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1. Introduction 
 

Reinforced concrete (RC) structures are built on a large 

scale mainly because of their durability and affordability. 

During their lifetime, however, in addition to earthquakes, 

the outbreak of a fire represents a significant risk of 

collapse or major damage to such structures. When exposed 

to high temperatures, various mechanical, chemical and 

thermal changes occur in concrete elements that are non-

stationary and non-linear, but which are interconnected 

(Arioz 2007). Additional stresses are induced due to 

temperature and pore pressure differences in the concrete 

microstructure. This leads to the formation of microcracks 

in the concrete matrix and finally to permanent failure of 

the RC structure (Ada et al. 2018). All these changes affect 

the strength of the RC structure during and after fire 

exposure to different extent. For example, the compressive 

strength of concrete after exposure to high temperatures is 

around 20% lower than compressive strength measured 

during the exposure (Hertz 2005). Therefore, the 

determination of the residual strength of structures after fire 

on the basis of known residual mechanical properties is of 

utmost importance (Hertz 2005). Experimental 

investigations have shown that the type of cement, the type 
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and size of aggregate, the w/c ratio, the load level and the 

cooling regime are the most important parameters that 

influence the residual compressive strength of the concrete 

(dos Santos and Rodrigues 2016). Consequently, different 

types of concrete behave differently after fire exposure (Ma 

et al. 2015). Hereinafter the focus of the research is on 

normal and high strength limestone concrete and its residual 

mechanical properties measured after exposure to high 

temperatures. Numerous experimental researches were 

already conducted on this topic, some of them are presented 

in (Hertz 2005, Savva et al. 2005, Arioz 2009, Varona et al. 

2020). But residual mechanical properties or thermal 

damage of concrete after exposure to high temperatures can 

also be evaluated with non-destructive techniques like 

presented in (Chaix et al. 2003, Payan et al. 2007, Park et 

al. 2014, Krzemien and Hager 2015, Park et al. 2015, Park 

and Yim 2016, Park and Yim 2017, Dolinar et al. 2019). 

Based on the results of non-destructive testing techniques 

and corresponding destructive ones that are used for 

determination of residual mechanical properties, various 

regression models with explicit relationships between these 

results have been proposed in the literature (Savva et al. 

2005, Yaqub and Bailey 2016, Park and Yim 2017, Dolinar 

et al. 2019). Savva et al. (2005) proposed a relationship 

between the compressive strength and ultrasonic (US) pulse 

velocity of limestone concrete at ambient temperature. For 

fire-damaged concrete Park and Yim (2016) provided a 

relationship between the residual dynamic modulus of 

elasticity determined by the resonant frequency method and 

the residual compressive strength. Park and Yim (2017) 

proposed relations between the results of nonlinear US 
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methods and residual mechanical properties. Recently, 

Dolinar et al. (2019) proposed a relationship for estimating 

the residual compressive strength of limestone concrete 

based on the residual shear modulus measured by the 

resonant frequency method. Furthermore the relationships 

between temperature and residual compressive strength of 

concrete are presented in the literature (Aslani and Samali 

2013, Yang et al. 2018, Varona et al. 2018), however for the 

post-fire assessment of the concrete these relationships are 

not convenient due to difficult determination of the 

maximal temperature reached during a fire exposure. 

The artificial neural network approach (ANN) can be 

successfully applied to concrete research, especially for the 

prediction of compressive strength. Based on the measured 

US pulse velocity and some concrete mix components, the 

prediction of the compressive strength of young concrete at 

ambient temperature was performed with ANN by Trtnik et 

al. (2009). Shah et al. (2012) predicted the residual 

compressive strength of concrete under stressed state at 

ambient temperature based on the results of non-linear US 

measurements and the ANN approach. Based on 

experimental studies, Chan et al. (1998) predicted the 

strength loss of concrete under high temperature with ANN. 

The input parameters included information about cement 

type, coarse aggregate type, additive type, proportion of 

mixed cement, w/c ratio, surface/volume ratio, maximum 

temperature, heating rate and duration at maximum 

temperature (Chan et al. 1998). Recently Abbas et al. 

(2019) presented an ANN approach to predict the residual 

compressive strength of high strength concrete after 

exposure to high temperatures. The proposed approach was 

determined based on a large set of experimental data 

obtained from the literature, e.g., (Shah et al. 2012). The 

best fit for predicting the residual strength of concrete was 

achieved for concrete with siliceous aggregate and known 

aggregate to cement ratio, w/c ratio and temperature as 

input parameters for ANN approach (Abbas et al. 2019). 

