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1. Introduction 
 

A diverse range of nano-sized structures are broadly 

studied to explore vibrational features. 

Carbon nanotubes (CNTs) is such discovery by Iijima 

(1991) that may be used in a variety of fields like material 

reinforcement, aerospace, medicine, defense and 

microelectronic devices (Sosa et al. 2014, Soldano 2015, 

Fakhrabadiet al. 2015, Moradi et al. 2017, Bouadi et al. 

2018). Owing the striking mechanical properties through 

the cylindrical mechanism CNTs hold purposeful role in 

conveying fluid and gas. With a vast area of potential 

innovation, however CNTs demands more understanding to 

investigate its mechanical properties. Free vibration 

analysis of CNTs have been influential aspect in dynamical 

science for the last one decade. Vibration characteristics are 

investigated using thin shell theory by Yakobson et al. 

1996), beam theory by Wang et al. (2006) and nonlocal 
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beam theory (Zermi et al. 2015, Youcef et al. 2018). An 

eminent study found in based upon ring theory by 

Vodenitcharova and Zhang (2003) whereas theories of 

continuum models developed by Li and chou (2003) in 

literature. Well known two main classes of models used to 

analyze the theoretical aspects of CNTs have been atomic 

model and other is continuum model. The classical 

molecular dynamics (MD) has shown to exceed those of 

other techniques such as ab initio and tight-binding MD 

included in class of atomic modeling (Iijima et al. 1996, 

Yakobson et al. 1997, Hernandez et al. 1998, Sanchez et al. 

1999, Qian et al. 2002). The main reason continuum 

mechanics (Yoon et al. 2003, Fu et al. 2006, Ansari et al. 

2011) became pronounced tool is its computational 

competence to generate results of large range system in 

nanometer range. In particular, CNTs have been one of the 

leading minuscule structure appealed scientists and 

researchers to analyse experimentally and theoretically its 

potential aspects.  More than a few researchers have been 

discussed linear and nonlinear vibrational characteristics 

using Eringen’s nonlocal elasticity theory (1983, 2002) by 

incorporating into beam models. Major focus has been 

observed on the free vibrational response of CNTs 
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Abstract.  In this paper, vibration characteristics of double-walled carbon nanotubes (CNTs) is studied based upon nonlocal 

elastic shell theory. The significance of small scale is being perceived by developing nonlocal Love shell model. The wave 

propagation approach has been utilized to frame the governing equations as eigen value system. The influence of nonlocal 

parameter subjected to diverse end supports has been overtly analyzed. An appropriate selection of material properties and 

nonlocal parameter has been considered. The influence of changing mechanical parameter Poisson’s ratio has been investigated 

in detail. The dominance of boundary conditions via nonlocal parameter is shown graphically. The results generated furnish the 

evidence regarding applicability of nonlocal shell model and also verified by earlier published literature. 
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especially among other nano structures. Additionally, in the 

age of technology nano sized structures have become 

utmost importance with large variety of applications in 

several fields. Since structure of double-walled CNTs 

consider as two concentric cylindrical shells. Ramteke et al. 

(2019) developed a geometrical model for the analysis and 

modelling of the uniaxial functionally graded structure 

using the higher-order displacement kinematics with and 

without the presence of porosity including the distribution. 

Additionally, the formulation is capable of modelling three 

different kinds of grading patterns ie, Power-law, sigmoid 

and exponential distribution of the individual constituents 

through the thickness direction. Cylindrical shells are often 

used to store and transport high-pressure gases and liquids 

for various hydraulic applications. Pragmatically, their 

application have been seen in chimney design, pipe flow, 

aircraft fuselages, ships and construction of buildings. 

Sophie German was the first who initiated the study of 

vibration of circular cylindrical shells in 1821. At the end of 

nineteenth century, Rayleigh (1882) improved the shell 

analysis. It was Love (1888), who gave the first proper 

linear shell theory based on Kirchhoff’s hypothesis for 

plates and is also known as the ‘first-order approximation 

shell theory’. His theory has been a basis for developing the 

modern shell theories by amending physical terms. 

Kolahchi and Cheraghbak (2017) studied with the nonlocal 

dynamic buckling analysis of embedded microplates 

reinforced by single-walled carbon nanotubes (SWCNTs). 

The material properties of structure are assumed 

viscoelastic based on Kelvin-Voigt model. Mehar et al. 

(2016) modeled mathematically based on the higher order 

shell theory. The material properties of carbon nanotube 

reinforced composite plate are assumed to be temperature 

dependent and graded in the thickness direction using 

different grading rules. Kolahchi (2017) investigated the 

bending, buckling and buckling of embedded nano-

sandwich plates based on refined zigzag theory (RZT), 

sinusoidal shear deformation theory (SSDT), first order 

shear deformation theory (FSDT) and classical plate theory 

(CPT). In order to present a realistic model, the material 

properties of system are assumed viscoelastic using Kelvin-

Voigt model. Zhang et al. (2001) investigated the free 

vibrational behaviour of thin cylindrical shells engaging the 

Love shell equations. They illustrated the comparison for 

clamped-clamped and simply supported -simply supported 

end supports by means of wave propagation approach. 

Finite element method has been used to present thin shell 

segmentation magnified with cohesive fracture (Cirak et al. 

2005). Bilouei et al. (2016) used as concrete the most 

usable material in construction industry it's been required to 

improve its quality. Nowadays, nanotechnology offers the 

possibility of great advances in construction. 

