulate the failure of the material. The finite element mesh in failure regime of the RVE is shown 

in Fig. 16. 

On the other hand, for predominant compression regime, Fig. 15 shows that there is no 

difference between the homogenized responses when the fracture process in the ITZ is considered 

or not. However, when fracture process in the matrix zone is considered the stiffness and strength  
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Fig. 18 Stress (MPa) on the x-direction distribution over the RVE for tension predominant regime 

considering perfect bonding between aggregates and mortar 
 

 
Fig. 19 Stress (MPa) on the x-direction distribution over the RVE for compression predominant 

regime considering perfect bonding between aggregates and mortar 
 

 

of the RVE are decreased, but this decreasing is not so evident as in the predominant tension 

regime (Fig. 14). 

The numerical analysis of the RVE considering no fracture process in the ITZ and matrix zones 

is shown in Fig. 17. Note that the RVE presents high values of stiffness in compression 

predominant regime than in the tension predominant regime due to the Mohr-Coulomb model 

applied in the matrix zone. Observe in Fig. 17 that the homogenized stress and macroscopic strains 

are plotted in absolute values for better visualization. 

Despite of capturing a difference between the homogenized responses in tension and 

compression predominant regimes, the computational homogenized-based approach cannot 

represent this difference correctly. The fracture process in the ITZ represented by cohesive contact 

finite elements inserted around the aggregates is fundamental for capturing different numerical 

responses in tension and compression predominant regimes. If perfect bonding is assumed, i.e., no  
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Fig. 20 Homogenized stress on the x-direction versus imposed macroscopic strain on the x-direction 

for the RVE proposed by Oliver et al. (2014)-compression and tension predominant regimes 

considering fracture process 
 

 

fracture process is assumed in the ITZ, Fig. 18 shows that a perfect transmission of stresses 

between the aggregates and mortar is present. This phenomenon leads to an evident increasing of 

stiffness and strength of the RVE due to the rigid aggregates. Fig. 19 shows the same phenomenon 

for compression predominant stress, but the stress level has the same magnitude of the tension 

predominant regimes. 

In conclusion, the ITZ has an important role in the dissipative phenomena in microstructures of 

brittle materials, like concrete. Besides, the consideration of the fracture process in the matrix zone 

is also important when the failure stage is the focus of the numerical simulation. This assert is 

evidenced in Fig. 20 where cohesive contact finite elements are inserted in the ITZ and matrix 

zones. Observe in Fig. 20 that the stress and strains are plotted in absolute values for better 

visualization. 

 

 

4. Conclusions 
 

In this work a computational homogenization-based approach has been applied to capture the 

major characteristics of the mechanical behavior of quasi-brittle materials like concrete. In this 

context, a computational modeling has been proposed, being the numerical analyses restricted to 

the mesoscopic level. Using simple constitutive models and defining accordingly the geometry of 

the different phases of the RVE, some important macroscopic phenomena have been represented. 

When cohesive contact finite elements are considered at the ITZ, the deacreasing of stiffness in 

the homogenized response could be evidenced without presenting total loss of the stress 

propagation, as expected. Moreover, the incorporation of the plasticity model in the improved 

multi-scale modeling proved to be satisfactory to overcome the problems presented in Pituba and 

Souza Neto (2015) when dealing with rigid responses in predominant compression regimes. 

However, if only plasticity process is considered without fracture process in the ITZ, the numerical 

results are not satisfactory due to the elastic behavior of the aggregates leading to a not realistic 

homogenized elastic behavior for the material. Therefore, this work has shown the importance of 
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considering the dissipative phenomena at ITZ for better representation of the mechanical behavior 

in quasi-brittle materials. 

On the other hand, a limitation of the proposed model in reproducing the softening behavior for 

predominant tension regimes when occurs the microcracking process inside the mortar has been 

presented. Besides, the definition of cohesive-contact elements in the matrix can lead to 

instabilities of the numerical response for predominant tension regimes. To overcome these 

difficulties, in future works the cohesive-contact finite elements could be replaced for the high 

aspect ratio elements developed by Rodrigues et al. (2016). But for concrete structures, in service 

regimes, the proposed model has shown to be a proper tool to perform multi-scale analysis of 

structures. 

Although the proposed model presents some limitations, in the numerical examples analyzed in 

this work, the proposed modeling has captured complex phenomena by adopting simple 

constitutive models, what encourage us to proceed with this research. The proposed model will be 

considered for identification of quantitative responses for the concrete, as well as for full coupled 

multi-scale analyses of concrete structures, based on the works developed in Fernandes et al. 

(2015a) and Fernandes et al. (2015b). Moreover, it is important the development of a formulation 

considering the damage localization phenomenon at microstructure which can lead to a fracture 

nucleation at macrostructure, as discussed in Sanchéz et al. (2013) and Toro et al. (2016). 
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