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Abstract.  Based upon differential quadrature method (DQM) and nonlocal strain gradient theory (NSGT), 
mechanical-hygro-thermal vibrational analyzes of shear deformable porous functionally graded (FG) nanoplate on 
visco-elastic medium has been performed. The presented formulation incorporates two scale factors for examining 
vibrational behaviors of nano-dimension plates more accurately. The material properties for FG plate are porosity-
dependent and defined employing a modified power-law form. It is supposed that the nano-size plate is exposed to 
hygro-thermal and variable compressive mechanical loadings. The governing equations achieved by Hamilton’s 
principle are solved implementing DQM. Presented results indicate the prominence of moisture/temperature 
variation, damping factor, material gradient index, nonlocal coefficient, strain gradient coefficient and porosities on 
vibrational frequencies of FG nano-size plate. 
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1. Introduction 
 

In a FG material, all material properties may change from one side to another side by means of 

a prescribed distribution. These two sides may be ceramic or metal. Mechanical characteristics of a 

FG material can be described based on the percentages of ceramic and metal phases. The material 

distribution in FG materials may be characterized via a power-law function. FG materials are not 

always perfect because of porosity production in them. Existence of porosities in the FG materials 

may significantly change their mechanical characteristics. For example, the elastic moduli of 

porous FG material is smaller than that of perfect FG material. Up to now, many authors focused 

on wave propagation, vibration and buckling analyzes of FG structures having porosities (Jabari et 

al. 2008, Chikh et al. 2016, Sobhy 2016, Lal et al. 2017, Bensaid and Keboura 2019, Zenkour and 

Aljadani 2018, Bekhadda et al. 2019). Also, there are several investigations concerning with the 

analysis of FG structures in thermal environments (Bouderba et al. 2016, El-Hassar et al. 2016). 

Recently, this kind of materials have found their applications in nano-scale structures. Vibration 

behavior of a nano-scale plate is not the same as a macro-scale plate (Lee et al. 2006, Zalesak et 

al. 2016). This is because small-size effects are not present at macro scale. So, mathematical 

modeling of a nanoplate can be done with the use of nonlocal elasticity (Eringen 1983) 
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incorporating only one scale parameter (Berrabah et al. 2013, Zenkour and Abouelregal 2014, 

Aissani et al. 2015, Besseghier et al. 2015, 2017, Elmerabet et al. 2017, Bouadi et al. 2018, Yazid 

et al. 2018). Due to the ignorance of strain gradient effect in nonlocal elasticity theory, a more 

general theory will be required (Natarajan et al. 2012, Daneshmehr and Rajabpoor 2014, 

Belkorissat et al. 2015, Ebrahimi and Barati 2016a, Sobhy 2015, Sobhy and Radwan 2017, Larbi 

Chaht et al. 2015, Belmahi et al. 2019, Al-assadi et al. 2019). Strain gradients at nano-scale are 

observed by many researchers (Lam et al. 2003, Lim et al. 2015, Mirsalehi et al. 2017). Thus, 

nonlocal-strain gradient theory was introduced as a general theory which contains an additional 

strain gradient parameter together with nonlocal parameter (Li et al. 2015& 2016, Li and Hu 

2015&2016&2017, Ebrahimi and Barati 2017, Barati and Zenkour 2017, Fenjan et al. 2019). The 

scale parameters used in nonlocal strain gradient theory can be obtained by fitting obtained 

theoretical results with available experimental data and even molecular dynamic (MD) 

simulations.  

This paper uses a higher order shear deformation plate formulation having four variables 

without using of shear correction factor. Based upon differential quadrature (DQ) approach and 

nonlocal strain gradient (NSGT) formulation, mechanical-hygro-thermal vibrational analysis of 

shear deformable porous functionally graded (FG) nanoplate on visco-elastic medium has been 

performed. The presented formulation incorporates two scale factors for examining vibrational 

behaviors of nano-dimension plates more accurately. The material properties for FG plate are 

porosity-dependent and defined employing a modified power-law form. It is supposed that the 

nano-sized plate is exposed to hygro-thermal and variable compressive mechanical loadings. The 

governing equations achieved by Hamilton’s principle are solved implementing DQM. Presented 

results indicate the prominence of moisture/temperature variation, damping factor, material 

gradient index, nonlocal coefficient, strain gradient coefficient and porosities on vibrational 

frequencies of FG nano-size plate. 
 

