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Abstract.  This computational study examines the augmentation of classic 2-D Rayleigh-Bénard convection by the 
addition of periodically-spaced transverse fins. The fins are attached to the heated base of the cavity and serve to 
partition the cavity into ‘units’ with different aspect ratios. The respective impacts upon heat transfer of the fin 
configuration parameters – including spacing, height, thickness and thermal conductivity – are systematically 
examined through numerical simulations for a range of laminar Rayleigh numbers (0 < Ra < 2 × 105) and reported 
in terms of an average Nusselt number. The selection of the low Rayleigh number regime is linked to likely scenarios 
within aerospace applications (e.g. avionics cooling) where the cavity length scale and/or gravitational acceleration is 
small. The net heat transfer augmentation is found to result from a combination of competing fin effects, most of 
which are hydrodynamic in nature. Heat transfer enhancement of up to 1.2× that for a Rayleigh-Bénard cavity 
without fins was found to occur under favorable fin configurations. Such configurations are generally characterized 
by short, thin fins with half-spacings somewhat less than the convection cell diameter from classic Rayleigh-Bénard 
theory. In contrast, for unfavorable configurations, it is found that the introduction of fins can result in a significant 
reduction in the heat transfer performance. 
 

Keywords:  natural convection; Rayleigh-Bénard cells; low Rayleigh number; passive cooling; heat 

transfer with partitions 

 
 
1. Introduction 
 

Natural convection is regarded as an attractive mode of cooling when simplicity, economy, 

reliability and noise become constraint parameters of importance. In view of this, natural 

convection has been the subject of considerable interest in the cooling of heat exchange devices in 

industry (e.g., electric transformers, HVAC equipment, electronic components). An important 

subclass of problems on natural convection deals with confined flows that are induced inside 

enclosures when a temperature differential is prescribed at two or more walls; several state-of-the-

art reviews devoted to natural convection in enclosures have been published in the past by various 

authors (Ostrach 1972, Catton 1978, Hoogendoorn 1986, Hollands et al. 1976, Jaluria 2003).  

Over the years, theoretical analyses, numerical simulations and experimental measurements 

have been directed to the issue of heat transfer intensification. State-of-the-art review articles on 
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this important topic have regularly appeared in the literature. A variety of enhancing schemes for 

forced convection in tube flows have been investigated throughout the years and a detailed survey 

of them may be found in the heat transfer literature (e.g. Bergles (1999), Manglik (2003)). This 

valuable information provides guidance to engineers that are engaged in the design of tubes for 

high-performance heat exchange devices. In general, enhancement schemes have been classified 

into two broad categories: (a) passive methods requiring no application of external power or (b) 

active methods that demand the use of external power. One passive method that is commonly used 

in industry deals with the intentional extension of the internal surface areas of tube walls by 

roughening, corrugating or finning. The increase of the internal surface areas amplifies the heat 

transfer rates, but also increases the friction factor and the pressure drop. As an undesirable 

consequence, the power requirement for the pump to sustain the fluid flow is also increased. Thus, 

it is of fundamental and practical interest to explore passive instruments that are conducive to heat 

transfer augmentation that are power-independent; this is particularly true of space-based 

applications where energy consumption must be minimized. 

When natural convection occurs in confined spaces, such as enclosures or partitioned regions, 

the fluid physics dictate that the enhancement of heat transport becomes difficult because of the 

low fluid velocities associated with buoyancy-driven flows. In this article we examine the 

augmentation of classic Rayleigh-Bénard convection by the addition of periodically-spaced 

tranverse fins (or ‘ribs’) attached to the heated, lower boundary. While the literature on natural 

convection in enclosures is itself vast, the information dealing with this particular thermal design 

strategy is less so (Lin and Bejan 1983, Arquis and Rady 2005, Amraqui et al. 2011, El Qarnia et 

al. 2013, Ahmadi et al. 2014, Sivaprakasam et al. 2015, Singh and Sinha 2016, Beldar and Patil 

2017). The primary sources of experimental data are found to be the studies by Inada et al. (1999) 

and, to a lesser degree, the more recent work of Sivaprakasam et al. (2015). The study by Inada, 

Taguchi and Yang (1999) indicated that the inclusion of transverse fins had the overall effect of 

enhancing the natural convective flows and that the enhancement scaled with the Rayleigh 

number. The experiments were restricted to a limited number of parametric conditions (i.e., three 

fin spacings, a single fin size) and thus the data reported was somewhat limited in scope. We have 

taken the experimental results of Inada et al. (1999), along with the earlier numerical simulations 

of Arquis and Rady (2005) as motivation to extend this important, fundamental work and to 

expand the number and scope of parametric conditions through the use of computational fluid 

dynamics (CFD) simulations.  

