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Abstract.  In this paper, a new model-based Fault Detection and Diagnosis (FDD) method for an agile supersonic 
flight vehicle is presented. A nonlinear model, controlled by a classical closed loop controller and proportional 
navigation guidance in interception scenario, describes the behavior of the vehicle. The proposed FDD method 
employs the Inertial Navigation System (INS) data and nonlinear dynamic model of the vehicle to inform fins 
damage to the controller before leading to an undesired performance or mission failure. Broken, burnt, unactuated or 
not opened control surfaces cause a drastic change in aerodynamic coefficients and consequently in the dynamic 
model. Therefore, in addition to the changes in the control forces and moments, system dynamics will change too, 
leading to the failure detection process being encountered with difficulty. To this purpose, an equivalent aerodynamic 
model is proposed to express the dynamics of the vehicle, and the health of each fin is monitored by the value of a 
parameter which is estimated using an adaptive robust filter. The proposed method detects and isolates fins damages 
in a few seconds with good accuracy. 
 

Keywords:  fin failure detection and diagnosis; model aided inertial navigation; parameter estimation; 

adaptive robust unscented Kalman filter; missile aerodynamics 

 
1. Introduction 
 

Reliability and survivability are very important in tactical aerospace vehicles. The flight control 

system is one of the subsystems being faced with different faults and malfunctions in sensors, 

actuators or aerodynamic control surfaces that can lead to performance reduction or failure. To 

overcome such problems, it is necessary to design control policies which are capable of controlling 

the system with desired performance even if one or several faults happen in the system. These 

classes of control systems are known as fault-tolerant control systems (FTCS) (Blanke 1999). 

Fault-tolerant control systems can be categorized into two main types: passive fault tolerant 

controllers (PFTC) and active fault-tolerant controllers (AFTC) (Zhang and Jiang 2008). In PFTC, 

controllers are fixed and designed to be robust against to a class of presumed faults. In contrast to 

PFTC, an AFTC includes fault detection and diagnosis (FDD) module and a reconfigurable 

controller. FDD monitors the health of the system and recognizes unexpected changes in the 

system former leading to the undesired performance of the system. The FDD informs a supervision 

module about the occurred fault or damage that decides how to reconfigure the flight controllers. 
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The simplest way for fault detection is to use hardware redundancy by employing multiple 

devices that perform the same role (Johnson 1996). However, in tactical aerospace vehicles, using 

the redundant hardware is not suitable due to weight and cost constraints. Another strategy is 

analytical redundancy, which identifies the functional relations between the measured variables via 

a mathematical model in order to detect malfunctions (Frank 1990). The result is a set of methods 

called model-based, where the model should be understood as a knowledge-based dynamical 

model, usually a set of differential equations in the state-space form (Marzat et al. 2012). 

One of the most widely used methods for FDD is parity space (Gertler and Singer 1990, Patton 

and Chen 1994, Gertler 1997, Juan 2011, Basri et al. 2012). Parity space technique will highlight 

the consistency between the actual outputs and the normal ones. Besides parity space approach, 

neural networks, system inversion, state estimation, and parameter estimation are the other 

methods that have been used by a vast number of researches on fault diagnosis of aerospace 

vehicle flight control systems (Hanlon and Maybeck 2000, Kun et al. 2010, He et al. 2017, Meskin 

et al. 2007, Mack et al. 2010, Yang et al. 2013, Lee et al. 2014, Shahrokhi 2015, Lee et al. 2016, 

Lu et al. 2017, Crawford et al. 2000, Halder et al. 2003, Chen 2003, Yu et al. 2009, Marzat et al. 

2010, 2009). 

Hanlon and Maybeck (2000) and Kun et al. (2010) have developed a Multiple Model Adaptive 

Estimation (MMAE) algorithm to detect actuator and sensor failures in the flight control system of 

an aircraft, respectively. The MMAE fault detection and isolation (FDI) consists of parallel 

Kalman filters and each Kalman filter is constructed to represent a special failure mode. He et al. 