 

2. Nanoplate modeling based on NSGT 
 

In the well-known nonlocal strain gradient theory (Lim et al. 2015), strain gradient impacts are 

taken into accounting together with nonlocal stress influences defined in below relation: 

(0) (1)
ij ij ij   

 
(1) 

in such a way that stress σij(0) is corresponding to strain components εkl and a higher order stress is 

related to strain gradient components kl  which are (Lim et al. 2015): 

(0)
0 0( , , ) ( )ijkl klij

V
x x e a x dxC      

 

(2a) 

(1) 2
1 1( , , ) ( )ijkl klij

V
l x x e a x dxC      

 

(2b) 

in which Cijkl express the elastic properties; Also, e0a and e1a are corresponding to nonlocality 

impacts and l is related to strains gradients. Whenever two nonlocality functions α0(x, x', e0a) and 
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α1(x, x', e1a) verify Eringen’s announced conditions, NSGT constitutive relation may be written as 

follows:  

2 2 2 2 2 2 2 2 2 2

1 0 1 0[1 ( ) ][1 ( ) ] [1 ( ) ] [1 ( ) ]ijkl kl ijkl klije a e a e a l e aC C           
 

(3) 

so that 2 defines the operator for Laplacian; by selecting e1=e0=e, above relationship decreases to: 

2 2 2 2[1 ( ) ] [1 ]ijkl klijea lC     
 

(4) 

Taking into account the temperature/humidity impact Eq. (4) might be rewritten as (Ebrahimi 

and Barati 2017): 

2 2 2 2[1 ( ) ] [1 ]( )ijkl kl ij ijea l T Cij C         
 

(5) 

so that γij and βij respectively define the temperature and humidity expansion properties. 

 

 

3. Modeling FG plates having porosity 
 

For the nanoplate shown in Fig.1, the material distribution in FG materials may be 

characterized via a power-law function. FG materials are not always perfect because of porosity 

production in them. Existence of porosities in the FG materials may significantly change their 

mechanical characteristics. Depending on the type of porosity distribution, the elastic moduli E, 

density ρ, temperature expansion property γ and humidity expansion property β for porous FG 

material can be expressed in the following power-law form having material gradient index p as 

(Barati and Zenkour 2017): 

1
( ) ( ) ( )

2 2

p

c m m c m

z
E z E E E E E

h

 
      

   

(6a) 

1
( ) ( ) ( )

2 2

p

c m m c m

z
z

h


     

 
      

   

(6b) 

1
( ) ( ) ( )

2 2

p

c m m c m

z
z

h


     

 
      

   

(6c) 

1
( ) ( ) ( )

2 2

p

c m m c m

z
z

h


     

 
      

   

(6d) 

where m and c corresponds to the metallic and ceramic sides, respectively; α defines the porosity 

volume fraction. 

By defining exact location of neutral surface, the displacement components based on axial u, 

lateral v, bending wb and shear ws displacements may be introduced as (Besseghier et al. 2017, 

Fenjan et al. 2019): 
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    * **, , , , , ( ) [ ( ) ] s
x

bw w
r z r

x
u x y z t u x y t z

x
 

 
  

   
(7a) 

    * **, , , , , ( ) [ ( ) ] s
y

bw w
r z r

y
u x y z t v x y t z

y
 

 
  

   
(7b) 

( , , , ) ( , , )z b su x y z t w x y t w w  
 

(7c) 

so that 

/2 /2
*

/2 /2
( ) / ( )

h h

h h
r E z zdz E z dz

 
   , 

/2 /2
**

/2 /2
( ) ( ) / ( )

h h

h h
r E z z dz E z dz

 
    

(8) 

Here, third order shear function is employed as: 

3

2

5
( )

4 3

z z
z

h
   

 

(9) 

Finally, the strains based on the four-unknown plate model have been obtained as: 

2 2
* **

2 2

2 2
* **

2 2

2 2
* **

( ) [ ( ) ]

