
Advances in Concrete Construction, Vol. 11, No. 6 (2021) 469-479 

DOI: https://doi.org/10.12989/acc.2021.11.6.469                                                                  469 

Copyright © 2021 Techno-Press, Ltd. 
http://www.techno-press.org/?journal=acc&subpage=7                                      ISSN: 2287-5301 (Print), 2287-531X (Online) 

 
1. Introduction  

 

The degradation in the shear strength of reinforced 

concrete (RC) members has been the subject of many 

controversies and debates for the past four decades. Bousias 

et al. (1995) and Acun and Sucuoglu (2012) stated that RC 

members are unable to maintain their properties under 

cyclic loading in comparison with monotonic loading and 

cyclic loading causes larger inelastic deformation demands 

and damage accumulation. The shear strength degradation 

of RC members under cyclic lateral loading occurs faster 

than the flexural strength degradation (Biskinis et al. 2004 

and Keskin 2017). Hence, the reduction in the shear 

capacity due to cyclic loading should be taken into account 

while designing RC structures or assessing the existing RC 

members. Park et al. (2012) also indicated that previous 

models are based on experimental data and field 

observations of earthquake damaged buildings since the 

shear strength degradation is a complex phenomenon. 

 Shear strength degradation occurs in RC beams that 

exhibit flexural yielding during cyclic loading (Aydemir and 

Eser Aydemir 2020). Several models have been developed 

to represent the degradation of RC members with increasing 

deformations (Ascheim and Moehle 1992, Priestly et al. 

1994, Pérez and Pantazopoulou 1998, Kowalsky and 

Priestley 2000, Elwood and Moehle 2005), longitudinal 
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strain (Muttoni and Fernández 2008), depth of the 

compression zone (Olalusi 2019, Campione et al. 2014). 

Moehle et al. (2001) and Sezen and Moehle (2004) 

proposed that the shear strength of RC columns is related to 

the displacement ductility demand. The reduction of shear 

strength with cyclic rotations is considered to affect both 

the contribution of transverse reinforcement, based on 45 

degree truss model, and the contribution of concrete, which 

are multiplied by the same coefficient. Aschheim and 

Moehle (1992), Priestly et al. (1994), and Pérez and 

Pantazopoulou (1998) proposed a degradation coefficient 

for the contribution of concrete, which is determined by the 

displacement ductility. Lee and Watanabe (2003) predicted 

the shear degradation of RC beams after flexural yielding 

by using a compatibility-aided truss model. Based on the 

experimental results, Elwood and Moehle (2005) developed 

a drift capacity model for the displacement-based design 

and assessment of existing structures. Arslan (2005) 

proposed a model for degradation coefficient by 

considering that the contribution of concrete to shear 

strength is zero, and the shear strength is provided by 

merely transverse reinforcement at collapse. Kowalsky and 

Priestley (2000) proposed a revised version of UCSD 

(University of California, San Diego) shear model, where 

the reduction in the concrete contribution to the shear 

strength depends on the column aspect ratio, longitudinal 

steel ratio and displacement ductility. De Domenico and 

Ricciardi G. (2020) proposed a model is based on the 

concept of cracked membrane element combined with the 

variable strut inclination method of the Eurocode 2. 

Advanced, structural‐mechanics‐based shear models like 

the modified compression field theory (Vecchio and Collins 

1986, Vecchio et al. 2008, Sezen 2008) or the axial‐shear‐
flexure interaction approach (Mostafaei et al. 2009) have 

proven to be rather accurate, but these approaches involve  
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high computational demand (Zimos et al. 2018). 

Most of the previous studies were mainly focused on the 

behaviour of RC members subjected to a shear-dominant 

seismic loading condition. This paper considers the test 

results of RC beams under a flexural-dominant loading 

condition. Such a loading condition is common for beams in 

multistory frame structures subjected to lateral loading. 

Common practices using a ductile design approach based on 

the strong column-weak beam mechanism require proper 

designs of columns against any shear failure. Moreover, a 

beam mechanism in which yielding takes place at the beam 

ends is realistic for multistory frame structures under cyclic 

loading. The shear strength of RC members is decreased by 

diagonal cracking under cyclic loading as the plastic 

rotation increases. In the present study, a new approach is 

developed based on the influence of plastic rotation on the 

concrete contribution to shear strength using critical shear 

crack theory. For verification, the predictions by the 

proposed model and various researchers’ models are 

compared with the test results of this study. 

