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Abstract. The objective of this paper is to obtain three-dimensional (3D) effective properties for layered
composites with imperfect interfaces using mechanics of structure genome. The imperfect interface
is modeled using linear traction-displacement model that allows small infinitesimal displacement jump
across the interface. The predictions obtained from the current analysis are compared with the 3D finite
element analysis (FEA). In this study, it is found that the present model shows excellent agreement with the
results obtained using 3D FEA by employing periodic boundary conditions. The prediction also reveals
that in-plane longitudinal and shear moduli, and all Poisson’s ratios are observed to be not affected by
the interfacial stiffness while the predictions of transverse longitudinal and shear moduli are significantly
influenced by interfacial stiffness.
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1. Introduction

Although layered composites can be analyzed using various modeling techniques (Jayatilake et al.
(2016),Munoz et al. (2015)), there are practical needs of treating it as a homogeneous solid with three-
dimensional (3D) effective properties. Because of the simplicity of layered composites, it is used as
a model structure to solve problems in many areas including wave propagation (Ghosh (1985), Wang
(1999), Amor and Ghozlen (2007)) and structural optimization analysis (Bendsoe (1989)). It is also
commonly used to obtain effective multiphysics properties of materials (piezoelectric, thermoelectric
and, magneto-electric effects, magneto-electro elastic) by adopting micromechanical approaches
(Braga and Herrmann (1992), Santoyoa et al. (2007), Chen et al. (2002), Kim et al. (2009)). The
effective properties of layered composites are analyzed using various approaches including averaging
method (Backus (1962)), rules of mixtures (Lim (2009)) and analytical approaches (Norris (1990),
Kim (2001)). Manevitch et al. (2002) employed mathematical homogenization theory proposed by
Bensoussan et al. (1978) to obtain the effective properties of layered composites. An extensive
treatment on layered composites can be found in Milton Milton (2002). Yu (2012, 2016) recently
used the variational asymptotic method to obtain an exact solution for layered composites. Lebee and
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Sab (2010) used higher order terms to analyze both the effective properties and local fields of layered
composites. Cecchi and Sab (2007) obtained the effective properties of layered composites using
various homogenization approaches. Lan and Wei (2012) analyzed the effect of imperfect interface
on the local field distribution of laminated piezoelectric plate. This work assumes only transverse
displacement jumps, whichmay not be reasonable for various loading options including shear loading.
Massabo and Campi (2015) used a zigzag plate theory to predict the effects of imperfect interfaces
on the local field distributions. Kim et al. (2011) developed a higher-order zigzag theory to analyze
the effect of imperfect interface. In this case, only the in-plane displacement jumps, i.e., slip, was
considered. Similarly, Kamali and Pourmoghaddam (2016) used only the in-plane displacement jump
to analyze the effect of imperfect interface on local field distributions. In-plane slip is important,
however the transverse displacement jump is also equally critical to rigorously predict the effective
properties of layered composite. Alvarez-Lima et al. (2012a, b) modeled imperfect interfaces using
a thin adhesive layer with specific material properties, where the interface exhibits elastoplastic
behavior. It is possible to use a thin layer to account for imperfect interfaces, but the properties of the
thin layer is not easily quantifiable. Despite extensive works, none of them considered the effect of
an imperfect interface between the layers for predicting a complete set of effective properties.

In layered composites, as two or more alternating anisotropic layers are bonded together (see
Fig. 1), it natural to expect that the layers may not be perfectly bonded due to various factors such
as manufacturing defects, inherent properties of the layers and bonding agents. Hashin (1991a)
demonstrated the effect of an imperfect interface on the effective properties of composite. For
layered composites, although various approaches proposed to obtain the effective properties, all of
them are performed by assuming a perfect interface between the layers, which might not be valid
due to aforementioned factors. Thus, the effect of an imperfect interface is of interest to better
characterize the effective properties of a layered composite. Numerous efforts have been devoted to