The present investigation is focused on a low Rayleigh number regime with associated laminar 

flows. This selection corresponds to likely scenarios encountered in aerospace applications, such 

as passive avionics cooling. For aircraft avionics, the compact size of the avionics packaging leads 

to air enclosures with small aspect ratios (i.e., height-to-width). As the Rayleigh number scales 

with the cube of the air gap, the Rayleigh number will necessarily be small. Spacecraft avionics 

cooling affords another important application. Although there is no formal gravitational 

acceleration in space, satellites in orbit can be subject to so-called ‘g-jitter’; this term refers to 

accelerations produced in orbit by various aerodynamic/aeromechanical forces, equipment 

operation and/or crew activity (Nelson 1994). The g-jitter effects, consequently, have been the 

subject of various studies on transport processes in space (e.g., Naumann (2000), Kanashima et al. 

(2005)). Another source of low-level acceleration in spacecraft arises in modern electric propulsion 

systems (EP). In contrast to the high-thrust, impulsive behavior of chemical propulsion systems, 

EP systems are characterized by low-level continuous thrust and acceleration. For example, 

NASA’s DAWN Mission to the asteroids Ceres and Vesta featured an ion engine generating a  
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Fig. 1 Schematic diagram illustrating the geometry of the computational domain. The transverse fins in a 

particular simulation can be either copper (conducting) or wood (insulating) 

 

 

maximum acceleration of 0.4 m/s2 for this 1200 kg probe (Rayman et al. 2006). In such cases, the 

constant low-level acceleration will likely establish near steady-state natural convection within the 

spacecraft avionics. 

The outcomes of this study provide a detailed, systematic and comprehensive understanding of 

the heat transport augmentation introduced in natural convection enclosures through the addition 

of transverse fins. Extensive parametric studies serve to identify fin configurations that offer 

enhancement of heat transport relative to the standard Rayleigh-Bénard scenario, as well as those 

that prove detrimental to performance. In turn, the findings of this work may prove useful for both 

fundamental research and thermal design and specifically within the aforementioned aerospace 

avionic cooling scenarios. 

 
 

2. Numerical methods 

 
A two-dimensional computational model has been created in order to numerically study the 

augmentation of the convective heat transfer in a classic Rayleigh-Bénard configuration arising 

from the addition of a periodic array of transverse fins. For the present study, we have restricted 

our investigation to the case of laminar flows. The computational approach taken here is a 

modified version of the one previously described by Papari et al. (2005). A schematic diagram of 

the geometry of the computational domain for this study appears in Fig. 1, which represents a 

single ‘unit cell’ from which an infinite, periodic domain could be constructed. Accordingly, the 

left and right domain boundaries are taken as symmetry planes. The unit cell is bounded above and 

below by two rigid, thermally-conducting plates of width W separated by a uniform gap H; the 
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actual fin spacing is thus 2W. For this study, we assume the bounding plate material to be copper; 

this material choice reflects typical experimental methods used in imposing isothermal boundary 

conditions. Attached to the bottom plate is a thin vertical fin defined to be of width t and a height 

h. The fin material may be either thermally-conducting (copper) or non-conducting (wood). As the 

ratio W/H becomes sufficiently large, the impact of a fin diminishes and one expects a trend 

approaching the idealized case of Rayleigh-Bénard convection between infinite parallel plates. 

With this in mind and consistent with the experiments of Inada et al. (1999), emphasis in this study 

is placed on ‘close’ fin spacings – that is, fin spacings less than or equal to the diameter of a 2-D 

roll pattern in the idealized Rayleigh-Bénard case. For the numerical studies, we assume a fixed 

gap width of H = 9 mm and a fin half-width of t =1 mm unless otherwise stated. Fin heights 

considered include h =1mm, 5 mm and 8 mm. The corresponding fin aspect ratios are h/H =0.11, 

0.55 and 0.88 and are intended to represent cases of ‘short’, ‘intermediate’ and ‘tall’ fins.  

Owing to the simplicity of the domain, the computational mesh consists completely of 

quadrilateral elements with zero-skewness. A uniform grid resolution of 0.05 mm is used for the 

horizontal and vertical directions and has been found to yield solutions which are insensitive to 

further refinement. The exact number of computational cells scales linearly with fin spacing; as an 

illustration, a simulation with W/H=1.2 mm has a mesh consisting of approximately 23,000 cells. 

The governing equations for the natural convection flow are the steady, compressible 2-D 

Navier-Stokes (Boussinesq) equations along with the energy equation and the equation of state: 

𝛻 ∙ (𝜌 𝒖) = 0 (1) 

𝛻 ∙ (𝜌 𝒖𝒖) = −𝛻𝑝 + 𝜌𝒈 + 𝜇𝛻2𝒖 (2) 

𝛻 ⋅ [𝜌𝒖 (𝐶𝑝𝑇 +
1

2
|𝒖|2)] = 𝛻 ⋅ [𝑘𝛻𝑇] (3) 

𝑝 = 𝜌𝑅𝑇 (4) 

𝜌 =  𝜌0[1 − 𝛽(𝑇 − 𝑇0)] (5) 

Air has been used as the working fluid in all simulations. The Boussinesq approximation has 

been utilized for the modeling of the body force and is referenced to the mean temperature T0 

between the hot and cold plates. In all numerical studies performed, constant temperatures of 

Th=310 K and Tc=290 K have been imposed on the lower and upper plates, respectively. For air, at 

this mean temperature and a modest temperature differential of 20K, the Boussinesq 

approximation is well justified. The thermophysical properties of air over this temperature range 

exhibit only a minor variation and therefore have been assumed constant in the simulations. 