 

 
2. Experimental program 

 
2.1 Specimens 
 
Six cantilever RC beams were tested under cyclic 

loading. For the cantilever specimens, loading point 
represents the zero moment point whereas the support of 
cantilever beam corresponds to a rigid column in an actual 

structure. The geometry and details of specimens are 
illustrated in Fig. 1, whereas significant section properties 
are presented in Table 1. All beams are 250 mm wide (b), 
and 500 mm high (h), with an effective depth (d) of 460 
mm and shear span-to-effective depth ratios (a/d) ranging 
from 3.6 to 6.0. The shear reinforcement was calculated as 

(diameter/spacing) 8/12.5, 8/16 and 8/20 for shear span-
to-effective depth ratios 3.6, 4.7 and 6.0, respectively, to 
ensure flexural rather than shear failure. The top and bottom 
flexural reinforcement were used as 616 and 316, 
respectively. The cross-sectional dimensions and 
reinforcement layouts of beams are shown in Fig. 1. 

 

 

 

Fig. 1 Geometry, detailing and instrumentation of the specimens 
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Transverse reinforcement design of test specimens is 

completed based on the capacity design approach. The ratio 

of maximum shear force to lateral reinforcement shear 

strength (Vmax/Vs) for test specimens are designed 

approximately to be equal (See Table 2). Besides, it is 

worth to note that, for specimens with a/d ratio of 3.6, 

spacing of lateral reinforcement sustains Turkish Seismic 

Design Code (TSDC-2007) requirements (sh/4, s8l, 

s5 cm) whereas for specimens with a/d ratio of 6.0 this 

statement is not valid. The beams were designated 

regarding to compressive strength of concrete (fc), shear 

span-to-effective depth ratio and load history. The beam 

designation includes a combination of letters and numbers: 

BN or BH to indicate the compressive strength of concrete; 

3.6, 4.7 or 6.0 to indicate the shear span-to-effective depth 

ratio; and LH1 to designate the 1st load history. For 

example, a beam made of high strength concrete having a 

shear span-to-effective depth ratio of 3.6 and LH1 is 

labelled as BH3.6-LH1. All longitudinal bars have an 

average yield strength (fy) of 480 MPa, and an average 

tensile strength (fsu) of 725 MPa. Shear reinforcement bars 

have an average yield strength (fyw) of 597 MPa. All bars 

 

 

 

have a yield strain in the beginning of strain hardening (sh) 

and a rupture strain (su) of 0.009 and 0.14, respectively.  

 

2.2 Test setup 
 
The test specimens were tested at the Structural Testing 

Laboratory of Istanbul Aydin University. A sample 

cantilever specimen in the test configuration is shown 

schematically in Fig. 2. Prior to testing, the specimen was 

supported to the laboratory strong floor by anchor blocks to 

prevent sliding and overturning and a double-acting pseudo-

controlled 500 kN (±250 mm) capacity actuator was 

connected to the load arm. 30-channel Data loggers were 

used for data acquisition. 

Six linear variable displacement transducers (LVDTs) 

were attached on the side surfaces of each beam to measure 

the plastic rotation (see Fig. 2). In order to monitor the 

development of strain in the longitudinal reinforcement and 

shear reinforcement with progressive loading, electrical 

strain gauges were installed. A computer aided data 

acquisition system automatically monitored load, 

displacements and strains at pre-selected time intervals. The  

Table 1 Specimen properties 

Parameter 
Specimens 

BN3.6-LH1 BN4.7-LH1 BN6.0-LH1 BH3.6-LH1 BH4.7-LH1 BH6.0-LH1 

G
eo

m
et

ri
c
 

b/h/d (cm/cm/cm) 25/50/46 25/50/46 25/50/46 25/50/46 25/50/46 25/50/46 

(a/d) (cm/cm) 165/46=3.6 215/46=4.7 275/46=6.0 165/46=3.6 215/46=4.7 275/46=6.0 

M
a

te
ri

a
l fc (MPa) 45.6 46.9 48.6 64.4 68.4 65.4 

fy/fsu/fyw (MPa) 498/602/597 498/602/597 498/602/597 498/602/597 498/602/597 498/602/597 

sh/su 0.009/0.14 0.009/0.14 0.009/0.14 0.009/0.14 0.009/0.14 0.009/0.14 

R
ei

n
fo

rc
em

en
t Top flexural 

reinforcement (ratio) 
616 

(0.0105) 
616 (0.0105) 