(2017) has proposed a fault-tolerant approach for hypersonic reentry vehicles. In this strategy, 

when aerodynamic surfaces fail, RCS jets are activated to augment the aerodynamic surfaces to 

compensate for insufficient torque. An actuator FDI is investigated using a nonlinear longitudinal 

aircraft model by Meskin et al. (2007). In the mentioned paper, two detection filters are designed 

to estimate the throttle position and the elevator angle, using a collection of estimation models, 

each corresponding to a system damage situation. Mack et al. (2010) have developed a model-

based adaptive scheme to detect both system damage and actuator failures in aircraft. Furthermore, 

the resulting estimation errors can be employed to determine the overall system health situation. A 

recursive strategy for online detection of actuator faults of an unmanned aerial vehicle was 

presented by Yang et al. (2013). The proposed fault detection strategy consists of a bank of 

unscented Kalman filters, each of which detects a specific type of actuator faults. Lee et al. (2014) 

have employed a model-matching approach using a bank of adaptive linear unknown input 

observers based on linearized aircraft models. Shahrokhi (2015) proposed an FDI scheme based on 

dynamic neural networks and genetic algorithm for thrusters of the autonomous underwater 

vehicles. A model-based method for FDI of actuator damage and failure on an aircraft was 

presented by Lee et al. (2016). The proposed method is based on multiple linearized models that 

approximate the nonlinear dynamics of the aircraft and consider uncertainties. Also, Lu et al. 

(2017) proposed an aircraft FTC system, which can maintain controlled flight in the presence of 

simultaneous sensor and actuator faults. 

Besides the aforementioned references, some references tackled the same problem on missiles. 

A model reference adaptive fin failure tolerant control has been designed by Crawford et al. (2000) 

for the longitudinal missile model. Halder et al. (2003) proposed a fault tolerant control scheme 

using multiple controllers switching in a tactical aerospace vehicle. In this reference, a parity 

space-based residual generation approach is used to detect fin failure. It employs a limited number 

of candidate controllers, one of them is to be selected based on the type of faults. A nonlinear 

disturbance observer-based approach is proposed by Chen (2003) to improve a nonlinear dynamic 
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inversion control robustness against disturbance and the aerodynamic derivatives uncertainty. Yu et 

al. (2009) proposed a solution based on linear parameter varying fault detection filter for a missile 

in the cruise phase to detect and isolate the tail actuator and pitch rate sensor fault. An FDI method 

for a nonlinear control-affine model is presented which employs the redundancy induced by this 

control module, along with the accelerations by Marzat et al. (2010). Also, a model-free fault 

diagnosis method based on the study of closed-loop control signals has been proposed by Marzat 

et al. (2009). 

Patton (1997) and Jiang and Zhao (1997) demonstrate that the state estimation-based 

algorithms are intrinsically fast and have a short time delay in the real-time decision process, but 

results are not detailed in comparison with parameter estimation approach. Therefore, a 

combination of both algorithms is more appropriate. 

In the current paper, the problem of missile fin failure detection, including burning, breaking, 

unactuated, or not opening has been studied. The loss of the missile fins results in a drastic change 

in the dynamic model that will hamper the detection process. In other words, in addition to the 

changes in the control forces and moments, system dynamics will change, too. Therefore, to 

identify model changes after fin failure, the aerodynamics of body and control surfaces are 

modeled separately. New aerodynamic model will prevent the estimation of all coefficients. A 

percentage of the fins which have the ability to generate aerodynamic forces are modeled by 

parameters and these parameters are estimated over time, using a robust estimator to ensure 

robustness against aerodynamic coefficient uncertainty. The value of these parameters will be 

between 0 and 1. Where value 1 corresponds to the health of the fin and zero value denotes 

whether the fin has not opened or has been destroyed completely. 

The paper is organized as follows: First, the considered vehicle is introduced and its nonlinear 

model is derived. The proposed method for identification is discussed, as well. For this purpose, 

the model is expressed in such a way to detect control fins damages that consist of partial melting 

or breakage. Next, a brief introduction to unscented Kalman filter (UKF) and Adaptive Robust 

UKF (ARUKF) is provided. Then, the performance of the new FDD approach is evaluated through 

numerical simulations. Finally, a summary and conclusion are presented. 

 

 

2. System description 
 

The system considered in this paper is a Skid-To-Turn (STT) aerodynamic control surface-to-

air missile on an interception mission. While the four aerodynamic tail fins act as lifting surfaces 

and are the control surfaces steering the vehicle. The geometry of the missile in its body frame is 

illustrated in Fig. 1. 