Taking different types of aggregate into account, the 

coefficient of determination for predicting residual 

compressive strength with ANN decreased. Turkmen et al. 

(2017) used an ANN model to predict the residual 

compressive strength of pumice aggregate concrete, with 

the input parameters consisted of the pumice to aggregate 

ratio and the target temperature. 
In this paper the possibility of using different regression 

and ANN models to predict the residual mechanical 

properties of limestone concrete after exposure to high 
temperatures based on the results of some known non-
destructive testing techniques that can be simply used in-
situ, is discussed. The paper is a logical extension and 
enhancement of the paper recently published by the authors 
(Dolinar et al. 2019) and is based on extended experimental 

work. 

 

 

2. Experimental setup 
 
2.1 Material and specimen preparation 
 

Various concrete mixtures were produced with Portland 

cement of high (CEM I 52.5 R) or normal (CEM I 42.5 N) 

Table 1 Composition of concrete mixtures used in the study, 

in [kg] 

Material Type M1 M2 M3 M4 M5 

Cement 
Cem I 52.5 R 360 360 360 - 360 

Cem I 42.5 N - - - 360 - 

Water Tap 169 122 175 177 161 

Superplasticizer PCE 2.16 2.16 - - - 

Limestone 

aggregate 

0-4 mm 931 

4-8 mm 280 

8-16 mm 652 

 

 

Fig. 1 Typical development of temperature T with time t 

inside concrete specimens 

 

 

strength, tap water, superplasticizer and limestone aggregate 

with rounded grains of nominal maximum size 16 mm. The 

concrete mixtures M1 and M2 contained high-strength 

cement and superplasticizer and differed in the w/c ratio, 

which was 0.47 and 0.34, respectively. The concrete mixes 

M3 and M4 were produced with high-strength and normal-

strength cement respectively, with a w/c ratio of 0.49. The 

M5 mixture was made with high-strength cement and a w/c 

ratio of 0.45. The detailed compositions of the tested 

mixtures are summarized in Table 1. 

Prismatic and cubic specimens with the dimensions of 

40×40×160 mm3, and 100×100×100 mm3 respectively, were 

produced. The specimens were cured in water for 28 days and 

finally air dried under standard laboratory conditions at 

202°C and a relative humidity of 65%. All together 141 

cubic and 101 prismatic specimens were produced. 

 

2.2 Heating regime 
 

The specimens were heated inside the electric furnace. 

During the process, the temperature development inside the 

furnace and the concrete specimens was carefully measured 

with previously calibrated high temperature resistant 

thermocouples installed 5 mm below the centre of the 

surface and in the centre of the cube. 

Before heating, the concrete specimens of each mixture 

were divided into five groups. To obtain reference 

mechanical properties, the first group of specimens was 

tested immediately after the curing and drying process, i.e., 

before exposure to high temperatures. The other groups 

were exposed to high temperatures of 200°C, 400°C, 600°C 

or 800°C with a heating rate of about 3°C/min. After 

isothermal conditions had been established inside the 
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respective specimen, the specimens were naturally cooled to 

ambient temperature before they were experimentally 

investigated. Fig. 1 shows the typical development of 

temperature T with time t inside the specimens. 

 

2.2 Testing procedures 
 
Different non-destructive and destructive testing 

techniques were used to obtain different mechanical 
properties of concrete according to the relevant standards 
(EN 12504-4 2004, EN 12504-2 2002, ISO 1920-10 2010, 
EN 12390-3 2009, EN 12390-5 2009). Measurements with 
the US method were performed on all specimens, while the 
determination of the rebound number was performed on 
cubic specimens. The modulus of elasticity was then 
measured on prismatic specimens. Finally, compressive and 
bending tests were carried out on cubic and prismatic 
specimens, respectively. 

In addition to the US and rebound number techniques, 
other non-destructive techniques were also performed. For 
the concrete mixtures M1 and M2 reference is made to 
(Dolinar et al. 2019), where comprehensive results of the 
non-destructive testing techniques are presented. As 
mentioned above, the aim of the paper is to investigate the 
prediction of residual mechanical properties of concrete 
after fire exposure based on the results of non-destructive 
testing techniques that could be used in-situ. Therefore, 
only the US pulse velocity and the residual surface strength 
are considered among all non-destructive techniques for the 
determination of the residual mechanical properties of 
limestone concrete. The experimental work was performed 
at IGMAT Building Materials Institute in Ljubljana, 
Slovenia. 