Fig. 1 Sketch of a layered composite
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develop constitutive models that adequately capture the effect of imperfect interfaces on the effective
properties and the failure strength of the composites. Jones and Whittier (1967) proposed a linear
interface model, where the interfacial traction is proportional to the displacement jumps across the
interface. On the other hand, Le-Quang and He (2008) employed the stress jump assumption to obtain
effective properties. This assumes stress jumps across interface while the displacement remains to
be continuous. In this case, the static interfacial equilibrium is maintained by the generalized Young-
Laplace equation. Various interfacial constitutive models have been proposed and widely used to
analyze the effect of imperfect interfaces on the properties of composite materials (Bednarcyk and
Arnold (2001)).

The objective of the current study is to obtain exact solutions of effective properties for layered
composites with imperfect interfaces using mechanics of structure genome (MSG). The imperfect
interface is modeled using the linear traction-displacement model that allows small infinitesimal
displacement jump across the interface. The predictions obtained from the current analysis are
compared with the predictions obtained representative volume element (RVE) analysis, 3D FEA.

2. Interfacial constitutive model

For the present study, let the interfaces among different layers be subjected to infinitesimal
displacement jumps across the interface. The linear traction-displacement model can then be adopted
to analyze the effect of imperfect interface (Hashin (1991a)). The linear traction-displacement model
may be expressed as

Ti = Di j[u j], [u j] = u1
j − u2

j (1)

where Ti denote the interfacial tractions, the square brackets denote the difference of the function
evaluated below and above the interface, the commonly called jump conditions, Di j denote the second-
order interface constitutive tensor (interface stiffness with unit Pa/m). The interfacial displacement
jumps can be expressed using three modes. Let the infinitesimal displacement jump normal to the
interface in y3 direction be captured by interfacial stiffness DI , and let the two displacement jumps in
the plane of the interface (y1 - y2 plane) be expressed for y1 and y2 directions using interfacial stiffness
DI I and DI I I , respectively. One of the basic and necessary assumption in the homogenization of
heterogeneous materials is that the exact solutions of the field variables have volume averages over
the unit cell. For example, if ui are the exact displacements within the unit cell, there exist vi such
that

vi =
1
Ω

∫
Ω

uidΩ = 〈ui〉 (2)

whereΩ denotes the domain occupied by a unit cell volume, and 〈•〉 denotes the volume average over
Ω. Here and throughout the paper, Latin indices assume 1, 2, and 3 and repeated indices are summed
over their range except where explicitly indicated. Using Eq. (2), we can express the exact solution
as a sum of the volume average and the difference, such that

ui (x, y) = vi (x) + χi (x, y) (3)
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where χi (x, y) is usually called the fluctuating function. Using Eqs. (2) and (3), one can obtain
〈χi〉 = 0. Similarly, using Eq. (3), the displacement jump [u j] can be rewritten as

[ui] = [χi] (4)

Using Eqs. (1) and (4), the strain energy due to interfacial displacement jump can be expressed as

Uint =
1

2γ

∫
γ

[χ]T D[χ]dγ =
1
2

〈
[χ]T D[χ]

〉∗
(5)

where γ is the interfacial area, and 〈•〉∗ denote averaging over the interface area. In this analysis, D
is assumed to be diagonal tensor or mode independent, i.e., displacement jump in one direction does
not affect the displacement jump in the other two directions. It is also assumed that the interfacial
deformation remains to be elastic, i.e., no interfacial damage.