( ) [ ( ) ]

2( ) 2

( ) (

[ ) ]

)

(

,

x

y

xy

yz

b s

b s

b s

s s
xz

w wu
z r z r

x x x

w wv
z r z r

y y y

w wu v
z r z r

y x x y x y

w w

y x
g z g z







 









 
    

  

 
    

  

  
     

     

 

 
  

 

(10) 

Next, one might express the Hamilton’s rule as follows based on strain energy (U) and kinetic 

energy (T): 

0
( ) 0

t

U T V dt     
(11) 

and V is the work of non-conservative loads. Based on above relation we have: 

(1) (1) (1)

(1) (1)

(

)

xx xx xx xx yy yy yy yy xy xy xy xy
V

yz yz yz yz xz xz xz xz

U

dV

                  

           

        

     



 

(12) 

Note that for obtaining Eq.(12), the thickness effects discussed by Tang et al. (2019) have been 

neglected by the authors. Placing Eqs. (8) and (10) in Eq.(12) leads to: 
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2 2

2 20

2 2 2

2 2

2

0
[ [ ] [ ]

( ) 2

2 ]

b
b sb s

xx xx xx yy

b s bb s b
yy yy xy xy

s s s s
xy yz xz

a w wu w w v w w

x x x x x y y y

w w wu v w w w w
M M N M

y y y x x y y x x y

w w w
M Q Q dydx

x y y x

U N M M N
    

     

  


      

  
       

       
      

         

  
  

   

  

 

(13) 

in which: 

/2
0 (1) (0) (1)

/2

/2
0 (1) (0) (1)

/2

/2
0 (1) (0) (1)

/2

/2
0 (1) (0) (1)

/2

/2
0

/2

( )

( )

( )

( )

(

h

xx xx xx xx xx
h

h

xy xy xy xy xy
h

h

yy yy yy yy yy
h

h
b b b

xx xx xx xx xx
h

h
s

xx xx xx
h

N dz N N

N dz N N

N dz N N

M z dz M M

M f

 

 

 

 

 











   

   

   

   

 










(1) (0) (1)

/2
0 (1) (0) (1)

/2

/2
0 (1) (0) (1)

/2

/2
0 (1) (0) (1)

/2

/2
0 (1) (

/2

)

( )

( )

( )

( )

s s

xx xx

h
b b b

yy yy yy yy yy
h

h
s s s

yy yy yy yy yy
h

h
b b b

xy xy xy xy xy
h

h
s s

xy xy xy xy
h

dz M M

M z dz M M

M f dz M M

M z dz M M

M f dz M

 

 

 

 









 

   

   

   

  








0) (1)

/2
0 (1) (0) (1)

/2

/2
0 (1) (0) (1)

/2

( )

( )

s

xy

h

xz xz xz xz xz
h

h

yz yz yz yz yz
h

M

Q g dz Q Q

Q g dz Q Q

 

 







   

   



  

(14a) 

where 

/2 /2
(0) (0) (1) (1)

/2 /2

/2 /2
(0) (0) (1) (1)

/2 /2

/2 /2
(0) (0) (1) (1)

/2 /2

/2
(0) (0)

/2

( ) ,    ( )

( ) ,    ( )

( ) ,    ( )

(

h h

ij ij ij ij
h h

h h
b b b b

ij ij ij ij
h h

h h
s s s s

ij ij ij ij
h h

h
i

xz xz
h

N dz N dz

M z dz M z dz

M f dz M f dz

Q g

 

 

 



 

 

 



 

 

 



 

 

 
/2

(1) (1)

/2

/2 /2
(0) (0) (1) (1)

/2 /2

) , ( )

( ) , ( )

h
i

xz xz
h

h h
i i

yz yz yz yz
h h

dz Q g dz

Q g dz Q g dz



 



 



 

 

 

  

  
 

(14b) 
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for which (ij=xx, xy, yy). The variation for the work of non-conservative force is expressed by: 

0 0

0 0

0

( ) ( ) ( ) ( )
(

( ) ( ) ( )
2 ( ) ( )

( ) ( ) ( ) ( )
( ))

a b
b s b s b s b s

x y

b s b s b s
xy w b s b s d

b s b s b s b s
p

w w w w w w w w
V N N

x x y y

w w w w w w
N k w w w w c

x y t

w w w w w w w w
k dydx

x x y y

 


  

 

       
 

   

     
    

  

       
 

   

 

 

(15a) 

where 0 0 0, ,x y xyN N N
 

denote membrane forces; kw, kp and cd are viscoelastic substrate constants. 