 

 

Table 2 Normalized Vp measured on specimens of all 

concrete mixtures 

T [°C] M1 M2 M3 M4 M5 

20 1.000 1.000 1.000 1.000 1.000 

200 0.902 0.881 0.814 0.872 0.923 

400 0.570 0.604 0.505 0.602 0.619 

600 0.317 0.547 0.341 0.477 0.534 

800 0.430 0.478 0.336 0.361 0.506 

 

 

3. Experimental research 
 

3.1 Experimental results 
 

Fig. 2 shows the influence of the temperature T on the 

average values of the US pulse velocity, Vp, the residual 

surface strength, fc,surf, the residual compressive strength, fc, 

the residual flexural strength, fcf, and the residual modulus 

of elasticity, E. The Tables 2-6 summarize the average 

measured results of the above mentioned quantities in 

normalized form. 

The influence of the temperature T on Vp is shown in 

Fig. 2(a), while the normalized values for all concrete 

mixtures are summarized in Table 2. It can be seen that Vp 

of concrete specimens at ambient temperature equals 

approximately 4.0 km/s, which corresponds to good quality 

concrete (Yaqub and Bailey 2016). An increase in 

temperature to 200°C resulted in a decrease of Vp between 

8% and 19% for the mixtures M5 and M3, respectively. The 

highest relative decrease of Vp (i.e., about 30%) is observed 

between 200°C and 400°C for all mixtures. 

 

 

   
(a) (b) (c) 

 

  

 

 (d) (e)  

Fig. 2 Influence of temperature T on: (a) US pulse velocity, Vp, (b) residual surface strength, fc,surf, (c) residual compressive 

strength, fc, (d) residual flexural strength, fcf, and (e) residual elastic modulus, E 
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Table 3 Normalized fc,surf determined on specimens for all 

concrete mixtures 

T [°C] M1 M2 M3 M4 M5 

20 1.000 1.000 1.000 1.000 1.000 

200 1.113 0.947 1.323 1.153 1.072 

400 0.952 0.678 0.909 0.996 0.980 

600 0.564 0.835 0.744 0.960 0.958 

800 0.397 0.543 1.092 * 0.893 

*Due to the extensive damage of the specimens after heating, 

determination of fc,surf was not possible. 

 

Table 4 Normalized fc determined on concrete cubes for all 

mixtures 

T [°C] M1 M2 M3 M4 M5 

20 1.000 1.000 1.000 1.000 1.000 

200 0.774 0.995 1.028 0.968 0.844 

400 0.581 0.728 0.729 0.634 0.591 

600 0.395 0.568 0.489 0.573 0.564 

800 0.141 0.280 0.331 0.193 0.271 

 

Table 5 Normalized fcf determined on concrete prisms for 

all mixtures 

T [°C] M1 M2 M3 M4 M5 

20 1.000 1.000 1.000 1.000 1.000 

200 0.825 0.669 0.733 0.806 0.615 

400 0.352 0.356 0.332 0.445 0.411 

600 0.251 0.334 0.228 0.363 0.382 

800 0.070 0.031 0.270 0.272 0.254 

 

 

The influence of the temperature T on fc,surf is shown in 

Fig. 2(b) and the normalized values are shown in Table 3. 

At 200°C the results show an increase of fc,surf between 7% 

(M5) and 32% (M3). The highest relative decrease for 

mixtures M2 to M5 is observed between 200°C and 400°C 

(between 9% for mixture M5 and 41% for mixture M3), 

while for mixture M1 the highest relative decrease is 

observed between the temperature 400°C and 600°C (39%). 

The residual compressive strength, fc, and the normalized 

values of fc as a function of temperature are shown in Fig. 2(c) 

and Table 4, respectively. As expected, the composition of 

concrete mixtures has a major influence on fc. In all cases, a 

temperature rise resulted in a steep and almost linear drop of fc. 

It can be observed that for each mixture, the highest relative 

decrease of fc is about 30 %. However, this reduction took 

place at different temperature levels depending on the 

composition of the concrete. 

The residual flexural strength, fcf, and the normalized 

values of fcf as a function of temperature T are shown in Fig. 

2(d) and Table 5, respectively. As expected, fcf decreases with 

increase of temperature T. However, the decrease of fcf is more 

pronounced in the temperature range between 200°C and 

400°C, which corresponds very well with the temperature at 

the formation of conspicuous cracks on the surface of the 

specimens (Dolinar et al. 2019). 