3. Mechanics of structure genome (MSG) - based micromechanics

MSG provides a general-purpose micromechanics theory when it is applied to constitutive model-
ing of 3D structures. The term genome is used to emphasize the fact that it contains all the constitutive
information needed for a structure the same fashion as the genome contains all the intrinsic informa-
tion for an organism’s growth and development. For 3D bodies, A SG serves a similar role as a RVE
or unit cell (UC) concept in micromechanics (see Fig. 2). However, they are different. For example,
for a structure made of composites featuring 1D heterogeneity (e.g., binary composites made of two
alternating layers, see Fig. 1 and Fig. 2(a)), the SG will be a straight line with two segments denoting
corresponding different layers. Interested reader can refer to Yu (2016) for more details on MSG. A
3D SG for 3D structures represents the most similar case to RVE. However, boundary conditions in
terms of displacements and tractions indispensable in RVE-basedmodels are not needed for SG-based
models. MSG is developed based on the principle of minimum information loss which states that the
homogenized model can be constructed through minimizing the information loss between the original
heterogeneous body and the homogenized body. For a linear elastic material, the information can be
the strain energy density. According to MSG, we need to first express the kinematics of the original
heterogeneous body in terms of that of the homogeneous body as

ui (x, y) = vi (x) + χi (x, y) (6)

where ui denotes the displacement field of the heterogeneous materials, vi denotes displacement field
of homogenized body, and χi denotes the difference between these two fields, x and y denote macro
and micro coordinates, respectively. Then one can obtain the strain field of the heterogeneous body
as

εi j (x, y) = ε̄i j (x, y) +
1
δ
χ(i, j) (7)

Here χ(i, j) denotes the symmetric gradient of χi with respect to the micro coordinates. The higher
order terms have been neglected according to the variational asymptotic method (Berdichevsky
(2009), Wang and Yu (2014)). For constructing the homogenized model out of the original model,
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one needs to define the kinematic variables of the homogenized model in terms of those of the original
model. The natural choice is to define

ūi = 〈ui〉 = vi, ε̄i j =
〈
εi j

〉
(8)

which implies the following constraints on the fluctuating functions

〈χi〉 = 0,
〈
χ(i, j)

〉
= 0 (9)

The angle brackets denote averaging over the SG. The principle of minimum information loss seeks
to minimize the difference between the strain energy of the original model and the homogenized
model. External load is unnecessary to obtain effective properties in this approach, unlike 3D FEA.
In the current study, the original model includes the interfacial energy, thus the principle of minimum
information loss can be expressed as

Π =

〈
1
2

Ci jkl

(
ε̄i j + χ(i, j)

) (
ε̄kl + χ(k,l)

)〉
+

1
2

〈
[χi]T Di j[χ j]

〉∗
−

1
2

C∗i jkl ε̄i j ε̄kl (10)

where Ci jkl denote the fourth-order elasticity tensor. To minimize the strain energy Π, one considers
the homogenized model as given (i.e., C∗

i jkl
, ε̄i j cannot be varied). Then χi can be solved from the

following variational statement

min Π = min
χi ∈ Eq(9)

{〈
1
2

Ci jkl

(
ε̄i j + χ(i, j)

) (
ε̄kl + χ(k,l)

)〉
+

〈
1
2

[χi]T Di j[χ j]
〉∗}

(11)

This minimization problem is formulated for an arbitrary microstructure. For layered composites (see
Fig. 1 and Fig. 2(a)), the problem, Eq. (11), can be analytically solved to obtain the exact solution. In
this case, the heterogeneity only occurs through the thickness along y3 as shown in the figures and,
in y1 − y2 plane, each layer is homogeneous. Thus, χi are functions of y3 only, that is, the partial
derivatives of the fluctuating functions χi, j vanish except for χi,3. Similarly, the interface is assumed

Fig. 2 SG for different dimensions
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to have uniform traction and displacement jumps. The minimization problem for micromechanical
analysis of layered composites with imperfect interface can be restated using a matrix form as

Π =
1
2

〈
Γ
TCΓ

〉
+

1
2

〈
[χ]T D[χ]

〉∗
(12)

with Γ =
⌊
ε̄11 ε̄22 ε̄33 +

∂χ3
∂y3

2ε̄23 +
∂χ2
∂y3

2ε̄13 +
∂χ1
∂y3

2ε̄12
⌋T

as the microscopic strain field.
The microscopic stress field within SG can be obtained as