Specifically, the property values used are evaluated at the mean temperature T0 = (Th + Tc)/2 = 300 

K. Perfect gas behavior is assumed. As such, the enthalpy is given by CpT and the thermal 

expansion coefficient for the perfect gas is given by β = −ρ−1 (∂ρ/∂T)p = T0
−1. For completeness, 

the energy equation here retains the kinetic energy term although it is essentially negligible for the 

natural convection flow. 

 The system of equations (1) - (5) is solved using a CFD code based on the finite volume 

method. An implicit segregated solver is used and all discretization schemes employed are of 

second-order accuracy or higher. A quadratic upwinding scheme (QUICK algorithm) is used for 

the momentum, energy and density discretization. A second-order body-force-weighted scheme is  
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Table 1 Correlation of gravity values and Rayleigh numbers in the numerical simulations 

Gravitational Constant (g’s) Rayleigh Number 

1 

5 

10 

20 

30 

40 

50 

60 

70 

80 

90 

100 

1.971×103 

9.856×103 

1.971×104 

3.942×104 

5.914×104 

7.885×104 

9.856×104 

1.183×105 

1.380×105 

1.577×105 

1.774×105 

1.971×105 

 

 
Fig. 2 Normalized conduction heat transfer rates for different fin heights, spacing and materials relative to 

a that for a parallel plate configuration. Only spacings up to W/H =1.2 are shown 

 

 

used in the pressure discretization and the SIMPLE scheme is used in the pressure-velocity 

coupling. Convergence of a simulation is assessed through the monitoring of computed residuals 

(velocity, energy and mass conservation) and also through the convergence of point and/or surface 

monitors for velocity, temperature and heat flux at selected locations in the domain. For a 

simulation starting from an initially quiescent conduction profile, approximately 40,000 iterations 

are required for complete convergence. Once a solution is obtained, the local heat flux distribution 

is computed on the lower (or upper) plate and then integrated over the entire surface to obtain the 

total heat transfer Q (per unit depth).  

The appropriate definition of the Nusselt number for this problem is  
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𝑁𝑢 =
𝑄

𝑄𝑐𝑜𝑛𝑑
 (6) 

where 𝑄𝑐𝑜𝑛𝑑  is the heat transfer associated with a purely conductive state. Note the 

conduction heat transfer must be a computed quantity since the presence of a fin alters the base 

conduction state for a particular geometry. For natural convective flows, it is expected that the 

Nusselt number will scale as a function of the Rayleigh number, 

𝑅𝑎 =  
𝜌𝑔𝛽(𝑇ℎ − 𝑇𝑐)𝐻3

𝜈𝛼
 (7) 

where 𝜌 is the density, g is the gravitational constant and 𝜈, 𝛼 are the viscous and thermal 

diffusivities, respectively. For a given geometry, mean operating temperature and thermophysical 

properties of air, a range of Rayleigh numbers can be realized through the (artificial) variation of 

the gravitational constant g. In this study, we restrict the range of Rayleigh numbers so as to ensure 

a laminar flow condition exists; the relation between artificial gravitational values and the 

corresponding Rayleigh number appears in Table 1. The reference and baseline for assessing heat 

transfer augmentation due to fins is the classic 2-D Rayleigh-Bénard convection flow between 

infinite parallel plates. Numerical values are obtained using the empirical correlation reported by 

Hollands et al. (1976): 

𝑁𝑢 = 1 +  1.44 ‖1 −
1708

𝑅𝑎
‖ + ‖(

𝑅𝑎

5830
)

1/3

− 1‖ (8) 

In this formula, the notation ‖∙‖ indicates that the bracketed term is taken to be zero if its 

argument is negative. This correlation equation has been shown to yield excellent agreement with 

experiments over the entire laminar flow regime. 
 