The residual modulus of elasticity, E, was measured on 

concrete prisms of mixtures M2 to M5, and its variation with 

temperature and normalized values are shown in Fig. 2(e) and 

Table 6, respectively. A strong decline of the E with increase of  

Table 6 Normalized E determined on concrete prisms for 

mixtures M2 to M5 

T [°C] M2 M3 M4 M5 

20 1.000 1.000 1.000 1.000 

200 0.805 0.598 0.625 0.722 

400 0.336 0.224 0.238 0.348 

600 0.193 0.131 0.156 0.225 

800 * 0.162 0.157 0.145 

*Due to the extensive damage of the specimens after heating, 

determination of E was not possible. 

 

 

Fig. 3 The values of normalized residual compressive 

strength fc of limestone concrete obtained from the present 

experiment and literature 

 

 

temperature T is clearly visible in the figure. The highest 

relative decrease of about 40% is observed between 20°C and 

200°C and between 200°C and 400°C for the mixture M3 and 

for the mixtures M2, M4 and M5, respectively. 

 

3.2 Comparison to experimental results obtained 
from the literature 
 

Among all residual mechanical properties of concrete, the 

residual compressive strength is the most investigated one. 

After exposure to high temperatures limestone concrete was 

also investigated by Hertz (2005), Savva et al. (2005), Arioz 

(2009) and Varona et al. (2020). Fig. 3 presents average 

experimental residual compressive strength in comparison with 

aforementioned authors. Additionally, the compressive strength 

of limestone concrete during exposure to high temperatures 

according to the standard EN 1992-1-2 (2004) is given in Fig. 

3. 

A great dispersion of the curves is observed in the Fig. 3, 

however all residual compressive strengths of limestone 

concrete determined after exposure to high temperature are 

from 600°C onward lower that compressive strength during the 

exposure to high temperature according to the standard EN 

1992-1-2 (2004). 

 

 
4. Regression models with explicit relationships 

 
4.1 Introduction 
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Table 7 Regression models with explicit relationships for 

prediction of fc 

 Explicit relationship R2 RMSE 

(a) fc = 16.06 Vp + 1.234 0.7101 10.05 

(b) fc = 17.64 e0.02201 fc,surf 0.3234 15.36 

(c) 
fc = 9.759 − 6.4 Vp + 0.9336 fc,surf + 0.6534 

Vp
2 + 0.4941 Vp fc,surf – 0.02663 fc,surf

2 
0.8146 8.21 

 
Table 8 Regression models with explicit relationships for 

prediction of fcf 

 Explicit relationship R2 RMSE 

(a) fcf = 0.7702 Vp
1.766 0.8016 1.27 

(b) fcf = 0.0005178 fc,surf
2 + 0.1076 fc,surf −0.5492 0.3974 2.22 

(c) 
fcf = 0.4476 − 1.521 Vp + 0.07495 

fc,surf+0.3696 Vp
2 

0.8651 1.07 

 

 
Regression analysis is a statistical process in which the 

influence of one or more independent variables is examined 

against a dependent one. The performance of a regression 

model is normally evaluated with the coefficient of 

determination, R2, and the root mean square error (RMSE). 

Explicit relationships between the results of non-destructive 

techniques and residual mechanical properties fc, fcf or E are 

presented in Sections 4.2, 4.3 and 4.5, respectively. In the first 

case (a), the relationship between the selected residual 

mechanical property and the US pulse velocity, Vp, is proposed. 

The following case (b) suggests the relationship between the 

residual mechanical property and the residual surface strength, 

fc,surf, and the last case, (c), suggests the relationship between 

the residual mechanical property and Vp, and fc,surf. Detailed 

regression models using explicit relationships to determine the 

residual mechanical properties of limestone concrete are 

presented by the authors in (Dolinar et al. 2019), but on a 

smaller data set. 

 

4.2 Residual compressive strength 
 
Table 7 summarizes proposed regression models with 

explicit relationships for the prediction of fc and 

corresponding R2 and RMSE for all three cases. The best 

prediction of fc is achieved in case (c) where Vp and fc,surf are 

taken into account. In this case the R2 is 0.8146 and the 

corresponding RMSE is equal to 8.21. If Vp (case a) is taken 

into account alone, the prediction of fc is slightly worse, 

while taking fc,surf as the only input parameter for the 

prediction of fc turns out to be inappropriate. 