Herein, the nano-dimension plate has been exposed to the below in-plane loading while shearing 

load has been neglected N0
xy=0: 

0 0

0 0

,

(1 ), (1 )

T H M T H M

x x y y

x y

N N N N N N N N

y x
N N N N

b a
  

     

   

  

  
 

(15b) 

where hygro-thermal resultants may be defined as: 

/2

0
/2

/2

0
/2

( )
( ) ( )

1

( )
( ) ( )

1

h
T

h

h
H

h

E z
N z T T dz

v

E z
N z C C dz

v









 


 





 

(15c) 

so that C=ΔC+C0 and T=ΔT+T0 define humidity and temperature variations; C0 and T0 express 

prescribed humidity and temperature. Then, applied compressive loading may be defined as: 

(1 ), (1 )M M

x y

y x
N N N N

b a
      

 

(15d) 

Also, the kinetic energy variation is obtained as: 

 

(16) 

so that 

 
(17) 

Substituting Eqs.(13)-(16) into Eq.(11) then collecting the coefficients for field variables results 

in four equations of motion: 
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(18) 

 
(19) 

2 22 2 2

2 2 2 2

2 2

2 2

2 23 3 2 2 2

0 1 2 42 2 2 2 2 2 2

( ) ( )
2 ( )[ ]

( ) ( ) ( )
( ) ( ) ( )

( )
( ) ( )( ) (

b bb
xy y T Hx b s b s

p

M Mb s b s b s
x y w b s d

b s b

M MM w w w w
N N k

x x y y x y

w w w w w w
N y N x k w w c

x y t

w w wu v
I I I I

t x t y t x y t x

     
     

     

     
     

  

      
     

        

22

2 2
)( )sw

y t



 

 

(20) 

2 22 2 2

2 2 2 2

2 2 2

02 2 2

23 3 2 2

3 42 2 2 2

( ) ( )
2 ( )[ ]

( ) ( ) ( ) ( )
( ) ( ) ( )

( ) ( )(

s ss
xy y yz T Hx xz b s b s

p

M Mb s b s b s b s
x y w b s d

b

M M QM Q w w w w
N N k

x x y y x y x y

w w w w w w w w
N y N x k w w c I

x y t t

wu v
I I

x t y t x y

       
       

       

       
     

   

   
   

     

22 2

52 2 2 2
) ( )( )sw

I
t x y t

 
 

     

(21) 

Next, all edge conditions for x = 0 , a and y = 0 , b may be expressed by: 

 

(22) 

Note that 
() () ()

x yn n
n x y

  
 

  
; nx and ny respectively define axial and lateral normal vectors 

at edges, and non-classic edge condition may be written as: 
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(23) 

Finally, the nonlocal strain gradient constitutive relations based on refined FG plate model can 

be expressed by: 

1 0 0 0

1 0 0 0
( )2 2) ) 0 0 (1 )/2

21 0 0 (1 )/2

(1 (1 0 0

0 0

0 0 0 ( 20 1 )/

v

v
E z

v
v

T Cx x
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xy xy

yz yz
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z

v

xz x

   

   

 

 

 

      
 

     
   
       
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After integrating Eq. (24) in thickness direction, we get to the following relationships: 
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in which: 
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Three equations of motion based on neutral surface location will be achieved by placing Eqs. 