 

3. Results 

 

In the following sections, we report on the calculated Nusselt numbers obtained from numerical 

simulations under a range of parametric conditions. Specifically, the respective impacts of 

Rayleigh number, fin spacings and heights and fin thermal conductivities are delineated. As a 

necessary first step, the heat transfer rates have been computed for different fin configurations and 

materials under a state of pure conduction. Knowledge of these baseline heat transfer values are 

required for the expression of the natural convective heat transfer rates in terms of a Nusselt 

number according to Eq. (6). Normalized results appear in Fig. 2 for three different non-

dimensional fin heights considered. To highlight the conductive heat transfer enhancement of the 

fin, these results are presented as a ‘fin effectiveness’ with the values normalized by the 1-D 

conduction rate that would exist between parallel plates without a fin, i.e., 

𝑄𝑛𝑜𝑓𝑖𝑛 = 𝑘𝑄 [
𝑇ℎ − 𝑇𝑐

𝐻
] (9) 

As might be expected, the fin extension into the air gap enhances the conduction heat transfer 

in all cases. The enhancement scales with the fin height and is somewhat greater for a conductive 

fin than an insulating fin. For the smallest fins, there is little enhancement overall and only minor 

effects of the fin material. The greatest fin impact is felt for the closest fin spacing. As the fin  
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h/H=0.11 h/H=0.55 

 
h/H=0.88 

Fig. 3 Illustrative plots of the temperature field for copper fins of varying heights for fixed fin spacing of 

W/H=1.2 and a Rayleigh number of 1.97 × 104. The maximum temperature (red) is 310K and the 

minimum temperature (blue) is 290K 

 

 

spacing is increased, all conduction profiles in Fig. 2 asymptote to unity as W/H>>1; indeed, even 

for W/H ~1 the impact of the fin is largely diminished. 

 
3.1 Role of fin height and material 
 

We begin by examining the impact of the fin height and thermal conductivity as a function of 

Rayleigh number for a fixed fin spacing. To this end, we choose the case of W/H=1.2 as a 

representative scenario. Illustrated in Fig. 3 are the steady-state temperature distributions for 

thermally-conducting (copper) fins of heights h/H=0.11, 0.55 and 0.88 at a Rayleigh number of 
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Copper fin, h/H =0.88 

 
Wood fin, h/H =0.88 

Fig. 4 Comparative plots of the temperature field for copper fins (left) and wood fins (right) for a fixed fin 

spacing of W/H=1.2 and fin height h/H=0.88 at a Rayleigh number of 1.97 × 104. The maximum 

temperature (red) is 310K and the minimum temperature (blue) is 290K 

 

 

1.97 × 104. The fin height has an observable effect on the temperature field in the immediate 

vicinity of the fin surface; however, the temperature distribution in the remainder of the convection 

cell appears rather insensitive to the fin height. As the fin height increases, there is the effect of 

‘lateral’ heating of the fluid from the fin surface. There is the interesting result that the greatest 

heating of the fin region appears to occur for the intermediate fin height of h/H=0.55. While it is 

intuitive that a longer fin would produce greater heating over a shorter fin as it extends further into 

the cell, evidently an additional mechanism is involved as the heating actually diminishes for the 

case of the longest fin (h/H=0.88). The explanation for this lies in the hydrodynamic role of the fin 

as a no-slip solid boundary for the weak natural convection flow. Evidently a trade-off must exist 
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Influence of fin partitioning of a Rayeigh-Bénard cavity at low Rayleigh numbers 

between the additional heating provided by the extended surface and the drag effects incurred. 

Quantitative illustrations of this interplay are provided in subsequent sections of this article.  

Figure 4 demonstrates the impact of the thermal conductivity of the fin for the parametric 

conditions of Fig. 3 for cases of a conducting and insulating fin. The temperature field between the 

two cases are very similar indicating that the choice of fin material is of minor consequence. This 

is consistent with the conduction results previously shown in Fig. 2. Simulations for cases of close 

fin spacing, not presented here, do show a slightly more noticeable difference; however, the natural 

convective flow in those cases is very weak and thus any differences are largely inconsequential. 

These observations further support the notion that the hydrodynamic role of the fin is of greater 

importance that its thermal property.  

Given the minor importance of the thermal material, for the remainder of this article we present 

results only for the case of conducting (copper) fins with the implicit understanding that 

corresponding results for non-conducting (wood) fins will be similar in nature.  

 

3.2 Effect of fin spacing at low Rayleigh numbers 
 

We next quantitatively examine the heat transfer characteristics associated with different fin 

spacing and heights. In particular, fin spacing is varied over the range W/H=0.12-1.2 with fin 

heights are also variable from h/H=0.11 to 0.88. The intent is to focus on the effect of fins with 

spacing that imposes smaller convection cells than the Rayleigh-Bénard cells that naturally occur 

between infinite parallel plates. From the classic Rayleigh-Bénard stability analysis, the expected 

diameter D of the convection cells/rolls is equal to one-half of the critical wavelength 𝜆𝑐 of the 

most unstable mode, which is known is to be (Manneville 2006). 

𝐷 ≃ 𝜆𝑐 ≃ 1.007 𝐻 (10) 

Thus, the naturally occurring diameter of the convection cell is nearly equal to the height of the 

cell or 𝑊/𝐻 ≈ 1 . In this work, significantly larger fin spacing has also been examined to verify 

the trend towards the classic Rayleigh-Bénard problem, but those results are not presented here.  