616 

(0.0105) 
616 (0.0105) 

616 

(0.0105) 

616 

(0.0105) 

Bottom flexural 

reinforcement (ratio) 
316 

(0.0052) 
316 (0.0052) 

316 

(0.0052) 
316 (0.0052) 

316 

(0.0052) 

316 

(0.0052) 

Shear reinforcement 

(ratio) 
8/12.5 

(0.0032) 

8/16 

(0.0025) 
8/20 (0.002) 8/12.5 (0.0032) 

8/16 

(0.0025) 
8/20 (0.002) 

 

Fig. 2 Test configuration 

471



 

Cem Aydemir, Müberra Eser Aydemir and Güray Arslan 

 

 
Fig. 3 Target nominal displacement ductility history (+y-

y) 

 

 

tests also provided information on the behavior of beams 

including development of cracks, crack patterns, and failure 

modes. 

 
2.3 Loading procedure 
 
The loading history, LH1 contains standard cyclic 

loading procedure with an increasing displacement 

amplitude. All specimens were subjected to similar loading 

procedures. The target lateral displacement history was 

based on nominal displacement ductility (y, analytical) as 

presented in Fig. 3. Three cycles were run for each nominal 

displacement ductility amplitude, followed by a single cycle 

for post-yield cycles. 

 

 

3. Test results and discussion 
 

3.1 Failure modes  
 

The maximum shear demand, the shear force 

corresponding to the development of the flexural strength of 

beam, the shear strength calculated according to ACI-318 

(2014) and the failure mode for each beam are listed in 

Table 2. Experimental material strengths are used for 

moment and shear force capacities, whereas concrete  

 

 

Table 2 Comparison of flexural and shear capacities 

Specimens/ 

Direction 
Vmax

(1) Vf
(2) Vw

(3) Vmax/Vf Vmax/Vw 
Failure 

Mode(4) 

BN3.6-LH1 
+ 159 155.9 220.8 1.02 0.72 F/T 

- 84.5 80.5 220.8 1.05 0.38 F/T 

BN4.7-LH1 
+ 119.5 119.4 184.0 1.00 0.65 F/T 

- 65.2 61.9 184.0 1.05 0.35 F/T 

BN6.0-LH1 
+ 95.2 94.3 138.0 1.01 0.69 F/T 

- 50.4 48.5 138.0 1.04 0.37 F/T 

BH3.6-LH1 
+ 164.6 159.8 220.8 1.03 0.75 F/T 

- 84.8 81.5 220.8 1.04 0.38 F/T 

BH4.7-LH1 
+ 117.3 121.9 184.0 0.96 0.64 F/T 

- 66.5 64.5 184.0 1.03 0.36 F/T 

BH6.0-LH1 
+ 96.3 95.3 138.0 1.01 0.70 F/T 

- 50.4 48.9 138.0 1.03 0.37 F/T 

(1): Maximum shear demand 

(2): Shear force corresponding to the development of the flexural 

strength of beam calculated with experimental materials strength  

(3): Transverse reinforcement shear strength calculated with 

experimental yield strength (Vw=Aswfywd/s)  

(4): F/T is Tension-controlled flexural failure 

 

 

contribution is neglected (ACI 318-14) for shear capacities 

of test samples. The shear force corresponding to the 

development of the flexural strength of beam (Vf) were 

determined by Eq. (1). 

f

f

M
V

a
=                  (1) 

where Mf is the flexural strength assuming a strength 

reduction factor  of 1.0 and a is the clear span length of the 

cantilever beam. The shear force corresponding to the 

development of the shear strength of beam (Vw) were 

determined by following Eq. (2), assuming the concrete 

contribution to shear strength (Vc) was ignored (ACI 318 

2014, and TSDC (2007). 

v yw

w

A f d
V

s
=                 (2) 

 

 
 

 

  
  

  
(a) BN3.6-LH1 (b) BH3.6-LH1 (c) BN4.7-LH1 (d) BH4.7-LH1 (e) BN6.0-LH1 (f) BH6.0-LH1 

Fig. 4 Crack patterns of all test beams at failure 
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where Av is the s the area of shear reinforcement, fyw is the 

experimental yield strength of shear reinforcement, d is the 

effective depth of the beam section and s is spacing of shear 

reinforcement. 