 

4.3 Residual flexural strength 
 

Table 8 summarizes proposed regression models with 

explicit relationships for the prediction of fcf with 

corresponding R2 and RMSE for all three cases. Similar to 

the prediction of fc, the best prediction of fcf is achieved in 

case (c), where the corresponding R2, and RMSE are 0.8651 

and 1.07, respectively. With the consideration of Vp alone 

(case a) the prediction of fcf is comparable, while the 

consideration of fc,surf (case b) as the only input parameter 

for the prediction of fcf, similar to the prediction of fc, is 

once more recognized as unsuitable. 

Table 9 Regression models with explicit relationships for 

prediction of E 

 Explicit relationship R2 RMSE 

(a) E = 4.01 Vp
2 − 8.44 Vp + 8.32 0.9421 3.36 

(b) E = 4.25 e0.0368 fc,surf 0.2307 12.16 

(c) 
E = 6.865 − 12.26 Vp + 0.3597 fc,surf 

+ 4.267 Vp
2 

0.9449 3.34 

 

 

4.4 Residual elastic modulus 
 

Table 9 summarizes proposed regression models with 

explicit relationships for the prediction of E with 

corresponding R2 and RMSE. The best prediction of the 

residual mechanical property is again achieved in case (c). 

The E value could just as well be predicted on the basis of 

known Vp alone, whereas a prediction based on measured 

fc,surf (case b) is not suitable. 

 
 
5. Regression models using artificial neural 
networks 

 

5.1 Artificial neural networks 
 

The basic idea and motivation for the development of 

ANN comes from the structure and natural processes that 

take place in the biological nervous system, since they are 

similar in many aspects to functioning neural networks. The 

ANN approach is a massively parallel distributed processor 

consisting of simple processing units that have a natural 

tendency to store experimental knowledge and make it 

available for use (Haykin 2009). Therefore, ANNs have 

excellent performance, accuracy and versatility and are 

known as universal proximity systems. It has been shown 

that a standard multi-layer feed-forward neural network is 

capable of approximating any measurable function and that 

there are no theoretical limitations to its success (Hornik et 

al. 1989). A detailed description of ANN is available 

elsewhere in the literature, for example (Chan et al. 1998, 

Shah et al. 2012, Abbas et al. 2019, Haykin 2009). 

In the present study, different forms of a typical multi-

layer feed-forward ANN were tested with a different 

number of hidden layers and a different number of neurons 

in each layer. Since the amount of experimental results is 

small, a maximum of two hidden layers is sufficient for the 

prediction of selected residual mechanical property as 

proposed in (Vakharia and Gujar 2019). In addition, the 

selection of a high number of neurons in hidden layers can 

lead to overtraining, as described in (Gupta et al. 2019). 

The neurons in the hidden layer are characterized by a 

hyperbolic tangential sigmoid transfer function described in 

(Yonaba et al. 2010). The input and output layers consist of 

known data, while the weights in the hidden layer(s) were 

determined during the training process. The set of 

experimental results was divided into input and output data, 

called input-output pairs. A cross-validation technique was 

used to improve the generalization capacity and avoid 

overfitting. Therefore, the input-output pairs were randomly 

divided into five different folds, and each input-output pair 
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was used once in the test set. This method was previously 

successfully used by Vakharia and Gujar (2019) to predict 

the compressive strength and composition of Portland 

cement. Next, five folds were divided into training and 

testing sets. The training set included approximately 80 % 

of input-output pairs, that is four folds, which were used to 

determine the connection weights and thresholds of neurons 

in the hidden layer(s). Levenberg-Marquardt 

backpropagation algorithm and Bayesian Regularization 

were used for this purpose (Hagan et al. 2014). The latter is 

often used to improve the generalization capacity of ANN. 

The performance of the neural networks was tested on the 

testing set that included the remaining fold (i.e., 20% of 

input-output pairs). The accuracy of the prediction of 

residual mechanical properties was estimated with R2 and 

RMSE. The analyzes were performed with the Matlab 

computer programming environment (Matlab 1999). 

 

5.2 Analysis 
 

In the input layer of ANNs different non-destructive test 

results like Vp and fc,surf as well as w/c ratio or temperature T 

were used. The output layer included fc (presented in 

Section 5.3), fcf (presented in Section 5.4) or E (presented in 

Section 5.5). 
In the first case (a) the selected residual mechanical 

property was predicted based on Vp alone. The following 
case (b) predicted the residual mechanical property based 
on Vp, and fc,surf. Next, the prediction was based on the 
results of all non-destructive techniques and the w/c ratio 
(c) or T (d). Finally, in case (e) all known data were used to 

predict the selected residual mechanical property (Vp, fc,surf, 
w/c ratio and T). The influence of input parameters on the 
accuracy of learning performance of ANN was thus 
investigated. 