For the present, it is convenient to restrict the range of Rayleigh to modest levels (𝑅𝑎 <
2 × 104 where the buoyant convection is relatively weak. The Nusselt numbers, as determined 

from the numerical simulations, appear in Figs. 5-7 where each figure corresponds to a fixed fin 

height of h/H=0.11, 0.55 and 0.88, respectively. For the Rayleigh numbers Ra = 1.970, 9860 and 

19710 considered in each of the figure, the corresponding Nusselt numbers obtained from Eq. (8) 

for idealized Rayleigh-Bénard flow are Nu= 1.19, 2.38 and 2.82 

Several observations can be made regarding the interaction between the effects of fin spacing, 

height and the Rayleigh number. First, at the lowest Rayleigh number in these cases (Ra=1971) 

there is no onset of convection at all for the range of fin spacing and heights considered - the 

system remains in a state of conduction. This Rayleigh number is only slightly larger than the 

critical value of Ra=1708 derived for the idealized Rayleigh-Bénard problem. Therefore, the 

presence of the fin introduces an inhibiting effect for the transition to a convective state at very 

low Rayleigh numbers. At a higher Rayleigh number of Ra=9860 one sees that the case of an 

intermediate fin height h/H=.55 still remains in a conduction state until a threshold fin spacing is 

reached (W/H ~ 0.35). A similar behaviour is observed with the tallest fin h/H=0.88 except that the 

threshold spacing is increased to W/H~0.45. A similar trend occurs for the largest Rayleigh number 

of Ra=19710 except that the threshold spacing is smaller still. As alluded to in the previous 

section, the existence of a fin represents, hydrodynamically, an additional solid boundary and a 
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Fig. 5 Plot of Nusselt number as a function of the fin spacing ($W/H$) for three Rayleigh numbe

rs (Ra =  1.97 × 103, 9.86 × 103, and 1.97 × 104) and a fin height of h/H=0.11. For comparison 

purposes, the Nusselt numbers associated with pure Rayleigh-Bénard flow are Nu= 1.19, 2.38 and

2.82 at the respective Rayleigh numbers and are indicated by dashed lines 
 

 
Fig. 6 Plot of Nusselt number as a function of the fin spacing ($W/H$) for three Rayleigh numbers  Ra =
1.97 × 103, 9.86 × 103, and 1.97 × 104)  (and a fin height of h/H=0.55. For comparison purposes, the 

Nusselt numbers associated with pure Rayleigh-Bénard flow are Nu= 1.19, 2.38 and 2.82 at the respective 

Rayleigh numbers 
 

 

source of friction to the buoyant flow. At the modest Rayleigh numbers being examined here, the 

buoyant flow is very weak and evidently the drag resulting from the fins is sufficient to stifle flow 

development altogether if the fins are too closely spaced. The threshold fin spacing necessary for 

convection onset diminishes with increasing Rayleigh number since the associated buoyancy force 

is increased and more able to overcome the wall drag.  
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Fig. 7 Plot of Nusselt number as a function of the fin spacing ($W/H$) for three Rayleigh numbers (Ra =
1.97 × 103, 9.86 × 103, 𝑎𝑛𝑑 1.97 × 104) and a fin height of h/H=0.88. For comparison purposes, the 

Nusselt numbers associated with pure Rayleigh-Bénard flow are Nu= 1.19, 2.38 and 2.82 at the respective 

Rayleigh numbers 

 

 

In addition to inhibiting the onset of convection, the presence of the fin is generally seen to be 

detrimental to the heat transfer characteristics of the cell at low Rayleigh numbers. For the cases 

shown in Figs. 5-7 nearly all Nusselt numbers are below the corresponding values for the 

Rayleigh-Bénard cell without fins. The only exception to this trend is found in the case of a short 

fin (h/H=0.11) in a region of fin spacing of approximately W/H~ 0.6-1.2 where the Nusselt number 

matches or slightly exceeds the Rayleigh-Bénard value. A weak, local maximum occurs at 

𝑊/𝐻 ≈  0.9. The temperature field and streamline pattern corresponding to this condition is 

depicted in Fig. 8a. For comparison, the temperature field and streamline pattern for the case of 

W/H=1.2 is shown in Fig. 8b. There are no dramatic differences seen which suggests that the 

optimization of the configuration is somewhat subtle in its nature. One potentially important 

observation can be made, however, with regards to the temperature field in the vicinity of the 

bottom plate for this ‘optimal’ configuration. It appears that the impact of the fin is to effectively 

replace the flat, isothermal bottom plate with a curved isothermal plate which is ‘contoured’ to the 

convection cell. This finding is suggestive of the classic, convex-parabolic optimal fin of Schmidt 

(1926) and also the minimum-volume fin design reported by Hanin and Campo (2003). 

It is natural to contrast this ‘optimal’ spacing with the known cell size found in the classic 

Rayleigh-Bénard stability analysis. As given by Eq. (10) the idealized Rayleigh-Bénard cell size 

corresponds to W/H ~1; thus, the optimal spacing of W/H ~ 0.9 corresponds to a convection cell 

which is approximately 90\% of the Rayleigh-Bénard cell. This close similarity further 

underscores the subtlety of the enhancement at this low value of Ra.  