Kolahchi et al. (2016a) concerned with the dynamic 

stability response of an embedded piezoelectric nanoplate 

made of polyvinylidene fluoride (PVDF). Krichhoff love 

shell assumptions have been exploited to demonstrate 

petalling in thin aluminium plates. Bisen et al. (2018) and 

Mehar and Panda (2019) studied the structural response of 

reinforced material and FG-CNT using the numerical and 

experimental properties. The results are verified with the 

open existing literature. The computer software MATLAB 

was used for the frequency results. The higher order finite 

element and higher order mid-plane kinematics. The 

mixture rule was defined for the different materials. Arani 

and Kolahchi (2016) used a concrete material in 

construction industry it’s been required to improve its 

quality. Nowadays, nanotechnology offers the possibility of 

great advances in construction. Wang et al. (2011) studied 

the effects of the viscous fluid on the propagation 

characteristics of elastic waves in carbon nanotubes. Based 

on the nonlocal continuum theory, the small scales effects 

are also considered. The equations of wave motion are 

derived and the dispersion relation is presented. Numerical 

simulations are performed with the consideration of 

different scale coefficients to discuss the influence of the 

viscous fluid. From the results, it can be observed that the 

dispersion relation can be changed by the fluid viscosity 

obviously. Zamanian et al. (2017) considered the use of 

nanotechnology materials and applications in the 

construction industry. However, the nonlinear buckling of 

an embedded straight concrete columns reinforced with 

silicon dioxide (SiO2) nanoparticles is investigated in the 

present study. The foundation around the column is 

simulated with spring and shear layer. Mehar et al. (2017a, 

b) studied the frequency response of FG CNT and 

reinforced CNT using the simple deformation theory and 

Mori-Tanaka scheme. They investigated a new frequency 

phenomena with the combination of Lagrange strain, 

Green-Lagrange, for double curved and curved panel of FG 

and reinforced FG CNT. The characteristics of sandwich 

and grades CNT was found with labeling the temperature 

environ. The thermoelastic frequency of single shaollow 

panel was determined using Mori-Tanake formaulation. The 

research of these authore have opened a new frequency 

spectra for other material researchers. Kolahchi et al. (2017) 

studied the dynamic buckling of sandwich nano plate (SNP) 

subjected to harmonic compressive load based on nonlocal 

elasticity theory. The material properties of each layer of 

SNP are supposed to be viscoelastic based on Kelvin-Voigt 

model. In order to mathematical modeling of SNP, a novel 

formulation, refined Zigzag theory (RZT) is developed. 

Furthermore, the surrounding elastic medium is simulated 

by visco-orthotropic Pasternak foundation model in which 

damping, normal and transverse shear loads are taken into 

account. Rabczuk et al. (2007) exhibited meshfree approach 

to analyse the capacity of mesh free fluid model with 

vigorous fracture of fluid filled cylindrical shell that jolted 

by penetrated projectile. The formulation of fluid shell 

model was based on Krichhoff Love theory. Motezaker and 

Eyvazian (2020) deals with the buckling and optimization 

of a nanocomposite beam.  The agglomeration of 

nanoparticles was assumed by Mori-Tanaka model. 

Kolahchi and Bidgoli (2016) presented a model for dynamic 

instability of embedded single-walled carbon nanotubes 

(SWCNTs). SWCNTs are modeled by the sinusoidal shear 

deformation beam theory (SSDBT). The modified couple 

stress theory (MCST) is considered in order to capture the 

size effects. Malhari Ramteke et al. (2020a) obtained the 

finite element solutions of static deflection and stress value 

for the functionally graded structure considering variable 
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grading patterns (power-law, sigmoid and exponential) 

including the porosity effect. The unknown values are 

obtained computationally via a customized computer code 

with the help of cubic-order displacement functions 

considering the varied distribution of porosity (even and 

uneven) through the panel thickness. Madani et al. (2016) 

presented vibration analysis of embedded functionally 

graded (FG)-carbon nanotubes (CNT)- reinforced 

piezoelectric cylindrical shell subjected to uniform and non-

uniform temperature distributions. The structure is 

subjected to an applied voltage in thickness direction which 

operates in control of vibration behavior of system. Liew 

and Wang (2007) discussed wave dispersion for highest 

modes of single- and double-walled CNTs. At one time thin 

and thick Love and Cooper Naghdi shell theories have been 

used to study shear and inertia significance. The feasibility 

and effective use of elastic models have been explained by 

comparison of outputs. Kolahchi et al. (2016b) investigated 

the nonlinear dynamic stability analysis of embedded 

temperature-dependent viscoelastic plates reinforced by 

single-walled carbon nanotubes (SWCNTs). Motezaker and 

Kolahchi, (2017a) Investigated the Seismic response of the 

concrete column covered by nanofiber reinforced polymer 

(NFRP) layer. Mehar and Panda (2018) investigated the 

curved shell and CNT vibration with thermal environment 

using higher order deformation theory. These CNT was 

mixed with different configurations of the layers. The 

results have been verified with the earlier investigations. 

Motezaker and Kolahchi (2017b) presented the dynamic 

analysis of a concrete pipes armed with Silica ($ SiO_2 $) 

nanoparticles subjected to earthquake load. Wang et al. 

(2016) investigated the nonlinear vibration of a carbon 

nanotube which is subjected to the external parametric 

excitation. By the nonlocal continuum theory and nonlinear 

von Kármán beam theory, the governing equation of the 

carbon nanotube is derived with the consideration of the 

large deformation. The principle parametric resonance of 

the nanotube is discussed and the approximation explicit 

solution is presented by the multiple scale method. 