Consider equations of motion for a rigid missile flying in three-dimensional inertial space 

consisting of translational and rotational motions in body coordinate frame as follows (see Stevens 

et al. 2015): 

 

(1) 

and 
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Fig. 1 Missile body coordinate frame 

 

 

 

(2) 

where the scalar quantity m represents mass and Ix, Iy and Iz are moments of inertia of the missile 

about x, y and z axis, respectively. The missile has an axisymmetric, cruciform shape so that the 

moments of inertia Iy and Iz are identical. Also, u, v, and w, are components of the velocity vector, 

and p, q and r, represent components of the angular velocity vector, respectively. FA, Fg, and FT are 

vectors for aerodynamic, gravity and thrust forces acting on the vehicle, respectively. Aerodynamic 

moments are denoted by lA, mA, and nA respectively. 

Components of gravity force in body frame are derived using the following equations (Zipfel 

2007): 

 

(3) 

where φ, θ and ψ are Euler angles and can be written as (Zipfel 2007): 

 

(4) 

Eq. (1) is written as the time derivatives of the body axis components of velocity. However, the 

variables of interest in flight control are the angle of attack and side-slip angle. According to Fig. 1 

and some mathematical manipulations, we have: 

 

(5) 

 
(6) 
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Fig. 2 Fin Deflection Sign Convention 

 

 

 

(7) 

Also, aerodynamic forces and moments formulated as follows (Zipfel 2007): 

 

(8) 

where �̅�, s and d are dynamic pressure, reference area and reference length, respectively. Cx, Cy, 

Cz, Cl, Cm and Cn are static force and moment aerodynamic coefficients. Clr, Cnr and Cyr are rolling 

moment, yawing moment and side force coefficient derivatives with respect to yaw rate. Clp, Cnp 

and Cyp are rolling moment, yawing moment and side force coefficient derivatives with respect to 

roll rate. Cmq and Czq are pitching moment and normal force coefficient derivatives with respect to 

pitch rate. Cmα˙ is pitching moment coefficient derivative with respect to rate of change of angle of 

attack. Also, Czδe, Cyδr, Clδa, Cmδe and Cnδr are control force and moment coefficients derivatives 

with respect to δa, δe and δr which are aileron, elevator and rudder deflections respectively. 

The sign convention corresponding to the fin deflection angles has been shown in Fig. 2, and is 

as a positive panel normal force producing a positive roll moment (Hemsch 1992). 

Therefore, according to the sign convention, positive roll, pitch, and yaw moments will be 

created using the following mixing logic: 

 

(9) 

In the next section, the dynamic model will be expressed in a manner which is suitable for the 

failure detection module. 
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3. Failure detection and diagnosis scheme 
 

Damaged or not opening aerodynamic control fins caused two types of changes in the 

aerodynamic model. A change occurs in the number of aerodynamic control coefficients that create 

new coupling coefficients; for example, if fin number 1 is damaged, elevator deflection would 

cause a roll, too. Another effect is caused by a change in configuration and vehicle asymmetry, in 

which the static and dynamic aerodynamic coefficients change as well. 

So, for fin failure detection and diagnosis another formulation is introduced that is appropriate 

for this purpose. In this model, the aerodynamics of the airframe and fins are modeled separately. 

This procedure isolates possible changes from the damage of fins and show their effects in the 

simulation. In contrast, if the conventional aerodynamic model has been used, then all coefficients 

must be estimated to detect the failure and to repair the controller. To avoid this, the aerodynamics 

of the airframe and fins are modeled separately as follows: 

 

(10) 

 

(11) 

where [rxi, ryi, rzi]T is the distance vector from the vehicle mass center to the ith fin aerodynamic 

center. The parameters λi determine the efficiency of the fins and the value of them will be between 

0 and 1. Where value 1 means the health of the fin and zero value indicates whether the fin has not 

opened or has been damaged completely. 

Aerodynamic coefficients are generated by missile DATCOM (Rosema et al. 2011). Two 

DATCOM models are created to determine the effects of the body and fins. The first model 

includes only the body and ogive nose. Fins are added to the second model. Results are compared 

to the first model and the difference in the aerodynamic coefficients represents the contribution of 

fins. In Table 1, aerodynamic coefficients for a given flight condition are compared, for both 

considered models. As can be seen, the difference is overally negligible and in the worst case is 

below 10%. 
 