Fig. 4 presents schematic diagrams and crack patterns of 

all test beams at failure. As expected, during the early stages 

of loading, fine vertical flexural cracks appeared around the 

fixed end of all of the beams. With increase in load, new 

flexural cracks formed extending from the fixed end 

through the free end. With a further increase, some of the 

flexural cracks started to propagate diagonally, and other 

new flexural cracks began to form separately farther away 

from the fixed end of the beam. In all beams, flexural 

failure occurred after a diagonal shear crack extended to the 

top fibre, as indicated in Fig. 4. 

 

3.2 Force-displacement response 
 
Load-displacement and moment-rotation relations for all 

beams are presented in Fig. 5. As shown in Fig. 5 and Table 

2, an increase in the a/d leads to increase in displacement 

 

Table 3 Shear strength and displacement ductility at 

diagonal cracking for test specimens 

Specimens/Direction a/d (1) (2) Vcr
(3) (kN) vcr 

(4) 

BN3.6-LH1 
+ 3.6 0.0105 0.5 155.8 1.26 

- 3.6 0.0052 2.0 -82.0 3.40 

BN4.7-LH1 
+ 4.7 0.0105 0.5 112.6 1.33 

- 4.7 0.0052 2.0 -63.8 3.82 

BN6.0-LH1 
+ 6.0 0.0105 0.5 87.0 1.67 

- 6.0 0.0052 2.0 N/O N/O 

BH3.6-LH1 
+ 3.6 0.0105 0.5 159.4 1.61 

- 3.6 0.0052 2.0 -78.5 4.01 

BH4.7-LH1 
+ 4.7 0.0105 0.5 109.9 1.35 

- 4.7 0.0052 2.0 -70.4 3.14 

BH6.0-LH1 
+ 6.0 0.0105 0.5 94.9 1.78 

- 6.0 0.0052 2.0 -50.0 4.44 

Note: N/O is the abbreviation for “Not Observed” 

(1): Tension reinforcement ratio, As/(bwd). 

(2): Compression reinforcement ratio, As/(bwd). 

(3): Vcr is shear force at diagonal crack was observed. 

(4): Vcr is displacement ductility factor at diagonal crack was 

observed. 

 

  

 

 

  

 

 

  

 

Fig. 5 Force-displacement response of test specimens 

473



 

Cem Aydemir, Müberra Eser Aydemir and Güray Arslan 

 

 

Fig. 6 Components of shear resistance and determination of 

Vs and Vc at critical diagonal crack of beam 

 

 

and rotation and decrease in load and moment capacity. 

 

3.3 Variation in Vs and Vc at observed damage states 
 
Diagonal crack strength of test samples (Vcr) and  

 

 

displacement ductility ratios for diagonal crack formation 

(Vcr) are summarized in Table 3. Diagonal crack formation 

of each test sample is obtained by visual investigation in 

each step of target maximum value of displacement history. 

As it can be seen from diagonal crack strength and 

displacement ductility ratio relationships given in Fig. 3, 

increase in a/d ratio of beam samples leads to not only 

decrease in diagonal cracking strength but also increase in 

ductility ratio. 

For a reinforced concrete beam under cyclic moment 

and shear force, both reversing flexural and shear damages 

would occur due to displacement demand. A schematical 

view of only one direction diagonal shear crack is presented 

in Fig. 6 to represent shear force components of a 

reinforced concrete beam section briefly. As the vertical 

force equilibrium is considered, shear resistance of the 

section can be defined as the sum of concrete contribution 

and lateral reinforcement contribution. Lateral 

reinforcement contribution is equal to total of shear forces 

at lateral reinforcements that cross the diagonal shear 

cracks. Thus, concrete contribution is the sum of shear 

strength component from the concrete in the uncracked  

 

 
 
 

 

  

 

 

  

 

 

  

 

Fig. 7 Variation in Vc and Vs at critical diagonal crack (CDC) of test specimens 
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compression zone, the aggregate interlock and dowel 

action, respectively. 

Shear forces of lateral reinforcement in test samples are 

obtained with the aid of experimental strains. Shear 

contribution of lateral reinforcements at a critical crack 

observed on a beam specimen under cyclic loading is 

defined as the sum of shear forces at lateral reinforcements 

that cross the diagonal shear crack. For the observed 

diagonal crack, concrete contribution to shear strength is 

obtained as the difference between the experimental shear 

force and lateral reinforcement shear contribution. Variation 

of concrete contribution and lateral reinforcement 

contribution to shear resistance with displacement demand 

for the observed critical shear crack is presented in Fig. 7. 