 

3.3 Higher Rayleigh number flow for smaller fin spacings 
 
Based upon the results of the preceding section, it is evident that fins can have a pronounced 

effect on the flow field and heat transfer for moderately close fin spacings. The fact that conditions 
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(a) Optimal spacing, W/H =0.9 

 
(b) W/H =1.2 

Fig. 8 Comparative plots of the temperature field and streamline patterns for the (a) optimal fin spacing 

and (b) near-optimal fin spacing cases for small fins (h/H=0.11) at a Rayleigh number of 1.97 × 104. 

 

 

were found to exist wherein heat transfer was enhanced over Rayleigh-Bénard theory for W/H<1 

suggests the possibility of further enhancement at larger Rayleigh numbers and for appropriate fin 

configurations. Accordingly, we next examine the flow and heat transfer characteristics at higher 

Rayleigh numbers and restrict the focus to closer fin spacings with $W/H < 0.6$. Calculated 

Nussselt numbers are presented in Figs. 9-11 for a range of laminar Rayleigh numbers Ra ~ 103-

105 for a set of fin spacings and heights. For comparison purposes, the corresponding empirical 

predictions for Rayleigh-Bénard flow based on Eq. (8) is included in each figure.  

There are several observations to be made from this set of figures. First and foremost, one finds 

that the impact of the fin is detrimental in all configurations involving intermediate (h/H=0.55) 

and tall fin heights (h/H=0.88). In all such cases, the resulting heat transfer is less than the value 

that would be obtained with no fins at all; this negative impact is most pronounced for the tallest 
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Fig. 9 Plot of Nusselt number as a function of the Rayleigh number for three different fin spacin

gs (W/H=0.125, 0.33 and 0.5) and a short fin (h/H=0.11) 

 

 
Fig. 10 Plot of Nusselt number as a function of the Rayleigh number for three different fin spacings 

(W/H=0.125, 0.33 and 0.5) and an intermediate fin (h/H=0.55) 

 

 

fins. In contrast, for the shortest fins examined (h/H=0.11) it is seen that the heat transfer is 

increased except for the narrowest of fin spacings and/or at very low Rayleigh numbers. The 

degree of enhancement grows as the Rayleigh number is increased, but is also dependent on the fin 

spacing - the greatest enhancement in these cases is found for W/H =0.6. Taken together, these 

observations suggest that some optimal spacing of short fins that maximizes heat transfer is 

possible for flows at higher Rayleigh numbers.  

For cases of intermediate and tall fins (Figs. 10-11), there is other noteworthy behaviour aside 

from poor heat transfer characteristics. Consistent with the results of Figs. 5-7, one again finds a 
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Fig. 11 Plot of Nusselt number as a function of the Rayleigh number for three different fin spacings 

(W/H=0.125, 0.33 and 0.5) and a tall fin (h/H=0.88) 
 

 

delayed onset to convection that occurs at a threshold value of the Rayleigh number, the value 

of which is greatest for the tallest fins and closest fin spacings. Indeed, for the case of the tallest 

fin and the closest fin spacing (W/H=0.12) a state of pure conduction persists over the entire range 

of Rayleigh numbers examined. Following the onset of convection, Nusselt number curves begin 

to follow a power law behaviour as would be expected. For the intermediate fin height, however, 

the Nusselt number plots reveal additional and unexpected behaviour. Referring to Fig. 10, at fin 

spacings W/H=0.36 and 0.6 there is initial growth in Nu with Ra followed by a relatively sharp 

decrease at a critical value of Ra. Beyond this critical Rayleigh number there is again monotonic 

growth in Nu. This transition occurs earliest for the wider fin spacing and is delayed with 

decreasing fin spacing. A similar, though less pronounced, transition is also observed in Fig. 11 for 

the tall fin at the widest fin spacing. The hydrodynamic origin of this transitional behaviour is 

discussed next.           

 

3.4 Flow bifurcation at critical Rayleigh numbers 
 
As demonstrated in Figs. 10-11, under certain parametric conditions the Nusselt number was 

found to locally decrease with increasing Rayleigh number. Detailed examination of the velocity 

fields in such instances reveals that the phenomena is linked to the onset of flow separation top 

edge of the fin for a critical value of the Rayleigh number. The sequence of events is well depicted 

in Fig. 12 for an intermediate fin height (h/H=0.55) over a limited range of Rayleigh numbers 

spanning 𝑅𝑎 = 3.94 × 104 to 9.86 × 104. Referring to this figure, one sees that the convection 

pattern initially consists of a single cell. As the Rayleigh number is gradually increased flow 

separation occurs at the fin edge giving rise to a second counter-rotating cell which exists in the 

region between the fin top and the upper plate. As the Rayleigh number continues to increase this 

secondary cell increases in strength and moves into a position almost directly above the primary 

cell. Finally, at still higher Rayleigh numbers the cell pattern stabilizes in position and continues to 

increase in circulation. It is the flow bifurcation that occurs at the fin edge – and the transitional 
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(a) Ra =  3.94 × 104 (b) Ra =  5.91 × 104 