 

 

Fig. 3 Failure tolerant control block diagram 
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The goal is to identify λi over time using filter estimator. In this paper, an adaptive robust 

unscented Kalman filter has been used. The proposed diagnosis module is shown in Fig. 3. 
 
 

4. Parameter estimation using adaptive robust unscented Kalman filter structures  
 

The system dynamics is represented in state space form as follows: 

 
(12) 

where x = [α, β, V, p, q, r, φ, θ]T is the state vector with initial value x0 at time t0, u = [δ1, δ2, δ3, 

δ4]T is the input vector, y is the INS data including acceleration and angular velocity of the missile. 

Parameters estimation through the filtering approach is an indirect procedure, consisting of 

transforming the problem into a state estimation problem. This is done by augmenting the system  
 
 

Table 1 Comparison of aerodynamic coefficients calculated by two considered model in a flight condition (α 

= 10 deg, β = 5 deg, VM = 1200 m/s, [p, q, r] = [0.5 1.5 1.0] rad/s, [δa, δe, δr] = [10 20 -30] deg) 

Conventional model coefficients proposal model for failure detection coefficients Difference (%) 

 

Cx = -0.315 

Cy = -4.38 

Cz = -4.929 

Cl = -1.81 

Cm = -18.2 

Cn = 20.7  

Cx = -0.315 

Cy = -4.378 

Cz = -4.928 

Cl = -1.96 

Cm = -17.91 

Cn = 20.44 

0.0 

0.05 

0.02 

8.3 

1.6 

1.25 

 

Cx = -0.2988 

Cy = -2.052 

Cz = -4.929 

Cl = 0.255 

Cm = -18.2 

Cn = 6.57  

Cx = -0.2987 

Cy = -2.016 

Cz = -4.928 

Cl = 0.2731 

Cm = -17.91 

Cn = 6.30 

0.03 

1.7 

0.02 

7.1 

1.6 

4.1 

 

Cx = -0.2988 

Cy = -4.380 

Cz = -2.632 

Cl = 0.2133 

Cm = -4.235 

Cn = 20.7  

Cx = -0.2987 

Cy = -4.378 

Cz = -2.657 

Cl = 0.2152 

Cm = -4.279 

Cn = 20.44 

0.03 

0.05 

0.95 

0.9 

1.03 

1.25 

 

Cx = -0.2988 

Cy = -3.008 

Cz = -4.929 

Cl = -3.024 

Cm = -18.2 

Cn = 12.38  

Cx = -0.2987 

Cy = -3.044 

Cz = -4.928 

Cl = -3.29 

Cm = -17.91 

Cn = 12.43 

0.03 

1.2 

0.02 

8.7 

1.5 

0.4 

 

Cx = -0.2988 

Cy = -4.380 

Cz = -3.71 

Cl = -2.873 

Cm = -10.78 

Cn = 20.7  

Cx = -0.2987 

Cy = -4.378 

Cz = -3.685 

Cl = -3.121 

Cm = -10.45 

Cn = 20.44 

0.03 

0.05 

0.7 

8.6 

3.06 

1.25 
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state vector by defining the unknown parameters (λi) as additional state variables. 

Now, we consider the constant parameters λi as augmented state vector presented below, 

 
(13) 

Then, the augmented state vector is defined as: 

 
(14) 

UKF is a recursive minimum mean square error (MMSE) estimator, first proposed by Julier and 

Uhlmann (1997). UKF uses a deterministic sampling technique, known as unscented transform to 

generate a minimal set of sample points around the mean. These points completely capture the 

mean and covariance of the Gaussian random variable, and when propagated using the nonlinear 

system equations, capture the posterior mean and covariance accurately to the 3rd order for any 

nonlinearity (Van Der Merwe et al. 2001). The result is a filter which more accurately captures the 

mean and covariance for nonlinear systems. This technique removes the requirement to explicitly 

calculate Jacobians, which is difficult for complex functions. 