In addition, various damage states observed during the 

experiments are also illustrated in the figures to gain a 

better understanding for the damage state of beam support. 

The most notable observations, in sequence of first 

occurrence, are concrete flexural cracking, longitudinal 

reinforcement yielding, and initial spalling of the concrete 

cover, initial diagonal cracking, complete spalling of the 

concrete cover, longitudinal reinforcement buckling, and 

longitudinal reinforcement fracture.  

 

 
4. Influence of plastic rotation on the concrete 
contribution to shear strength 

 

Variation of concrete contribution to shear strength with 

displacement demand for sample beams has been 

investigated in Sec. 3.3. Critical shear crack theory will be 

used to investigate the relation between the mentioned 

variation and plastic hinge rotation of RC beams. Concrete  

 

 

contribution to shear strength according to critical shear 

crack theory (Muttoni 2008) can be expressed as 

0.6

1 2
( , )

1206
1

16

c

dw c

g

V
mm MPa

db d f

d


=


+

+

      (3) 

where fc is concrete compressive strength, 0.6d is 

longitudinal strain at the fiber from 0.6d to exterior 

compression side at shear critical section, d is effective 

depth and dg is maximum size of aggregate. 0.6d value 

corresponding to longitudinal strain at control depth can be 

defined as 

2

0.6
0.6

d

x
d d

d
 

 
= − 

 
              (4) 

where x is neutral axis depth,  is total curvature at critical 

section. As the right side of Eq. (4) is multiplied by Lp/Lp 

and rewriting the (=y+p), (p=pLp), (y=cy/h) (Priestley 

2000) equalities for elastic beyond shear critical section, 

shear resistance of concrete is defined with Eq. (5). 

2

0.33
( , )

1.5 1.85 0.6

1

c w

c

p

p sy

p

f b d
V mm MPa

L x
d

d d

L

 


=

   
+ −   

  +

 (5) 

Using the equality of compressive and tensile forces of 

singly reinforced rectangular beams, neutral axis depth can 

be defined based on mechanical reinforcement ratio 

(=fy/fc) and equivalent stress block parameter for 

 

  

 

 

  

 

Fig. 8 Variation of concrete contribution of shear strength with different parameters 
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concrete (k1) as given below 

1
0.85

x

d k


                  (6) 

As Eq. (6) is rewritten in Eq. (5), concrete contribution 

of shear force is defined based on plastic rotation capacity 

2

1

0.33
( , )

1.5 1.85 0.6
0.85

1

c w

c

p

p sy

p

f b d
V mm MPa

L
d

d k

L


 


=

  
+ −  

   +

(7) 

Concrete contribution to shear strength denoted in Eq. 

(7), depends on variables except for plastic rotation demand 

(p). One of these variables is the effective depth of RC 

beams (d). The other variables are reinforcement ratio (), 

material strengths (fy, fc) and plastic hinge length (Lp). The 

variation of plastic hinge rotation with shear strength 

prediction for varying values of above-mentioned 

parameters is presented in Fig. 8. 

 
 
5. Evaluation of shear strength models 

 

Over the past few decades, many researchers have 

focused on shear strength degradation models for reinforced 

concrete. Seven existing models are selected for 

examination in this study. These are the ACI 318 model 

(2014), TEC (2007), Aschheim (1992), a model proposed 

by the University of California, San Diego (UCSD) 

(Priestley et al. 1994), a model proposed by the University 

of California, Berkeley (UCB) (Sezen et al. 2004), Perez 

(1996), and Howser (2010). The proposed equation, the 

requirements of two codes of practice and five equations 

proposed by various researchers are compared to the 

experimental results of this study. 

 

5.1 Shear strength models 
 

Commentary on Building Code Requirements for 

Structural Concrete (ACI 318R-14) (2014) provides a 

conservative model for the nominal shear strength and the 

shear strength must exceed the shear demand u as shown in 

Eq. (8). 

 
n u

                 (8) 

in which n is the nominal shear strength of RC beams and 

has two components: the contribution of concrete c and the 

contribution of shear reinforcement s to shear strength 

based on yield, which is given as follows 

n c s  = +                (9) 

For the design of new buildings, according to ACI318 

(2014), the contribution of concrete to shear strength is 

typically simplified as follows 

0.17 1
14

u

c c

g

N
f

A


 
= +  

 

            (10) 

where Nu is the axial load and Ag is the gross area of 

section. 