For the two selected training algorithms, the difference 

between the average maximum R2 determined with 

Levenberg-Marquardt and Bayesian Regularization was at 

most 2% when predicting fcf. The results presented below 

were obtained with the Bayesian Regularization training 

algorithm. Appendix A, Tables A1-A3, show the accuracy 

of learning performance assessed with the average R2 for 

the five-fold cross-validation method. The highest average 

value of R2 for each selected case is marked bold in the 

Tables A1-A3. The columns in the Tables A1-A3, represent 

different cases depending on the number of input 

parameters selected in the input layer of the ANN, and the 

rows represent different geometries of ANN (ANN's 

geometry), where each digit represents the number of 

neurons in each hidden layer. 

 

5.3 Prediction of residual compressive strength 
 

As can be seen from the Table A1, that the highest R2 

(i.e., 0.9429) is reached in the case where all input 

parameters are considered (case e). This was achieved with 

the ANN geometry of only one hidden layer and four 

neurons. Nevertheless, a similar accuracy of the ANNs in 

case (e) is also achieved for the other examined geometries. 

In cases (c) and (d), where the w/c ratio and the T were 

considered separately as input parameters, the maximum R2 

was about 10% lower than in case (e). 

Fig. A1 in Appendix A shows the relationships between 

the predicted and measured results for all five folds for the 

ANN with the highest average R2. The determination of the 

RMSE for each fold was presented to estimate the accuracy 

of the ANN used, since a smaller error between predicted 

and measured results indicates better accuracy. The 

minimum (3.128) and maximum (5.28) RMSE was reached 

in the 4th and 5th fold, respectively. For comparison, the 

RMSE values for the ANN with one neuron in each hidden 

layer for case (e) were determined. Here the R2 value is the 

lowest for case (e), i.e., 0.9062. The RMSE values for folds 

one to five are 6.297, 6.419, 5.607, 3.663 and 6.427, 

respectively. For comparison, Vakharia and Gujar (2019) 

achieved the RMSE value around 8 for the prediction of fc 

of high-performance concrete at ambient temperature using 

ANN and ten-fold cross-validation method. 

 

5.4 Prediction of residual flexural strength 
 

Again, relationships for the prediction of the fcf were 

determined based on different ANN geometries and 

different input parameters. The average R2 values for the 

five-fold cross-validation method are shown in Table A2. 

For the best prediction of the fcf it is important to consider 

Vp, fc,surf and w/c ratio. In this case, the R2 is 0.8739 and the 

corresponding minimum RMSE was 0.6402 and the 

maximum RMSE was 1.231. Interestingly, while 

considering Vp and fc,surf as input parameters (case b), the 

decrease of value of R2 was not significant. Hence from a 

practical point of view, considering only Vp and fc,surf would 

result in a good prediction of fcf. 

 

5.5 Prediction of residual elastic modulus 
 
Also for the prediction of the E relationships with 

different ANN geometries and different input parameters 
were determined. The best prediction of the E is observed 
when all considered input parameters are taken into 
account. In this case, the average value of R2 was 0.9602 

and the corresponding minimum and maximum RMSE 
were 1.509 and 3.944, respectively. Taking into account Vp 
and fc,surf obtained with non-destructive techniques, and the 
w/c ratio (case c) as input parameters for ANN, the 
maximum R2 is comparable to case (e) when all input 
parameters are considered. It is also noted that the average 

R2 is high, even in the case of the simplest neural network 
geometry, and even if Vp is considered as the only input 
parameter (case a).  

 

 
6. Discussion 
 

As mentioned above, the prediction of residual 

mechanical properties on the basis of results of non-

destructive testing techniques, w/c ratio and temperature is 

investigated. The results indicate that the prediction of fcf 

and E could be based on Vp, fc,surf and the w/c ratio. In 

practice, the latest information could be obtained from the 

design project of an investigated building. However, as 

observed in Section 5.3, information about the maximum 
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temperature of the concrete member reached during a fire 

exposure is of great importance for the accurate prediction 

of fc. During the experimental investigation, such 

temperatures can be measured with pre-installed 

thermocouples, whereas this is no longer possible on the 

building after the fire. As mentioned in (Molkens et al. 