One of the uncertainties that exist in the model of a flight vehicle flying inside the atmosphere 

is the uncertainty of the aerodynamic coefficients. Ishihara and Yamakita (2016) proposed an 

adaptive robust UKF (ARUKF) for the state estimation of a nonlinear system with parameter 

uncertainties. Therefore, we used ARUKF to ensure robustness against the variation of 

aerodynamic derivatives of the model dynamic. In the following, the ARUKF algorithm is 

described briefly (see Ishihara and Yamakita 2016). If αk is set to zero, in Eq. (22), the 

conventional UKF results. Consider a nonlinear system with parameter uncertainties: 

 
(15) 

where the vector 𝒙𝑘 ∈ ℝ𝑛 , 𝒚𝑘 ∈ ℝ𝑚  and 𝒑𝑘 ∈ ℝ𝓵  represent states, measurements and 

parameter uncertainties. Also, wk and vk are uncorrelated zero-mean Gaussian white process noise 

and measurement noise and their covariances are Qk and Rk respectively. We assume the 

distribution of parameter uncertainties is known as 𝒑𝑘~𝒩(𝒑𝑘
𝑛𝑜𝑚, 𝒑𝑘

𝑝𝑝
). 

• Predictive step: 

First, define weights as: 

 

(16) 

The complete discussion on how to choose the weighting parameters is presented by Crassidis 

and Junkins (2004). For Gaussian, βukf = 2 and (n + λukf) = 3 are optimal choice. 

Now, generate 2n + 1 sigma point: 

 

(17) 
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Predictive mean and covariance are shown as following: 

 

(18) 

 

(19) 

where | 1, 1| 1,( )k k i k k if    . 

Calculated influence of parameter uncertainties 

 

(20) 

where 𝑷𝑗 are sigma points sampled from 𝒩(𝒑𝑘−1
𝑛𝑜𝑚, 𝒑𝑘−1

𝑝𝑝
). 

Then, �̂�𝑘|𝑘−1
𝑟𝑜𝑏  is defined as 

 
(21) 

where Δ𝑷𝑘
𝑟𝑢𝑘𝑓

 is tuning parameter to ensure the stability of the ARUKF. 

Now, using an adaptive parameter αk (αk > 0), we define a prediction error covariance matrix as 

 
(22) 

where the details of the mathematical derivation of alpha can be found in (Ishihara and Yamakita 

2016). 

Compute measurement mean and covariance as follows: 

 
(23) 

 
(24) 

 

(25) 

where 𝑌𝑘|𝑘−1,𝑖 = ℎ(𝜒𝑘−1|𝑘−1,𝑖). 

• Update step: 

 
(26) 

 
(27) 
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(28) 

In order to ensure the filter convergence, the observability of the nonlinear system is analyzed. 

Identifiably of the parameters can be investigated by observability rank tests viewing parameters 

as state variables. To this end, if rank of matrix (Oobs) equals the number of parameters, then the 

model of the system described in equation (15) is identifiable (Anguelova 2004). 

 

(29) 

where 𝐿𝑓ℎ is the Lie derivative of a function h with respect to a vector field f. 

The rank of matrix Oobs for the intended augmented model is 4. This means that all λi are 

observable. 
 

 

5. Numerical results and analysis 
 

To evaluate the performance of the proposed failure detection strategy, this method is investigated 

during an interception mission. The surface-to-air missile tries to hit an accelerated target which 

follows a given path. Interceptor and target initial conditions are summarized in Table 2. After the time 

TGuide the controller will be active. 

To model the errors of accelerometers and gyros, scale factor error (S), bias (B), misalignment (M) 

and white noise have been considered. For a given IMU, the errors of accelerometers and gyros are 

assumed as 

 

The variances of accelerometers and gyros white noises are 10−6 (𝑚2 𝑠4⁄ )  and 

10−8 (𝑟𝑎𝑑2 𝑠2⁄ ), respectively. Also, it is assumed that the aerodynamic coefficients are available with 

an accuracy of 10 percent. So, aerodynamic coefficients are parameters with uncertainty for ARUKF. 