σ = CΓ (13)

with σ =
⌊
σ11 σ22 σ33 σ23 σ13 σ12

⌋T
holding the six components of the stress tensor. By

applying the normal procedures of calculus of variations and enforcing the constraints using Lagrange
multipliers, one can obtain three Euler-Lagrangain equations as

∂

∂y3
(σ13 − D22[χ1]) = 0,

∂

∂y3
(σ23 − D33[χ2]) = 0,

∂

∂y3
(σ33 − D11[χ3]) = 0. (14)

Similarly, one can also derive the following conditions relating the transverse stresses at the boundary
points of SG

σi3

(
y1, y2,−

h
2

)
= σi3

(
y1, y2,

h
2

)
. (15)

The three stress continuity conditions on each interface of the layers can be expressed as

[σi3] = 0 (16)

Using Eqs. (14) and (16), one can obtain the relationship between the stress and displacement jumps
as

σ13 − DI I [χ1] = 0, σ23 − DI I I [χ2] = 0, σ33 − DI [χ3] = 0. (17)

Following the procedures described in Yu (2005, 2012) and using Eq. (9) and Eqs. (15)-(17), and
assuming a periodic displacement boundary conditions in transverse direction, one can solve the
problem analytically. It should be noted that only unique/representative layers are to be used for
the analysis. For instance, if two layers of different material properties are repeated to generate the
layered composite with n number of layers, only the 2 unique layers would be used for the analysis.
First, for the simple case of two isotropic layers, the effective properties of layered composite with
imperfect interface can then be obtained as

E1 = E2 = φ1E (1) + φ2E (2) +
φ1φ2E (1) E (2) (ν(1) − ν(2))2

φ1E (1) (1 − ν(2)2 ) + φ2E (2) (1 − ν(1)2 )
(18)

G12 =
φ1E (1)

2(ν(1) + 1)
+

φ2E (2)

2(ν(2) + 1)
(19)

G13 =
D2

I I Iφ1E
(1)E (2)2 (1+ν(1) )2 ( 1

2+
1
2ν

(2) )+DI I IE
(1)2E (2) (E (2) ( 1

4+ν
(1) ( 1

4+
1
4ν

(2) )+ 1
4ν

(2) ))
MI I I

+

D2
I I Iφ2E

(1)2E (2) ( 1
2+

1
2ν

(1) )(1+ν(2) )
MI I I

(20)
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G23 =
D2

I Iφ1E
(1)E (2)2 (1+ν(1) )2 ( 1

2+
1
2ν

(2) )+DI IE
(1)2E (2) (E (2) ( 1

4+ν
(1) ( 1

4+
1
4ν

(2) )+ 1
4ν

(2) ))
MI I

+

D2
I Iφ2E

(1)2E (2) ( 1
2+

1
2ν

(1) )(1+ν(2) )
MI I

(21)

ν12 =
φ1E (1)ν(1) (ν(2)2

− 1) + φ2E (2)ν(2) (ν(1)2
− 1)

φ1E (1) (ν(2)2
− 1) + φ2E (2) (ν(1)2

− 1)
(22)

ν13 = ν23 =
(ν(1)ν(2) − φ1ν

(1) − φ2ν
(2))(φ1E (1) (1 + ν(2)) + φ2E (2) (1 + ν(1)))

φ1E (1) (ν(2)2
− 1) + φ2E (2) (ν(1) − 1)

(23)

where Mα = (1 + ν(1) )(1 + ν(2) )
(
− 1

2 E
(1)E (2)

(
φ1E

(1) (1 + ν(2) ) − φ1E
(2) (1 + ν(1) ) − E (1) (1 + ν(2) )