(25)-(28) in Eqs. (18)-(21) by: 
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4. Solution by differential quadrature method (DQM) 
 

In the present chapter, differential quadrature method (DQM) has been utilized for solving the 

governing equations for NSGT porous FG nanoplate. According to DQM, at an assumed grid point 

(𝑥𝑖 , 𝑦𝑗)  the derivatives for function F are supposed as weighted linear summation of all 

functional values within the computation domains as: 

𝑑𝑛𝐹

𝑑𝑥𝑛 | 𝑥=𝑥𝑖
= ∑ 𝑐𝑖𝑗

(𝑛)
𝐹(𝑥𝑗)

𝑁

𝑗=1

 (34) 

where 

𝐶𝑖𝑗
(1)

=
𝜋(𝑥𝑖)

(𝑥𝑖 − 𝑥𝑗) 𝜋(𝑥𝑗)
        𝑖, 𝑗 = 1,2, … , 𝑁,        𝑖 ≠ 𝑗 (35) 

in which 𝜋(𝑥𝑖) is defined by 

𝜋(𝑥𝑖) = ∏(𝑥𝑖 − 𝑥𝑗)

𝑁

𝑗=1

,      𝑖 ≠ 𝑗 (36) 

And when 𝑖 = 𝑗 

𝐶𝑖𝑗
(1)

= 𝑐𝑖𝑖
(1)

= − ∑ 𝐶𝑖𝑘
(1)

𝑁

𝑘=1

,     𝑖 = 1,2, … , 𝑁,      𝑖 ≠ 𝑘, 𝑖 = 𝑗 (37) 

Then, weighting coefficients for high orders derivatives may be expressed by: 

𝐶𝑖𝑗
(2)

= ∑ 𝐶𝑖𝑘
(1)

𝐶𝑘𝑗
(1)

𝑁

𝑘=1

 

𝐶𝑖𝑗
(3)

= ∑ 𝐶𝑖𝑘
(1)

𝐶𝑘𝑗
(2)

𝑁

𝑘=1

= ∑ 𝐶𝑖𝑘
(2)

𝐶𝑘𝑗
(1)

𝑁

𝑘=1

 

𝐶𝑖𝑗
(4)

= ∑ 𝐶𝑖𝑘
(1)

𝐶𝑘𝑗
(3)

𝑁

𝑘=1

= ∑ 𝐶𝑖𝑘
(3)

𝐶𝑘𝑗
(1)

𝑁

𝑘=1

          𝑖, 𝑗 = 1, 2, … , 𝑁. 

𝐶𝑖𝑗
(5)

= ∑ 𝐶𝑖𝑘
(1)

𝐶𝑘𝑗
(4)

𝑁

𝑘=1
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(4)

𝐶𝑘𝑗
(1)

𝑁

𝑘=1
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(6)
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(1)
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𝑁
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(1)

𝑁

𝑘=1

     

(38) 

According to presented approach, the dispersions of grid points based upon Gauss-Chebyshev-

Lobatto assumption are expressed as: 

𝑥𝑖 =
𝑎

2
[1 − cos (

𝑖 − 1

𝑁 − 1
𝜋)]       𝑖 = 1, 2, … , 𝑁, 

𝑦𝑗 =
𝑏

2
[1 − cos (

𝑗 − 1

𝑀 − 1
𝜋)]       𝑗 = 1, 2, … , 𝑀, 

(39) 
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Next, the time derivative for displacement components may be determined by 

( , , ) ( , ) i t

b bw x y t W x y e 
 

(40) 

( , , ) ( , ) i t

s sw x y t W x y e 
 

(41) 

where Wb and Wn denote vibration amplitudes and 𝜔 defines the vibrational frequency. Then, it is 

possible to express obtained boundary conditions as: 
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(42) 

Now, one can express the modified weighting coefficients for all edges simply-supported as:  

𝐶̅
1,𝑗
(2)

= 𝐶̅
𝑁,𝑗
(2)

= 0,       𝑖 = 1, 2, … , 𝑀, 

𝐶̅
𝑖,1
(2)

= 𝐶1̅,𝑀
(2)

= 0,       𝑖 = 1, 2, … , 𝑁. 
(43) 

and 

𝐶𝑖̅𝑗
(3)

= ∑ 𝐶𝑖𝑘
(1)

𝐶̅𝑘𝑗
(2)𝑁

𝑘=1        𝐶𝑖̅𝑗
(4)

= ∑ 𝐶𝑖𝑘
(1)