  
(c) Ra =  7.89 × 104 (d) Ra =  9.86 × 104 

Fig. 12 Streamline plots for a copper fin geometry of W/H=0.6 and h/H=0.55 depicting the onset of a flow 

bifurcation at increasing Rayleigh numbers  

 

 

regime for the secondary cell development – that are reflected in the local reductions in the Nusselt 

number plots. Once the dual cell arrangement has stabilized in its position, the increasing intensity 

of the cell circulation results in a subsequent monotonic increase in the Nusselt for further 

increases in the Rayleigh number. The net effect of this dual cell configuration, however, is a heat 

transfer performance that is well below that of the Rayleigh-Bénard scenario. 

The height of the fin is found to impact the development of the secondary convection cell, as 
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h/H = 0.11 h/H = 0.55 h/H = 0.88 

Fig. 13 Plots streamline patterns for three different fin heights at a fin spacing of W/H=0.36 and Ra =
 1.18 × 105. The fin configuration is such that a single roll pattern exists for the smallest and tallest fins; 

however, for h/H=0.55 a flow separation at the upper edge of the fin gives rise to a dual convection cell 

arrangement 

 

 

depicted in Fig. 13. For the shortest of fins, the fluid velocity at the top of the fin is evidently 

insufficient for flow separation to occur due to the close proximity to the bottom of the cavity. 

Consequently, the Nusselt plots do not exhibit any bifurcation phenomena. A similar situation 

occurs for the tallest of fins. Here the close proximity to the upper plate decelerates the flow and 

thus inhibits separation; instead a single cell remains whose center is skewed towards the bottom 

of the enclosure. Only for the intermediate fin height is the flow state commensurate with the 

conditions necessary for separation to occur.  

Yet another fin parameter that plays a role in the occurrence of flow separation is the fin 

thickness t/H. Specifically, it is expected that a fin of sufficient thickness is required to generate 

the necessary adverse pressure gradient to cause the separation. As such, it is expected that for a 

sufficiently thin fin the separation should cease. This consideration has been investigated by 

examining cases of two reduced fin thicknesses t/H=0.055 and 0.011 in Fig. 14. These cases 

correspond to fin thicknesses of 50% and 10%, respectively, of the default fin thickness used 

throughout this study. It is found that elimination of the flow separation is indeed possible 

provided an extremely thin fin (t/H=0.011) is used. In practical terms, the imposition of a design 

constraint on the fin thickness in an experimental system would be unlikely to present a significant 

technical challenge; nonetheless, this aspect cannot be ignored if the possibility of flow separation 

is to be avoided. 
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(a) Ra =  1.18 × 105 (b) Ra =  1.58 × 105 

  
(c) Ra =  1.18 × 105 (d) Ra =  1.58 × 105 

Fig. 14 Streamline plots for thin, conducting fins of thicknesses t/H=0.055 (top) and t/H=0.011 (bottom) 

at two different Rayleigh numbers for W/H=0.6 and h/H=0.55.  Elimination of flow bifurcation is 

possible for a sufficiently thin fin  
 

 

4. Discussion 
 

At this stage, it is worthwhile to summarize the numerical heat transfer results obtained for the 

various fin configurations and to frame this within the context of Rayleigh-Bénard theory. For all 

but the shortest of fins, the heat transfer obtained for with fin spacings $W/H<1$ was found to be 

less than that for the Rayleigh-Bénard scenario without fins. However, for very short fins, one does 

see that a noticeable enhancement of heat transfer is possible for the range of conditions examined. 

The use of very short fins and fin spacings less that $W/H< 1$ has the effect of imposing a smaller 

convection cell size than would naturally occur in the Rayleigh-Bénard stability analysis. The 

circulation patterns for the smaller cells are evidently increased over that present in the Rayleigh-
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Bénard cell and hence leads to large convective transfer. However, the precise nature of the 

enhancement remains somewhat unclear. Examination of the temperature field and the velocity 

fields for the enhanced heat transfer cases suggests that a possible explanation may lie in an 

analogy to the classic, optimal fin of Schmidt (1926) in that the presence of the fin produces an 

effectively ‘curved’ lower boundary which is approximately convex-parabolic. 

A key finding in this study is that the impact of the fin is almost entirely due to its 

hydrodynamic role as a no-slip boundary condition. The thermal impact of the fin, as an extension 

of the bottom plate of the enclosure into the gap, is insignificant and thus renders the selection of 

fin material moot. Taken together, the combined effect of fin spacing and height can be regarded as 

a retarding force whose origin lies in frictional forces at the solid boundaries. For cases of tall, 

closely-spaced fins the buoyant forces are substantially comprised which reduces the convection 

intensity and consequently the heat transfer capacity-indeed, for sufficiently ‘confined’ geometries 

and low Rayleigh number the solid boundaries can inhibit convection altogether. For sufficiently 

thick and tall fins with adequate spacings and at moderate laminar Rayleigh numbers, heat transfer 

performance can also be compromised due to unwanted flow separation and the formation of a 

secondary convection cell. 