Numerical calculations are performed. It can be observed 

that when the mode number is 1, the stable region can be 

significantly changed by the parametric excitation, length-

to-diameter ratio and matrix stiffness. Kolahchi et al. (2017) 

focused with general wave propagation in a piezoelectric 

sandwich plate. The core is consisted of several viscoelastic 

nanocomposite layers subjected to magnetic field and is 

integrated with viscoelastic piezoelectric layers subjected to 

electric field. The piezoelectric layers play the role of 

actuator and sensor at the top and bottom of the core, 

respectively. 
Basirjafri et al. (2012) obtained the radial breathing 

mode (RBM) frequency by using thin shell theory in 

reliance on Hamilton’s principle of single-walled CNTs and 
results included the influence on variation of Poisson’s 
ratio. Malhari Ramteke et al. (2020b) studied the two 
directional graded structure has been developed using a 
commercial FE package ANSYS and the subsequent 
deflection responses. Additionally, the model includes the 

porosity within the graded structure considering even type 
of distribution pattern. The present model is derived using 
the basic steps available in the ANSYS platform through 

the batch input technique. Motezaker et al. (2020) presented 
the present research post-buckling of a cut out plate 
reinforced through carbon nanotubes (CNTs) resting on an 
elastic foundation. Alibeigloo and Shaban (2013) inquired 

the significance of nonlocal parameter by employing three 
dimension elastic theories with Fourier expansion on 
vibrations of CNTs. They concluded that by increasing the 
value of nonlocal parameter, the frequency follows a 
decreasing pattern.  

Pandey et al. (2019) predicted the effect of an increasing 

percentage of nanofiller (glass cenosphere) with 

Glass/Epoxy hybrid composite curved panels modeled 

mathematically using the multiscale concept and subsequent 

numerical eigenvalues of different geometrical 

configurations (cylindrical, spherical, elliptical, hyperboloid 

and flat). Wang (2017) explored the nonlinear internal 

resonance of double-walled nanobeams under the external 

parametric load. The nonlocal continuum theory is applied 

to describe the nano scale effects and the nonlinear 

governing equations are derived by the multiple scale 

method. The parametric internal resonance is considered 

and the relation between the frequency and amplitude is 

discussed. From the numerical simulation, it can be 

observed that small scale effects are more obvious for short 

structures. Torkaman et al. (2015) conducted the analysis 

on vibrations and steadiness of rotating single-walled CNTs 

premised on nonlocal elasticity theory and assumptions 

considered from Love theory. Exact and authentic results 

have been established through nonlocal model indicating 

the influence of rotation rates and role of elasticity for 

rotating devices. Mehar and Panda (2018) computed the 

vibration behavior, bending and dynamic response of FG 

reinforced CNT finite element method. For the sake of 

generality, the mathematical model was presented with the 

mixture of Green Lagrange method. The convergence of 

these methodologies has been checked for the variety of 

results. The composite plates with different graded was 

investigated with isotropic and core phase. Hussain and 

Naeem (2019) studied the vibration features of functionally 

graded single-walled CNTs based upon modified Love shell 

theory. The significance of angular velocity and aspect 

ratios related to length and height on rotating CNTs along 

with ring support. Galerkin method was employed to 

formulate governing equations of model and also provided 

with comparison of rotating and non-rotating frequencies. 

Mehar et al. (2018) evaluated the frequency behavior of 

nanolpate structure using FEM including the nonlocal 

theory of elasticity. Computer generated results are created 

by using the software first time roubustly to check the 

vibration of nanoplate. The efficiency was checked by 

comparing the results of available data. Aminikhah and 

Hemmatnezhad (2011) investigated the homotopy 

perturbation method to the problem of the nonlinear 

oscillations of multiwalled carbon nanotubes embedded in 

an elastic medium under various boundary conditions. Pine 

et al. (2011) investigated the single-walled carbon 

nanotubes (SWCNTs) have three distinct structures: 

armchair, zigzag, and chiral. It is known that they have 

different electronic properties, but the situation regarding 

their vibrational behavior is less clear.  

Several researchers used different approaches for the 
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investigation of frequency of cylinders and concrete 

material (Kagimoto et al. 2015, Mesbah and Benzaid 2017, 

Alijani and Bidgoli 2018, Demir and Livaoglu 2019, 

Samadvand and Dehestani 2020) and other other methods 

as finite element formulation (Dewangan et al. 2020, 

Kunche et al. 2019), Grey Wolf algorithm (Kolahchi et al. 

2020), (Kolahchi et al. 2017), and viscoelastic cylindrical 

shell (Hosseini and Kolahchi 2018, Hajmohammad et al. 

2018c). The nonlocal elastic shell theory provides a better 

prediction of the frequency relationships than the beam 

model and has significant influence on the vibration of 

DWCNTs for small scale frequencies (Hu et al. 2008, 

Khademolhosseini et al. 2009). Moreover, beam model is 

used wave and vibration properties of the nanotubes based 

on the presented nonlocal beam equations for scale effects 

(Lu et al. 2007). 

In the literature, many researchers used different values 

of the nonlocal parameter e0  (Krishnan et al. 1998, Wang 

et al. 2007, Hu et al. 2008) and here, the authors compared 

different values of nonlocal parameters to observe the effect 

on the vibration of DWCNTs. The foremost intension of 

this paper to investigate vibrations characteristics of double-

walled CNTs by means of nonlocal elasticity shell model. 

The nonlocal shell model is established by inferring the 

nonlocal elasticity equations in to Love shell theory, which 

is our particular motivation. The suggested method to 

investigate the solution of fundamental eigen relations is 

wave propagation, which is a well-known and efficient 

technique to develop the fundamental frequency equations. 

It is carefully observed from the literature, no information is 

seen regarding present established model where such 

problem has been considered so it became an incentive to 

conduct current study. The specific influence of four 

different end supports based on nonlocal FSM such as 

clamped-clamped (C-C), clamped-simply supported (C-F) 

and simply supported-simply supported (S-S) with assorted 

values of nonlocal parameter are examined in detail. 