According to the Turkish Seismic Design Code (TSDC-

2007), the contribution of concrete to shear strength is 

mainly dependent on the compressive strength of concrete 

and axial load. The cracking shear strength can be 

calculated as 

0.2275 1 0.07 u

cr c

g

N
f

A


 
= +  

 
          (11) 

The contribution of concrete to shear strength is 

determined as c=0.8cr. 

Aschheim and Moehle (1992) proposed that the concrete 

contribution to the shear strength of RC column degrades 

with increasing displacement ductility () as follows 

0.3
13.8

u

c c

g

N
f k

A


 
= +  

 
           (12) 

where, k represents the effect of displacement ductility and 

cannot be smaller than 0 and larger than 1.0, Nu is the axial 

load, and Ag is the gross area. This model was intended to 

evaluate the shear strength at plastic hinge zones, and was 

adopted in FEMA 273 (1997). 

Priestley et al. (1994) suggested a relationship for 

predicting the concrete contribution to the shear strength of 

a RC column that is determined as a function of the 

displacement ductility as follows 

c c
k f =                  (13) 

in which k depends on , which reduces from 0.29 in MPa 

units for 2 to 0.10 in MPa units for 4. 

Sezen and Moehle (2004) proposed a shear strength 

model including the column aspect ratio, the axial load, the 

amount of shear reinforcement and the deformation 

ductility demand. The model take into account the apparent 

strength degradation associated with flexural yielding as 

0.5
1

/ 0.5

c u

c

c g

f N
k

a d f A
 = +           (14) 

The value of a/d is limited to 2a/d4; k=1.0 for 2 

and k=0.7 for 6 , with a linear variation between these 

limits.  

Perez and Pantazopoulou (1996) proposed a shear 

strength model to define the relationship between shear 

strength and deformation demand through a nonlinear 

analytical model of cyclic plane stress states in RC. The 

concrete contribution to shear strength is expressed as 

follows 

1
1

s

c c

c

n
f

f


 




 
= − 

 +  

         (15) 

in which  and  can be taken as 37 and 7.6, respectively. 

s and n are the shear reinforcement ratio and the influence 

of applied uniaxial stress, respectively. 

Howser et al. (2010) conducted a parametric study on 
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reinforced concrete bridge piers by using a nonlinear finite 

element program. Based on the results of the parametric 

study, a relationship between flexural ductility and shear 

capacity of normal strength RC structures is proposed. The 

concrete contribution to shear strength is defined as 

c c
k f =                  (16) 

in which k is a factor for influence of flexural ductility, 

given as k=0.29 for <2; k=0.29-0.12(−) for 2<r; 

k=0.53-0.095r-0.025 for rq; and k=0.53-0.095r-

0.025q for >q; r is the flexural ductility at the point where 

the slope changes and q is the flexural ductility at the point 

where the slope changes to zero, given as q=-144s+5.3 and 

r=-13300s
2+242s+2.8 for s0.01, q=r=3.85 for s0.01, 

where s is the volumetric ratio of shear reinforcement. 

  
5.2 Evaluation of the proposed strength model 
 

Fig. 9 compares the shear models in terms of the impact 

 

 

of plastic rotation demand for all tested beams. 

Experimental results of concrete contribution are marked on 

graph beginning from displacement demand on which 

diagonal crack formation is observed. For samples with no   

diagonal crack formation, concrete contribution is not 

calculated/shown. With regard to the effect of plastic 

rotation demand, shear strength degradation initiates with 

the yielding of tension reinforcement. For the specimens 

with the shear span-to-effective depth ratio of 6 shown in 

Fig. 9, the proposed equation exhibits good agreement with 

the measured shear strengths; where the differences 

between the measured and calculated values are less than 

10%. Considering that RC members are designed to have 

shear strengths much greater than their flexural strengths to 

ensure flexural failure according to the current codes, it is 

very important to have a good estimate of the proposed 

relationship. 