𝐶𝑘̅𝑗
(3)𝑁

𝑘=1  (44) 

By placing Eqs. (38)–(39) into Eqs. (30)–(33) and performing some simplifications leads to the 

following system based on mass matrix[M], stiffness matrix [K] and damping matrix [C] as: 

 2{ ] [ ] [ ] 0

mn

mn

n n

bmn

smn

U

V
K i C M

W

W

 

 
 
 

   
 
    

(45) 

Six grid points are adequate for convergence of the method. The presented results are based on 

the following dimensionless factors: 

24 32 2

2

ρ a
ˆ ω , , , , ,

E 12(1 )

pc w c
w p d d c

c c c c cc

k ak a E ha
a K K C c N N D

D D D vhD



     


 

(46) 

 

 

5. Obtained results and discussions 
 

The presented research examines vibration behaviors of hygro-thermally loaded porous FG 

nano-dimension plates based on four-variable plate model and DQ method. Nonlocal and strain 

gradient coefficients are used in order to define the size-dependent behavior of nano-size plate. 
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Table 1 Comparison of non-dimensional fundamental natural frequency ˆ ω ρ /c ch G   of FG nanoplates 

with simply-supported boundary conditions (p=5) 

a/h µ     

  a/b=1  a/b=2  

  Natarajan et al. (2012) present Natarajan et al. (2012) present 

10 

0 0.0441 0.043823 0.1055 0.104329 

1 0.0403 0.04007 0.0863 0.085493 

2 0.0374 0.037141 0.0748 0.074174 

4 0.0330 0.032806 0.0612 0.060673 

20 

0 0.0113 0.011256 0.0279 0.027756 

1 0.0103 0.010288 0.0229 0.022722 

2 0.0096 0.009534 0.0198 0.019704 

4 0.0085 0.008418 0.0162 0.016110 

 

 

Fig. 1 Configuration of nanoporous inhomogeneous nanoplate on elastic substrate 

 

  

Fig. 2 Different cases of in-plane loads 

 

 

Presented results indicate the prominence of moisture/temperature variation, damping factor, 

material gradient index, nonlocal coefficient, strain gradient coefficient and porosities on 

vibrational frequencies of FG nano-size plate. A verification study is presented in Table 1 for FG 
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(a) Under mechanical load (b) Under thermal load 

Fig. 3 Variation of dimensionless frequency of perfect nanoplate versus mechanical load and temperature 

rise for different nonlocal and strain gradient parameters (p=1, a/h=15, Kw=0, Kp=0, ΔC=0%) 

 

 

nanoplate with comparing the vibrational frequency presented by DQM and those obtained by 

Natarajan et al. (2012). For presenting new results according to linearly varying in-plane loads, 

Fig. 2 shows all types of in-plane loadings. Also, each material property for FG plate may be 

assumed by: 

𝐸𝑐 = 380 GPa, 𝜌𝑐 = 3800 𝑘𝑔/𝑚3, 𝑣𝑐 = 0.3, 𝛾𝑐 = 7 × 10−6 1/ 𝐶0 , 𝛽𝑐 = 0.001 (𝑤𝑡. % 𝐻2𝑜)−1 

𝐸𝑚 = 70 GPa, 𝜌𝑚 = 2707 𝑘𝑔/𝑚3, 𝑣𝑚 = 0.3, 𝛾𝑚 = 23 × 10−6 1/ 𝐶0 , 𝛽𝑚 = 0.44 (𝑤𝑡. % 𝐻2𝑜)−1 

In Fig. 3, the variation of normalized frequencies of a FG nano-dimension plate versus 

mechanical and thermal loading is represented for several nonlocality (µ) and stain gradients (λ) 

coefficients when a/h=15 and p=1. By selecting µ= λ=0, the vibrational frequencies based upon 

classic plate assumption will be derived. Actually, selecting λ=0 gives the frequency in the context 

of nonlocal elasticity theory (NET) and discarding strain gradients impacts. It can be understand 

from Fig. 3 that vibration frequency of system will rise with strain gradient coefficient and will 

reduce with nonlocality coefficient. This observation is valid for all kinds of applied loads. So, 

vibration behavior of the nanoplate system is dependent on both scale effects. Another finding is 

that increasing of temperature or in-plane mechanical load is corresponding to lower structural 

stiffness of the nano-dimension plate as well as smaller vibration frequency. At particular 

temperatures and in-plane mechanical loads, obtained frequency for the nanoplate will be zero. 