 

 

2. Mathematical formulation  
 

The motion of double-walled CNTs predominates the 

nonlocal resultant forces and moments so expression for 

these forces are written as 

{𝑁𝑥𝑥 , 𝑁𝜃𝜃 , 𝑁𝑥𝜃} − (𝑒𝑜𝑎)2𝛻2{𝑁𝑥𝑥 , 𝑁𝜃𝜃 , 𝑁𝑥𝜃} = 

∫ (�̃�𝑥𝑥 , �̃�𝜃𝜃 , �̃�𝑥𝜃)𝑑𝑧
ℎ
2
−ℎ
2

            (1) 

{𝑀𝑥𝑥 , 𝑀𝜃𝜃 , 𝑀𝑥𝜃} − (𝑒𝑜𝑎)2𝛻2{𝑀𝑥𝑥 , 𝑀𝜃𝜃 , 𝑀𝑥𝜃} = 

∫ (�̃�𝑥𝑥 , �̃�𝜃𝜃 , �̃�𝑥𝜃)𝑧𝑑𝑧
ℎ
2
−ℎ
2

            (2) 

here �̃�𝑥𝑥 and �̃�𝜃𝜃stands for stress factors along the axial 

and tangential directions respectively and �̃�𝑥𝜃  indicates the 

shear stress in  x𝜃-plane. 

The two-dimensional Hooke’s law describes the 

elements of stress vector in Eqs. (1)-(2) as. 

(

�̃�𝑥𝑥

�̃�𝜃𝜃

�̃�𝑥𝜃

) − (𝑒𝑜𝑎)2𝛻2 (

�̃�𝑥𝑥

�̃�𝜃𝜃

�̃�𝑥𝜃

) = [

�̂�11 �̂�12 0

�̂�12 �̂�22 0

0 0 �̂�66

] (

𝑒𝑥𝑥

𝑒𝜃𝜃

𝑒𝑥𝜃

) (3) 

In same manner 𝑒𝑥𝑥 and 𝑒𝜃𝜃 exhibit the strain in x- 

and θ-directions and 𝑒𝑥𝜃 presents the shear strain in the 

x 𝜃-plane.

 

For CNTs,�̂�𝑘𝑙  (𝑘, 𝑙 = 1,2, . . .6) symbolizes stiffness as 

functions of Young’s modulus and Poisson’s ratio written 

as 

�̂�11 =
𝐸

1−𝜈2 = �̂�22, �̂�12 =
𝜈𝐸

1−𝜈2 = �̂�21,  

�̂�66 =
𝐸

2(1+𝜈)
                 (4)

 
here

 
𝐸, 𝜈  and �̂� are Young’s modulus, Poisson’s ratio and 

shear modulus respectively. 

Love (1952) submitted the first thin shell theory on base 

of Kirchhoff’s conception. Moreover, an additional 

modified form of thin shell theory (1963) is established. 

The diverse range of analytical assessment and comparisons 

have been examined of these shell theories by Markûs 

(1988). The components of the strain vector (e) in Eq. (3), 

that are considered by Love (1952) can be expressed as 

linear combinations 

𝑒𝑥𝑥 = 𝑒11 + 𝑧𝜅11, 𝑒𝜃𝜃 = 𝑒22 + 𝑧𝜅22, 

𝑒𝑥𝜃 = 𝑒12 + 2𝑧𝜅12                  
(5)  

𝜅11 , 𝜅22 , and 𝜅12  are known as surface curvatures 

whereas 𝑒11 , 𝑒22  and 𝑒12  signify the reference surface 

strains. 

Since from Love’s theory, the expressions of relation 

between strain and curvature displacement functions are 

considered as 

[𝑒11, 𝑒22, 𝑒12 ] = [
𝜕𝑢

𝜕𝑥
,
1

𝑅
(
𝜕𝑣

𝜕𝜃
+ 𝑤) , (

𝜕𝑣

𝜕𝑥
+

1

𝑅

𝜕𝑢

𝜕𝜃
)]

 

[𝜅11, 𝜅22, 𝜅12] = [
−

𝜕2𝑤

𝜕𝑥2 , −
1

𝑅2 (
𝜕2𝑤

𝜕𝜃2 −
𝜕𝑣

𝜕𝜃
) ,

−
2

𝑅
(

𝜕2𝑤

𝜕𝑥𝜕𝜃
−

3

4

𝜕𝑣

𝜕𝑥
+

1

4𝑅

𝜕𝑢

𝜕𝜃
)
]

    

(6) 

By substituting Eqs. (3) to (6), nonlocal resultant forces 

and moments takes the following form. 

𝑁𝑥𝑥 − (𝑒𝑜𝑎)2𝛻2𝑁𝑥𝑥 = ∫ �̃�𝑥𝑥𝑑𝑧
ℎ
2
−ℎ
2

=  

𝐸ℎ

1−𝜈2

𝜕𝑢

𝜕𝑥
+

𝜈𝐸ℎ

1−𝜈2

1

𝑅
(
𝜕𝑣

𝜕𝜃
+ 𝑤)           (7a) 

𝑁𝜃𝜃 − (𝑒𝑜𝑎)2𝛻2𝑁𝜃𝜃 = ∫ �̃�𝜃𝜃𝑑𝑧
ℎ
2
−ℎ
2

=  

𝜈𝐸ℎ

1−𝜈2

𝜕𝑢

𝜕𝑥
+

𝐸ℎ

1−𝜈2

1

𝑅
(
𝜕𝑣

𝜕𝜃
+ 𝑤)          (7b) 