It is reasonable to expect that the retarding hydrodynamic effects of taller fins should become 

less pronounced as flow inertia increases at still higher Rayleigh numbers, including the turbulent 

flow regime. These higher Rayleigh number conditions are beyond the scope of the present study 

and have not been examined here. Despite the expectation of improved performance at higher 

Rayleigh numbers, there appears to be little justification for the selection of taller fins over short 

fins based on the findings of this work.  

In terms of comparisons with related findings in the heat transfer literature, the experimental 

study by Inada et al. (1999) is the most relevant. In their work, three different fin spacings 

(W/H=0.525, 0.7 and 1.05) were explored with a fixed, moderate fin height h/H=0.5. Both 

conducting and non-conducting fin materials were used and the fin thickness was fixed at 

t/H=0.05. Measurements of the local and average Nusselt number were made at six values of the 

Rayleigh number between 5,000-20,000 (approximately). Heat transfer measurements with fins 

were contrasted with those obtained for a simple Rayleigh-Bénard cavity without fins and having a 

finite 8:1 aspect ratio. Based on these experimental conditions, a significant overlap thus exists 

with the parametric conditions of this computational study and a comparison of the findings is 

warranted. Their experiments showed that a fin spacing of W/H=1.05 slightly outperformed the 

case of W/H=0.7$, which in turn outperformed the case of W/H=0.525; in other words, decreasing 

the fin spacing among these cases diminished the heat transport. The smallest spacing of 

W/H=0.525 performed noticeably worse, including the observation of a pure condition state for a 

non-conducting fin material (balsa). For conducting fins, only the case of W/H=1.05 yielded an 

enhancement of heat transfer over the experimental Rayleigh-Bénard cavity. The case of W/H=0.7 

yielded roughly the same degree of heat transport as the Rayleigh-Bénard cavity and the closest fin 

spacing of W/H=0.525 resulted in a decrease in heat transport.  

Overall, the experimental findings of Inada et al. (1999) compare favourably with those 

obtained in this computational study for common parametric conditions. The experiments, in 

particular, confirm that the introduction of fins into a Rayleigh-Bénard cavity at laminar Rayleigh 

numbers can lead to a modest increase in heat transport (~20%) under a favourable fin 

configuration; however, in many cases the impact of the fins is detrimental. The experimental 

work also confirms that the thermal conductivity of the fin material has a largely insignificant 

effect on the heat transfer augmentation.  
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5. Conclusions 
 
In this work, a comprehensive numerical investigation has been performed to delineate the 

impact of transverse fins on heat transport within Rayleigh-Bénard enclosures. The focus has been 

on low Rayleigh number flows corresponding to likely aerospace avionics passive cooling 

scenarios. The relative impacts of various fin configuration parameters – fin spacing, height, 

thickness and thermal conductivity – have been delineated over a range of laminar Rayleigh 

numbers. As such, this work represents an important extension to the previous experimental 

studies of Inada et al. (1999). The computational results have revealed that surprisingly rich fluid 

mechanical behavior is possible under certain parametric conditions, including flow bifurcations 

leading to dual-convection cells not found in the traditional Rayleigh-Bénard problem. 

The net heat transfer augmentation is found to result from a combination of competing fin 

effects, most of which are hydrodynamic in nature. Thermal aspects of the fin appear to contribute 

little to the observed behavior. Heat transfer enhancement is possible under certain operating 

conditions and for appropriate fin configurations. Favorable fin configurations are generally 

characterized by short, thin fins with spacings in the approximate range of W/H =0.5-1.0 and the 

fin performance improves with larger Rayleigh numbers. The importance of utilizing a short, thin 

fin is the definitive outcome of this study. The hydrodynamic impact of the n is such that its sole 

useful purpose is to impose a convection cell diameter and shape within the Rayleigh-Bénard 

cavity that enhances the heat transfer. Excess fin height only serves to retard ow circulation 

because of the no-slip surface, sufficiently thick fins can result in unwanted ow separation and 

bifurcation. 

The maximum level of enhancement found for the operating conditions of this study was 

approximately 1.2 times greater than the corresponding expectation from Rayleigh-Bénard theory. 

In contrast, for unfavorable configurations the ns were found to be detrimental and the heat 

transport was less than for a Rayleigh-Bénard enclosure with no fins at all. The numerical data 

suggests that, in principle, an optimal fin configuration should exist for a given Rayleigh number 

that maximizes heat transfer. That said, the data also suggests that the heat transfer maximum 

associated with the optimal fin configuration may not be especially pronounced. 
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