2017), the assessment of post-fire load-bearing capacity 

needs to rely on rigorous methods. It is possible to 

reproduce the possible fire scenario models based on the 

results of various in-situ measurements after a fire. On the 

basis of such models the fire development and the 

mechanical response of the structure after a fire could be 

estimated. In (Molkens et al. 2017) a post-fire assessment 

of an apartment after a fire was done. For this purpose, the 

prediction of the maximum temperatures in the fire most 

exposed concrete slab was carried out on the basis of the 

estimation of the fire duration obtained by the firefighters 

and using the software OZone (Cadorin and Franssen 2003) 

for predicting the gas temperature. The measured residual 

vertical deflection of the concrete slab after a fire was taken 

into account in the finite element method for modeling the 

structural response. Within the iteration process different 

gas temperatures were used as input parameters for the 

finite element model until the numerical and measured 

residual vertical deflection coincided. In similar way, 

presented ANN for the prediction of fc could be used, based 

on the numerically determined maximum temperature 

reached in the concrete member obtained from a possible 

fire scenario. 

 

 

7. Conclusions 
 

The focus of the present work was on the use of 

available data from non-destructive methods that can easily 

be applied in-situ, and on some known mix parameters of 

concrete to predict the residual mechanical properties of 

concrete after a fire. This information is of utmost 

importance for estimating the residual load-bearing capacity 

of concrete structures after a fire. For this purpose, 

extensive experimental work was carried out on five 

different concrete mixtures with limestone aggregate. The 

ability of regression models with explicit relationships and 

ANN approach to determine residual mechanical properties 

has been investigated. In the case of predicting fc the highest 

value of R2 (0.9429) was reached with ANN where the input 

parameters consisted of Vp, fc,surf, w/c ratio and T. This result 

agrees well with the research work of Abbas et al. (2019) on 

a larger data set where the highest value of R2 for predicting 

the residual compressive strength of high-strength concrete 

after exposure to high temperature and known aggregate to 

cement ratio, w/c ratio and temperature for siliceous 

aggregate was 0.958. Similarly, the best prediction of fcf was 

obtained using an ANN approach where the input 

parameters consisted of Vp, fc,surf and the w/c ratio. In this 

case, however, a very similar R2 was achieved using a 

regression model with explicit relationship, considering Vp 

and fc,surf as input parameters. As for the prediction of fcf, the 

best prediction of E was achieved using ANN approach, 

while a similarly good prediction was achieved with explicit 

relationship. The ANN approach considered all input 

parameters, while for the explicit relationship only results 

of Vp, and fc,surf were considered. 

The results show that the application of this ANN 

approach is suitable for predicting the residual compressive 

strength of concrete after a fire. However, in the case of the 

prediction of residual flexural strength and modulus of 

elasticity, the accuracy of the results obtained with 

regression models using explicit relationships is 

comparable. Therefore, both regression models can be used 

successfully in practice if they are applied properly. 
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Appendix A. 
 

Table A1 Average values of R2 obtained from different 

ANN's geometry trained with Bayesian Regularization, and 

various input parameters for the prediction of fc 

ANN’s geometry (a) (b) (c) (d) (e) 

0 0.7118 0.7237 0.7632 0.8072 0.9114 

1 0.7145 0.7481 0.8065 0.7993 0.9129 

2 0.7112 0.7825 0.8349 0.8157 0.9247 

3 0.7106 0.7506 0.8384 0.8215 0.9342 

4 0.7106 0.7593 0.8379 0.8222 0.9429 

5 0.7114 0.7871 0.8340 0.8228 0.9329 

1-1 0.7135 0.7471 0.8045 0.7955 0.9062 

1-2 0.7114 0.7466 0.8057 0.7987 0.9123 

1-3 0.7123 0.7474 0.8057 0.8011 0.9098 

1-4 0.7096 0.7486 0.8066 0.8007 0.9109 

2-1 0.7153 0.7533 0.8480 0.8157 0.9254 

2-2 0.7154 0.7540 0.8482 0.8482 0.9262 

2-3 0.7125 0.7636 0.8471 0.8227 0.9325 

2-4 0.7101 0.7553 0.8470 0.8228 0.9334 

3-1 0.7115 0.7817 0.8455 0.8482 0.9304 

3-2 0.7119 0.7903 0.8514 0.8490 0.9340 

3-3 0.7106 0.7901 0.8470 0.8479 0.9320 

3-4 0.7099 0.7902 0.8460 0.8423 0.9321 

4-1 0.7126 0.7874 0.8450 0.8420 0.9331 

4-2 0.7096 0.7622 0.8480 0.8451 0.9323 

4-3 0.7094 0.7749 0.8396 0.8480 0.9308 

4-4 0.7105 0.7890 0.8439 0.8468 0.9290 

 