𝑁𝑥𝜃 − (𝑒𝑜𝑎)2𝛻2𝑁𝑥𝜃 = ∫ �̃�𝑥𝜃𝑑𝑧
ℎ
2
−ℎ
2

=  

𝐸ℎ

2(1+𝜈)
(
1

𝑅

𝜕𝑢

𝜕𝑥
+

𝜕𝑣

𝜕𝜃
)            (7c) 

𝑀𝑥𝑥 − (𝑒𝑜𝑎)2𝛻2𝑀𝑥𝑥 = ∫ �̃�𝑥𝑥𝑑𝑧
ℎ
2
−ℎ
2

=  

𝜈𝐷

𝑅2

𝜕𝑣

𝜕𝜃
− 𝐷(

𝜈

𝑅2

𝜕2𝑤

𝜕𝜃2 +
𝜕2𝑤

𝜕𝑥2)          (7d) 

𝑀𝜃𝜃 − (𝑒𝑜𝑎)2𝛻2𝑀𝜃𝜃 = ∫ �̃�𝜃𝜃𝑑𝑧
ℎ
2
−ℎ
2

=  

𝐷

𝑅2

𝜕𝑣

𝜕𝜃
− 𝐷(

1

𝑅2

𝜕2𝑤

𝜕𝜃2 + 𝜈
𝜕2𝑤

𝜕𝑥2)          (7e) 
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𝑀𝑥𝜃 − (𝑒𝑜𝑎)2𝛻2𝑀𝑥𝜃 = ∫ �̃�𝑥𝜃𝑧𝑑𝑧
ℎ
2
−ℎ
2

=  

𝐷
(1−𝜈)

𝑅
(
𝜕𝑢

𝜕𝜃
+

3

4

𝜕𝑣

𝜕𝑥
−

𝜕2𝑤

𝜕𝜃𝜕𝑥
)           (7f) 

Meanwhile 𝐷 =
𝐸ℎ3

12(1−𝜈2)
 refers as bending rigidity of 

shell. 

The mass density per unit length 𝜌𝑡 is defined as 

𝜌𝑡 = ∫ 𝜌𝑑𝑧
ℎ
2
−ℎ
2

                  (8)

 while 𝜌 entitles as mass density. 

The fundamental equations from the Love shell theory 

are considered as  

𝜕𝑁𝑥𝑥

𝜕𝑥
+

1

𝑅

𝜕𝑁𝑥𝜃

𝜕𝜃
−

1

2𝑅2

𝜕𝑀𝑥𝜃

𝜕𝜃
= 𝜌𝑡

𝜕2𝑢

𝜕2𝑡
  

1

𝑅

𝜕𝑁𝜃𝜃

𝜕𝜃
+

𝜕𝑁𝑥𝜃

𝜕𝑥
+

1

𝑅2

𝜕𝑀𝜃𝜃

𝜕𝜃
+

3

2𝑅

𝜕𝑀𝑥𝜃

𝜕𝑥
= 𝜌𝑡

𝜕2𝑣

𝜕2𝑡
  

𝜕2𝑀𝑥𝑥

𝜕𝑥2 +
1

𝑅2

𝜕2𝑀𝜃𝜃

𝜕2𝜃
+

2

𝑅

𝜕2𝑀𝑥𝜃

𝜕𝜃𝜕𝑥
−

𝑁𝜃𝜃

𝑅
+ 𝑝 = 𝜌𝑡

𝜕2𝑤

𝜕2𝑡
   (9) 

Where p expresses the applied pressure on i tube 

through van der Waals (vdW) interaction forces. The vdW 

model explains the effects of interlayer relations among the 

tubes of double-walled CNTs. 

By combining Eqs. (7)-(8) into (9), formulated the 

system of partial differential equations  in form of three 

unknown field variables 𝑢𝑖 , 𝑣𝑖 , 𝑤𝑖(𝑖 = 1,2)  for the 

𝑖𝑡ℎtube of double-walled CNTs. 

𝑦11
(1)𝑢1 + 𝑦12

(1)𝑣1 + 𝑦13
(1)𝑤1 = 

𝜌ℎ (�̈�(1) − (𝑒𝑜𝑎)2(�̈�(1)
𝑥𝑥 +

1

𝑅1
2 �̈�(1)

𝑥𝑥)    (10a) 

𝑦21
(1)𝑢1 + 𝑦22

(1)𝑣1 + 𝑦23
(1)𝑤1 = 

𝜌ℎ (�̈�(1) − (𝑒𝑜𝑎)2(�̈�(1)
𝑥𝑥 +

1

𝑅1
2 �̈�(1)

𝑥𝑥))   (10b) 

𝑦31
(1)𝑢1 + 𝑦32

(1)𝑣1 + 𝑦33
(1)𝑤1 = 𝜌ℎ�̈�(1) + 𝑤(1) ∑ 𝑐1𝑗

2
𝑗=1
𝑗≠𝑖

  

−∑ 𝑐1𝑗
2
𝑗=1
𝑗≠𝑖

𝑤(𝑗) − (𝑒𝑜𝑎)2

[
 
 
 
 
 𝜌ℎ(�̈�

(1)
𝑥𝑥 +

1

𝑅1
2 �̈�(1)

𝜃𝜃) +

(�̈�(1)
𝑥𝑥 +

1

𝑅1
2 �̈�(1)

𝜃𝜃) ∑ 𝑐1𝑗
2
𝑗=1
𝑗≠𝑖

−∑ 𝑐1𝑗(�̈�
(𝑗)

𝑥𝑥 +
1

𝑅1
2 �̈�(𝑗)

𝜃𝜃)2
𝑗=1
𝑗≠𝑖 ]

 
 
 
 
 

  

 (10c) 

𝑦11
(2)𝑢2 + 𝑦12

(2)𝑣2 + 𝑦13
(2)𝑤2 = 

𝜌ℎ (�̈�(2) − (𝑒𝑜𝑎)2(�̈�(2)
𝑥𝑥 +

1

𝑅2
2 �̈�𝜃𝜃

(2)))  (10d) 