Table 4 summarizes the comparisons of the concrete 

contribution to shear strength, c, and shear capacity, n, 

predictions obtained from the proposed equation, ACI318  

 

  

 

 

  

 

 

  

 

Fig. 9 Comparison of shear strength predictions using experimental results 
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Table 4 Comparison of shear strength predictions using 

experimental results at plastic behavior 

Prediction 
Mean value 

(MV) 

Standard 

deviation 

(SD) 

Coefficient of 

variation (COV) 

Vc,ACI-318/Vc,Experimental 3.33 2.40 0.72 

Vc,TSDC/Vc,Experimental 4.51 3.25 0.72 

Vc,Aschheim/Vc,Experimental 1.57 1.19 0.76 

Vc,Priestly/Vc,Experimental 1.73 1.26 0.73 

Vc,Sezen/Vc,Experimental 1.90 0.90 0.47 

Vc,Perez/Vc,Experimental 0.44 0.22 0.50 

Vc,Howser/Vc,Experimental 3.05 1.40 0.46 

Vc,Proposed/Vc,Experimental 0.70 0.29 0.42 

 

 

(2014), TSDC (2007), Aschheim’s equation (1992), 

Priestley’s equation (1994), Sezen’s equation (2004), 

Perez’s equation (1996) and Howser’s equation (2010) with 

the test results. The predictions by the proposed equation 

for the concrete contribution to shear strength of beams are 

relatively better, whereas Perez’s equation is excessively 

conservative. Among the models reviewed above, TSDC 

(2007) and Howser et al. (2010) predict the highest residual 

shear strength of concrete at ultimate state. 

In Fig. 10, concrete contribution of shear force with Eq. 

(7) are compared with the results of nonlinear finite element 

analysis of the beams. Comparisons are made for test 

samples named R1, R2, R3 and R4 of Ma et al. (1976). The 

general properties of test beams and the comparisons of 

analytical with experimental results can be found in Arslan 

and Kırıstioğlu (2013). 

 

 

6. Conclusions 
 

In this study, the concrete contribution to shear strength 

of ductile or nominally ductile RC beams under cyclic 

loading is experimentally investigated. Test program 

includes the comparison of test samples with varying 

concrete strengths, varying shear span to effective depth 

ratios and varying ductility level due to lateral confinement 

spacing. The following conclusions are drawn based on the 

tests and predictions of the concrete contribution to shear 

strength of RC beams that fail in flexure. 

• Increase in a/d ratio of beam samples leads to not only 

decrease in diagonal cracking strength (Vcr) but also 

increase in ductility ratio at observed diagonal crack. 

• Observed damages of test samples develop in the order 

of first crack at concrete, yield at longitudinal 

reinforcement, crushing at cover concrete, buckling at 

compression reinforcement and fracture at tension 

reinforcement. Concrete contribution to shear strength 

decreases as the damage observations become clearer 

during inelastic behavior for normal and high strength 

concrete beam samples. 

• From the comparison of experimental Vc values with 

the ones determined with assumptions independent of 

plastic rotation demand such as TSDC and ACI codes, it 

can be said that code assumptions overestimate Vc 

values and this tendency becomes much clearer as a/d 

ratio increases.  

• In order to avoid this overestimation, Vc is suggested to 

be equal to zero independent of plastic rotation demand 

 

  

 

 

  

 

Fig. 10 Comparison of proposed shear strength (Eq. (7)) with nonlinear FEA results 
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R4 (Ma et al.1976) 
 

a/d=4.46, d=356mm, =0.014 
f
c
=30.2 MPa, f

y
=452MPa 

R1 (Ma et al.1976) 
 

a/d=4.46, d=356mm, =0.014 

f
c
=35 MPa, f

y
=452MPa 

Eq.(7) 

 

FEA  

(Arslan and Kırıstioğlu, 2013) 

 

R2 (Ma et al.1976) 
 

a/d=4.46, d=356mm, 

=0.014 
f
c
=28.9 MPa, f

y
=452MPa 

R3 (Ma et al.1976) 

a/d=4.46, d=356mm, =0.014 
f
c
=31.6 MPa, f

y
=452MPa 

Eq.(7) 

 

FEA  

(Arslan and Kırıstioğlu, 2013) 
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for beams with reversing plastic hinge behavior. This 

suggestion is too conservative at the beginning of plastic 

behavior whereas it becomes more realistic as the plastic 

displacement demand increases. 

• The proposed equation for the concrete contribution to 

shear strength displays good agreement with the 

measured shear strengths. Considering that RC members 

are designed to have shear strengths much greater than 

their flexural strengths to ensure flexural failure 

according to the current codes, it is very important to 

have a good estimate of the proposed relationship for 

beams with higher shear span-to-effective depth ratios 
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