To demonstrate the effectiveness of the proposed algorithm, three scenarios are investigated. In the 

first scenario, no failures occur. In scenario 2 it is assumed that 80, 30 and 20 percent of fins No.1, 3  
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Table 2 The initial conditions 

 Position (m) Speed (m/s) TGuide (s) 

Interceptor [0; 0; 0] 210 2 

Target [10000; 10000; 15000] 110 - 

 

 

Fig. 4 Missile target engagement geometry (scenario 1) 
 

  

  

Fig. 5 Percentage of fins which have the ability to generate aerodynamic force for 1000 Monte-Carlo simulation 

(scenario 1) 
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Fig. 6 Missile roll angle (scenario 1) 

 

 

Fig. 7 Missile target engagement geometry (scenario 2) 

 

 

and 4 have been broken, respectively; and fin No.2 began to melt due to aerodynamic heating. Finally, 

in the last scenario it is assumed that fin 4 will be destroyed completely 10 seconds after launch. The 

results are shown in Fig. 4 through Fig. 12, and the norm of estimated error is summarized in the Table 

3. The results are for 1000 Monte-Carlo simulation in which the aerodynamic uncertainties are random 

parameters. 

It is shown that in the first scenario, all fins are safe and therefore interceptor hits the target and roll 

remains about zero. Also, estimator estimates λi correctly. Because of the type of seeker, the missile 

should not roll, and after the fin failure, until the missile has a severe roll, less than 10 degrees, there is 

time to recognize the failure and inform the controller. 

In scenario 2, the percentage of undamaged part of each fin has been estimated with good accuracy. 

Also, after the failure, the missile rolls about 10 degrees, and after about 5 seconds it becomes unstable 

and total failure happens. Therefore, instantly after failure occurrence, the λi values should be submitted 

to the controller to determine the appropriate control action. Then, the new control signal should be 

applied to the system. 
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Fig. 8 Percentage of fins which have the ability to generate aerodynamic force for 1000 Monte-Carlo simulation 

(scenario 2) 

 

 

Fig. 9 Missile roll angle (scenario 2) 
 

 

Finally, in the last scenario, the complete destruction of one fin is investigated. As can be seen, the 

filter estimates zero value for λ4 properly and quickly. It should be noted that, in this case, the system 

diverges rapidly after failure and controller must be reconfigured immediately to steer the missile using 
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Fig. 10 Missile target engagement geometry (scenario 3) 

 

  

  

Fig. 11 Percentage of fins which have the ability to generate aerodynamic force for 1000 Monte-Carlo 

simulation (scenario 3) 
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Fig. 12 Missile roll angle (scenario 3) 
 

Table 3 The least squares error and simulation time for 1000 Monte-Carlo simulation 

 Scenario 1 Scenario 2 Scenario 3 

 UKF ARUKF UKF ARUKF UKF ARUKF 

λ1 0.4367 0.0777 1.9642 1.4699 5.7505 5.7065 

λ2 0.6522 0.1301 1.0489 0.2219 0.2999 0.2498 

λ3 0.5297 0.1865 1.6074 1.0809 0.4136 0.3344 

λ4 0.6759 0.0930 1.1609 0.2648 0.4036 0.3241 

trun (sec) 13.8 20.6 10.8 16.4 8.2 12.1 

 

 

three remaining fins. 

The least squares error of λi for 1000 Monte-Carlo simulation runs for all scenarios has been shown 

in Table 3. The results show the superiority of the Robust filter compared to conventional UKF. 

Moreover, although the ARUKF execution time is greater than UKF, both filters have the ability to run 

in real time. 
 

 

6. Conclusions 
 

In this paper, fin failure diagnosis for an agile supersonic flight vehicle using INS data is 

studied. An equivalent aerodynamic model is proposed which alleviates the complexity of 

estimating all the required aerodynamic coefficients of the controller. In this model, the 

aerodynamic coefficients for fins and body are modeled separately. Moreover, the health 

percentage of each fin is modeled as a parameter estimated by nonlinear filters. Besides, the 

uncertainties of the aerodynamic model and estimation errors are compensated using an adaptive 

robust filter. By estimating the percentage of fins which are destroyed, new aerodynamic 

coefficients are determined and the new model is determined after failure. The performance of the 

new algorithm is investigated in chase engagement scenarios. The results of Mont-Carlo 

simulation demonstrate that the new failure diagnosis algorithm estimates the fins health 

percentage accurately. Estimated values of the λi are sent to the controller and the controller 

changes the control signal accordingly. Also, the execution time of the algorithm shows that it can 

be implemented in real time. 
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