𝑦21
(2)𝑢2 + 𝑦22

(2)𝑣2 + 𝑦23
(2)𝑤2 = 

𝜌ℎ (�̈�(2) − (𝑒𝑜𝑎)2(�̈�(2)
𝑥𝑥 +

1

𝑅2
2 �̈�(2)

𝑥𝑥))  (10e) 

𝑦31
(2)𝑢2 + 𝑦32

(2)𝑣2 + 𝑦33
(2)𝑤2 = 

𝜌ℎ�̈�(2) + 𝑤(2) ∑ 𝑐2𝑗
2
𝑗=1
𝑗≠2

− ∑ 𝑐2𝑗
2
𝑗=1
𝑗≠2

𝑤(𝑗) −  

(𝑒𝑜𝑎)2 [

𝜌ℎ(�̈�(2)
𝑥𝑥 +

1

𝑅2
2 �̈�(2)

𝜃𝜃) + (�̈�(2)
𝑥𝑥

+
1

𝑅2
2 �̈�(2)

𝜃𝜃)∑ 𝑐2𝑗
2
𝑗=1
𝑗≠2

− ∑ 𝑐2𝑗(�̈�
(𝑗)

𝑥𝑥 +
1

𝑅2
2 �̈�(𝑗)

𝜃𝜃)
2
𝑗=1
𝑗≠2

]  

(10f) 

here 𝑦𝑝𝑞 = (𝑝, 𝑞 = 1,2,3) are stated as partial operators 

can be seen in Appendix. 

During the past few years, numerous theories have been 

extensively debated for vibration of nanotube, shell and 

plate morphologies of several conformations depending 

upon certain edge conditions. Wave propagation approach 

is among the most significant and successfully used 

numerical technique by researchers to investigate the free 

vibrations of cylinder-shaped shell, plates and nanotubes. 

The three modal displacement functions of the shell for ith 

tube can be written as 

𝑢(𝑖)(𝑥, 𝜃, 𝑡) = 𝑎𝑚 𝑐𝑜𝑠( 𝑛𝜃)𝑒(�̇�𝜔𝑡−�̇�𝑘𝑚𝑥)      (11a) 

𝑣(𝑖)(𝑥, 𝜃, 𝑡) = 𝑏𝑚 𝑠𝑖𝑛( 𝑛𝜃)𝑒(�̇�𝜔𝑡−�̇�𝑘𝑚𝑥)      (11b) 

𝑤(𝑖)(𝑥, 𝜃, 𝑡) = 𝑐𝑚 𝑐𝑜𝑠( 𝑛𝜃)𝑒(�̇�𝜔𝑡−�̇�𝑘𝑚𝑥)      (11c) 

where 𝑎𝑚 , 𝑏𝑚, 𝑐𝑚 describe the displacement amplitude 

coefficients in 𝑥, 𝜃 and z directions correspondingly. The 

angular frequency is designated as 𝜔, circumferential wave 

number by n and km referred to be axial wave number allied 

with end supports obligatory on double-walled CNTs. 

Replacing the functions and derivatives into the system of 

fundamental equations, henceforth derived a set of 

simultaneous as follows 

𝑌11
(𝑖)𝑎𝑚

𝑖 + 𝑌12
(𝑖)𝑏𝑚

𝑖 + 𝑌13
(𝑖)𝑐𝑚

𝑖 = 

−𝜔2(1 − (𝑒𝑜𝑎)2𝛻2)𝜌ℎ𝑎𝑚
𝑖           (12a) 

𝑌21
(𝑖)𝑎𝑚

𝑖 + 𝑌22
(𝑖)𝑏𝑚

𝑖 + 𝑌23
(𝑖)𝑐𝑚

𝑖 = 

−𝜔2(1 − (𝑒𝑜𝑎)𝛻2)𝜌ℎ𝑏𝑚
𝑖           (12b) 

𝑌31
(𝑖)𝑎𝑚

𝑖 + 𝑌32
(𝑖)𝑏𝑚

𝑖 + 𝑌33
(𝑖)𝑐𝑚

𝑖 + 

(1 − (𝑒𝑜𝑎)2𝛻2) [∑ 𝑐𝑖𝑗𝑐𝑚
𝑖 − ∑ 𝑐𝑖𝑗𝑐𝑚

𝑖2
𝑗=1
𝑗≠𝑖

2
𝑗=1
𝑗≠𝑖

] =  

−𝜔2(1 − (𝑒𝑜𝑎)2𝛻2)𝜌ℎ𝑐𝑚
𝑖          (12c) 

Since 𝑖 = (1,2) and the algebraic operators 𝑌𝑝𝑞
(𝑖)

 are 

acquired using Appendix with 𝑝, 𝑞 = (1,2,3). 

 

 

3. Result and discussion 
 

An inventive approach to fabricate nonlocal Love shell 

model based on wave propagation technique of double-

walled CNTs for vibrational response has been 

demonstrated and verified with results presented in the 

literature. Considering the negligible percentage of error, 

thus it confirms the validation of suggested nonlocal shell 

model. An innovational nonlocal model to examine the 

scale effect on vibrational behavior of armchair, zigzag and 

chiral of double-walled CNTs. The influence of nonlocal 

parameter with variation of Poisson’s ratio are investigated 

depending upon certain edge supports. The mass density is 

assumed to be 2300 kg/m3, with Young’s Modulus 1Tpa 

(Basirjafri et al. 2012). The computations of our newly 

model with proposed approach with same data sets, our 

results are consistent with previous reports in MD (Zhang et 

al. 2009) for CNTs as shown in Table 1. 