Table A2 Average values of R2 obtained from different 

ANN's geometry trained with Bayesian Regularization, and 

various input parameters for the prediction of fcf 

ANN’s geometry (a) (b) (c) (d) (e) 

0 0.7949 0.8171 0.8274 0.8120 0.8246 

1 0.8065 0.8380 0.8411 0.8083 0.8478 

2 0.8087 0.8518 0.8601 0.8412 0.8569 

3 0.8042 0.8467 0.8659 0.8402 0.8627 

4 0.8059 0.8509 0.8635 0.8483 0.8672 

5 0.8087 0.8503 0.8654 0.8526 0.8667 

1-1 0.8127 0.8523 0.8524 0.8336 0.8608 

1-2 0.8096 0.8459 0.8620 0.8405 0.8490 

1-3 0.8036 0.8471 0.8567 0.8475 0.8533 

1-4 0.8104 0.8495 0.8643 0.8397 0.8612 

2-1 0.8083 0.8414 0.8651 0.8425 0.8572 

2-2 0.8125 0.8548 0.8697 0.8512 0.8637 

2-3 0.8051 0.8562 0.8641 0.8537 0.8610 

2-4 0.8122 0.8576 0.8710 0.8441 0.8692 

3-1 0.8066 0.8549 0.8654 0.8513 0.8687 

3-2 0.8116 0.8531 0.8692 0.8457 0.8643 

3-3 0.8097 0.8544 0.8739 0.8461 0.8644 

3-4 0.8105 0.8508 0.8682 0.8518 0.8634 

4-1 0.8109 0.8547 0.8682 0.8448 0.8584 

4-2 0.8110 0.8542 0.8651 0.8502 0.8619 

4-3 0.8071 0.8560 0.8684 0.8481 0.8651 

4-4 0.8100 0.8488 0.8699 0.8450 0.8609 

Table A3 Average values of R2 obtained from different 

ANN's geometry trained with Bayesian Regularization, and 

various input parameters for the prediction of E 

ANN’s geometry (a) (b) (c) (d) (e) 

0 0.8741 0.8827 0.8815 0.9067 0.9074 

1 0.9424 0.9412 0.9402 0.9539 0.9552 

2 0.9425 0.9418 0.9383 0.9540 0.9537 

3 0.9449 0.9417 0.9358 0.9543 0.9536 

4 0.9427 0.9412 0.9393 0.9550 0.9592 

5 0.9427 0.9412 0.9387 0.9547 0.9583 

1-1 0.9416 0.9403 0.9402 0.9518 0.9552 

1-2 0.9424 0.9405 0.9408 0.9515 0.9542 

1-3 0.9422 0.9424 0.9406 0.9521 0.9547 

1-4 0.9427 0.9414 0.9415 0.9523 0.9557 

2-1 0.9436 0.9443 0.9421 0.9551 0.9602 

2-2 0.9391 0.9418 0.9422 0.9549 0.9555 

2-3 0.9435 0.9436 0.9398 0.9535 0.9512 

2-4 0.9427 0.9416 0.9337 0.9531 0.9534 

3-1 0.9433 0.9439 0.9416 0.9541 0.9529 

3-2 0.9420 0.9444 0.9367 0.9550 0.9565 

3-3 0.9425 0.9441 0.9385 0.9552 0.9526 

3-4 0.9420 0.9431 0.9404 0.9542 0.9570 

4-1 0.9428 0.9428 0.9394 0.9541 0.9549 

4-2 0.9427 0.9438 0.9371 0.9545 0.9556 

4-3 0.9422 0.9442 0.9332 0.9554 0.9568 

4-4 0.9427 0.9443 0.9360 0.9546 0.9588 

 

 
(a) 

 
(b) 

Fig. A1 Regression lines between the best prediction of fc 

with ANN and measured fc using five-fold cross-validation 

method and Bayesian Regularization training algorithm: (a) 

first fold, (b) second fold, (c) third fold, (d) fourth fold, and 

(e) fifth fold 
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(e) 

Fig. A1 Continued 

 

256