Therefore, when the frequency is zero, one can obtain critical buckling load and temperature. An 

important finding is that the critical buckling load and temperature are outstandingly affected by 

the values of nonlocal and strain gradient coefficients.  

Fig. 4 indicates the impact of pore parameter on vibration frequency curves of porosity-

dependent nano-sized plates when a=15h based on even pore dispersion. Different amounts of 

pore parameter have been selected (α=0, 0.1 and 0.2). The result based on α=0 is related to perfect 

nano-size plates. For both porous and perfect nano-size plate, the zero value of vibration frequency 

denotes the thermal buckling. One can find that the vibration frequencies become smaller by 

increasing in temperature value highlighting the intrinsic softening influence related to thermal 

loading. Then, one can find that increasing in pore parameter yields a lower vibration frequency at 

small values of temperature rise. The reason comes from the reduction of nano-sized plate stiffness 
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(a) p=1 (b) p=2 

 
(c) p=3 

Fig. 4 Variation of dimensionless frequency of porous nanoplates versus temperature change for different 

pore coefficients (a/h=15, ΔC=0%, Kw=0, Kp=0) 

 

 
Fig. 5 Dimensionless frequency of FG nanoplate versus damping coefficient for various porosity 

coefficients (a/h=10, p=1, ΔT=10, Kw=5, Kp=0.5, µ=0.2, α=0.2, λ=0.1) 

 

 

with the incorporation of porosities. However, at larger values of temperature rise, both porosity 

and thermal loading have notable influences on structural stiffness of the nanoplate. 
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Fig. 6 Variation of dimensionless frequency versus dimensionless load for different load factors (a/h=15, 

p=1, ΔT=0, ΔC=0%, Cd=0, µ=0.2, λ=0.1) 

 

 

Effects of moisture variation on damping vibrational behaviors of porous FG nanoplates at  

a/h=10, p=1, ΔT=10, Kw=5, Kp=0.5, µ=0.2 and λ=0.1 have been depicted in Fig. 5. It must be 

clarified that increasing in damping factor diminishes the structural stiffness and vibrational 

frequencies will decrease until a critical factor in which frequency magnitude becomes zero. The 

nano-dimension plate vibrations are damped at this point. It is also important to express that 

moisture rise yields lower normalized frequency. Actually, increasing in moisture value yields 

lower critical damping factors. Therefore, it may be deduced that hygro-thermal loads have great 

impacts on dynamic behavior of nano-dimension FG plates.  

Fig. 6 illustrates the variation of normalized frequency for nano-dimension porous FG plate 

according to various types of applied mechanical loads at p=1, µ=0.2 and λ=0.1. In order to define 

the type of applied mechanical load, various values for load factor (ξ) have been determined. It is 

obvious that in-plane mechanical loads degrade the plate rigidity and affect notably the 

performance of a nano-size structure. One can see that increasing in load factor yields greater 

normalized frequency. Thus, critical buckling loads shift to the right. The reason is owing to 

reduced mechanical load resultant with increase of load factor. 

 

 

6. Conclusions 
 

The presented research examined vibration behaviors of hygro-thermally loaded porous FG 

nano-size plates based on four-variable plate model and DQ method. Nonlocal and strain gradient 

coefficients were used in order to define the size-dependent behavior of nano-size plate. It was 

seen that vibration frequency raised with strain gradient coefficient and reduced with nonlocality 

coefficient. Another finding was that increasing of temperature or in-plane mechanical load was 

corresponding to lower structural stiffness of the nano-dimension plate as well as smaller vibration 

frequency. Also, increase of porosity factor may reduce the value of vibrational frequency. It was 

stated that increasing in damping factor diminished the structural stiffness and vibrational 

frequencies decreased until a critical factor in which frequency magnitude became zero. It was 

found that increasing in moisture value led to lower critical damping factors. 
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