In accordance of theoretical procedure, at first frequency 

of double-walled CNTs with mutation in values of 

Poisson’s ratio is observed as shown in Fig. 1. As figure  
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Table 1 Comparison of present result with MD simulation 

(Zhang et al. 2009) 

L/d 
f (THz) 

Present MD Simulation (Zhang et al. 2009) 

4.68 1.23445 1.17638 

6.67 0.67832 0.56835 

8.47 0.44146 0.37294 

10.26 0.30922 0.27354 

13.89 0.17360 0.12031 
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Fig. 1 Frequency variation of arm chair (7, 7) with eo=0.2 

versus Poisson’s ratio 
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Fig. 2 Frequency variation of arm chair (7, 7) with eo=0.65 

versus Poisson’s ratio 

 

 

shows fundamental frequency rises by rising the Poisson’s 

ratio. The results presented here are in good accordance 

with those established by Basirjafri et al. (2012). The 

fundamental frequencies are calculated of double-walled 

CNTs subjected to three distinct end supports C-C, S-S and 

C-F. The frequencies are obtained for the varying values of 

Poisson’s ratio from 0.1 to 0.4. To inspect significance of 

nonlocal parameter on vibration of double-walled CNTs, 

two peculiar values of nonlocal parameter 𝑒𝑜 =
0.2,0.65 and 1.2 are considered. When Poisson’s ratio 

varies from 𝜈 = 0.1 to 0.4, the frequencies of C-C 

armchair (7, 7) with 𝑟1 = 1.5 against 𝑒𝑜 = 0.2 are 

4.3479, 4.3738, 4.4110, 4.4604, 4.5233, 4.6015 and 4.6811 

and  S-S frequencies are 4.0646, 4.0886, 4.1229, 4.1685, 

4.2266, 4.2989 and 4.3711 respectively. Similarly C-F 

frequencies are 3.7905, 3.8125, 3.8440, 3.8859, 3.9394, 
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Fig. 3 Frequency variation of arm chair (7, 7) with eo=1.2 

versus Poisson’s ratio 
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Fig. 4 Frequency variation of zigzag (12, 0) with eo=0.2 

versus Poisson’s ratio 

 

 

4.0058 and 4.0071. The corresponding frequencies have 

been sketched in Fig. 1. It is noticed that clamped -clamped 

frequencies are higher followed by simply supported -

simply supported and clamped-free and gap between 

frequency curves are evident. As ratio increases, the 

frequencies also show gradually slow increasing pattern. 

Fig. 2 display the frequency curves of armchair (7, 7) 

against e0=0.65 subjected to aforementioned end supports. 

The curves affirm the gap between the end supports as 

shown in Fig. 1. For the first value of Poisson’s ratio v=0.1 

C-C armchair (7, 7) frequency is observed as 1.7283, S-S as 

1.6456 and C-F 1.5645 receptively. Similarly at the last 

value v=0.4, C-C frequency is 1.8672, S-S and C-F are 

1.7761, 1.6871. It is noticed that frequencies decline for all 

end supports. Furthermore, one important observation is 

clearly seen that with increased nonlocal parameter value, 

the frequency tends to decrease for all end conditions. The 

frequency variation with ratio of armchair (7, 7) double-

walled CNTs against e0=1.2 can be viewed in Fig. 3. The 

clamped-clamped frequencies are 0.9602, 0.9659, 0.9741, 

0.9850, 0.9989, 1.0162 and 1.0374 whereas, clamped-free 

are calculated as 0.8737, 0.8787, 0.8860, 0.9080, 0.9233 

and 0.9421. It is observed once again that frequencies 

decrease as nonlocal parameter increases. The frequency 

curve maintains the regular gap between end supports as 

seen before. It is also concluded that frequencies for these 

certain values of nonlocal parameter against range of 

Poisson ratio rise slowly with same parameters and length  
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Fig. 5 Frequency variation of zigzag (12, 0) with eo=0.2 

versus Poisson’s ratio 
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Fig. 6 Frequency variation of zigzag (12, 0) with eo=0.2 

versus Poisson’s ratio 

 

 

double-walled CNTs. Figs. 4-6 illustrate the significance of 

scale effect on vibration of zigzag (12, 0) double-walled 

CNTs against Poisson ratio. The scale effect frequency 

curves are portrayed with e0=0.2, 0.65 and 1.2 depending 

upon three boundary conditions such like arm chair (7,7). 

The C-C frequencies of (12, 0) at e0=0.2 versus Poisson 

ratio are 6.8305, 6.8730, 6.9340, 7.0150, 7.1180, 7.2460 

and 7.4030, at e0=0.65 are 2.4450, 2.4602, 2.4820, 2.5110, 

2.5479, 2.5937 and 2.6499 and in similar way at e0=1.2 are 

1.3420, 1.3550, 1.3623, 1.3782, 1.3985, 1.4236 and 1.4545 

respectively. Over again the trend presents a slow increase 

as ratio increases but at same time with increased nonlocal 

parameter, frequencies decrease for all boundary conditions. 

Another observation is clearly seen from these curves that 

zigzag possess higher frequencies as compared to armchair 

double-walled CNTs. It is explained as from basic carbon 

morphology zigzag owns numerous elements parallel to 

tube axis but armchair does not possess such feature. 

Consequently, zigzag CNTs are supposed to show strong 

bending and longitudinal permanence in comparison to 

armchair CNTs. 

Here in chiral case, Figs. 7-9 elucidate the influence of 

nonlocal parameters on the frequencies of chiral with 

indices (8, 3) based on nonlocal love shell model. These 

frequency curves confirmed the obvious higher values of C-

C than those of S-S and C-F chiral double-walled CNTs. 

When e0=0.2 then the C-C chiral frequency peaks against  
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Fig. 7 Frequency variation of chiral (8, 3) with eo=0.2 

versus Poisson’s ratio 
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Fig. 8 Frequency variation of chiral (8, 3) with eo=0.2 

versus Poisson’s ratio 
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Fig. 9 Frequency variation of chiral (8, 3) with eo=0.2 

versus Poisson’s ratio 

 

 

ratio variation are 4.2260, 4.2510, 4.2870, 4.3347, 4.3955, 

4.4713 and 4.5643, for S-S 3.8971, 3.9198, 3.9524, 3.9957, 

4.0509, 4.1196, 4.2041 are noticed as and C-F are 3.5737, 

3.5941, 3.6233, 3.6621, 3.7116, 3.7734 and 3.8494 drawn 

for  chiral (8, 3) with e0=0.65 C-C are 1.6926, 1.7027, 

1.7170, 1.7362, 1.7605, 1.7909 and 1.8281, S-S are 1.5960, 

1.6053, 1.6187, 1.6364, 1.6590, 1.6871 and 1.7218 and C-F 

are 1.5002, 1.5088, 1.5210, 1.5373, 1.5581, 1.5841 and 

1.6159 frequencies are displayed. It can be seen that 

frequencies are reducing as nonlocal parameter increasing. 

At the very moment, with higher Poisson’s ratio it is noted 
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that frequencies incline as well with respect to all 

considered end conditions. 

 

 

4. Conclusions 
 

The frequency patterns have been discussed for 

armchair, zigzag and chiral double-walled CNTs to inspect 

the influence of Poisson’s ratio based on nonlocal Love 

shell model. Natural frequency curves are presented for 

three specific end supports considering distinct values of 

nonlocal parameter. The fundamental frequency patterns for 

armchair, zigzag and chiral double-walled CNTs exhibit the 

resembling trends for varying values of ratio. Although we 

observe the phenomena for structural strength of double-

walled CNTs by comparing the respective frequencies for 

all types. Because of the fact that greater the Poisson ratio, 

softer the material, zigzag CNTs possess the larger values 

than those of arm chair and chiral tubes. Further for all 

same parameters when we compare the frequencies for 

chiral and armchair tubes, it is revealed that chiral tubes 

obtain less frequencies. The chiral frequencies subjected to 

all nonlocal parameters exhibit lesser values but close to 

armchair frequencies. For that reason, chiral tubes hold 

more sustainable structural characteristics as compared to 

armchair and zigzag tubes. A slow increase in frequencies 

against variation of Poisson’s ratio also indicates 

insensitivity of it for suggested nonlocal model. In addition, 

decrease in frequencies with increase in nonlocal parameter 

authenticates the applicability of nonlocal Love shell model. 
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𝟏

𝑹𝒊
𝟐

𝑬𝒉

𝟐(𝟏+𝝂)
−

𝟏

𝑹𝒊
𝟒

𝑫(𝟏−𝝂)

𝟖
) (−𝒏𝟐)  

𝒀𝟏𝟐
(𝒊) =

𝟏

𝑹𝒊
(

𝑬𝒉𝝂

𝟏−𝝂𝟐 +
𝑬𝒉

𝟐(𝟏+𝝂)
−

𝟑

𝟖

𝑫(𝟏−𝝂)

𝑹𝒊
𝟐 ) (−𝒏𝒊𝒌𝒎)  

𝒀𝟏𝟑
(𝒊) =

𝟏

𝑹𝒊

𝑬𝒉𝝂

𝟏−𝝂𝟐 (−𝒏𝒊𝒌𝒎) + (
𝑫(𝟏−𝝂)

𝟐𝑹𝒊
𝟑

𝝏𝟐

𝝏𝒙𝟐) (−𝒏)  

𝒀𝟐𝟏
(𝒊) = 𝒀𝟏𝟐

(𝒊)𝒀𝟐𝟐
(𝒊) = (

𝑬𝒉

𝟐(𝟏+𝝂)
+

𝟗𝑫(𝟏−𝝂)

𝟖𝑹𝒊
𝟐 ) (−𝒌𝒎

𝟐)  

+
𝟏

𝑹𝒊
𝟐 (

𝑬𝒉

(𝟏−𝝂𝟐)
+

𝑫

𝑹𝒊
𝟐) (−𝒏𝟐)  

𝒀𝟐𝟑
(𝒊) = (

𝝂𝑫

𝑹𝒊
𝟐 +

𝟑

𝟐

𝑫(𝟏−𝝂)

𝑹𝒊
𝟐 ) (𝒏𝒌𝒎

𝟐) −
𝑫

𝑹𝒊
𝟒 𝒏𝟑 +

𝟏

𝑹𝒊
𝟐

𝑬𝒉

𝟏−𝝂𝟐 (−𝒏)  

𝒀𝟑𝟏
(𝒊) = −𝒀𝟏𝟑

(𝒊) 

𝑌32
(𝑖) = (

𝐷

𝑅𝑖
2 (2 − 𝜈) +

3𝐷(1−𝜈)

4𝑅𝑖
2 ) (−𝑛𝑘𝑚

2)  

+
𝐷

𝑅𝑖
4 𝑛3 −

1

𝑅𝑖
2

𝐸ℎ

1−𝜈2 𝑛  

𝑌33
(𝑖) = −𝐷𝑘𝑚

4 − (
2𝐷

𝑅𝑖
2 +

2𝐷(1−𝜈)

𝑅𝑖
2 ) 𝑛2𝑘𝑚

2
  

−
𝐷

𝑅𝑖
4 𝑛4 −

1

𝑅𝑖
2

𝐸ℎ

1−𝜈2 
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