))2, α = I I I or I I,
with φi denotes the volume fraction or thickness fraction of layer i, E (i) and ν(i) elastic modu-
lus and Poisson’s ratio of layer i. The explicit exact solutions of E3 is very lengthy, thus they are
not shown here, but it is observed to be affected by DI . Eqs. (18)-(19), (22) and (23) are similar to
the one obtained by Yu (2012) for a perfectly bonded interface. Eqs. (18)-(19), (22) and (23) show
that the effective elastic modulus E1 and E2, the shear modulus G12, all Poisson’s ratios (ν12, ν13, ν23)
are independent of interfacial stiffness, while G13 and G23 are dependent on the interfacial stiffness,
DI I I and DI I , respectively, as shown in Eq. (20) and Eq. (21). Second, for more general case, let the
properties of layers be monoclinic. Eq. (24) shows the effective properties of monoclinic layers.

C∗ =



C∗11 C∗12 C∗13 0 0 C∗16
C∗22 C∗23 0 0 C∗26

C∗33 0 0 C∗36
C∗44 C∗45 0

SY M M C∗55 0
C∗66



. (24)

The components of stiffness tenor in Eq. (24) can be written as function of interfacial stiffness as
shown in Eq. (25).

C∗11 = 〈C11〉 + CE
11(C (1),C (2), DI ), C∗12 = 〈C12〉 + CE

12(C (1),C (2), DI )

C∗16 = 〈C16〉 + CE
16(C (1),C (2), DI ), C∗26 = 〈C26〉 + CE

26(C (1),C (2), DI )

C∗22 = 〈C22〉 + CE
11(C (1),C (2), DI ), C∗23 =

DI (C (2)
23 C (1)

33 φ2+C
(1)
23 C (2)

33 φ1)

(C (2)
33 φ1+C

(1)
33 φ2)DI+C

(2)
33 C (1)

33

C∗33 =
DIC

(1)
33 C (2)

33

(C (2)
33 φ1+C

(1)
33 φ2)DI+C

(2)
33 C (1)

33
, C∗13 =

DI (C (2)
13 C (1)

33 φ1+C
(1)
13 C (2)

33 φ2)

(C (2)
33 φ1+C

(1)
33 φ2)DI+C

(2)
33 C (1)

33

C∗36 =
DI (C (2)

36 C (1)
33 φ2+C

(1)
36 C (2)

33 φ1)

(C (2)
33 φ1+C

(1)
33 φ2)DI+C

(2)
33 C (1)

33
, C∗44 =

DI IC
(2)
44 C (1)

44
(C (2)

44 φ1+C
(1)
44 φ2)DI I+C

(2)
44 C (1)

44

C∗55 =
DI I IC

(2)
55 C (1)

55

(C (2)
55 φ1+C

(1)
55 φ2)DI I I+C

(2)
55 C (1)

55
, C∗66 = C (1)

66 φ1 + C (2)
66 φ2 = 〈C66〉

C∗45 =
DI I IDI I (C (2)

44 C (1)
45 C (2)

55 φ1+C
(1)
44 C (2)

45 C (1)
55 φ2)

((C (2)
55 φ1+C

(1)
55 φ2)DI I I+C

(2)
55 C (1)

55 )((C (2)
44 φ1+C

(1)
44 φ2)DI I+C

(2)
44 C (1)

44 )

. (25)
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where CE
ij denote components of the corresponding C∗i j , they are lengthy and not shown here to save

space. It appears that all components of the tensor are affected by interfacial stiffness except C∗66. It
is also clear to notice that C∗45 is affected by both DI I and DI I I , while all others are affected by only
one interfacial stiffness DI , or, DI I , or DI I I . It can easily be verifiable that as the interfacial stiffness
goes to large value, all the components of effective stiffness tensor converge to the result obtained by
Yu (2012) for perfect interface.

4. Results and discussions

In this section, the exact solutions of layered composites with imperfect interfaces are com-
pared with the prediction obtained using 3D FEA by employing periodic boundary conditions in
ANSYS. For 3D FEA, the interface between the two layers are modeled using interface element,
INTER204/INTER205, for isotropic and monoclinic (anisotropic) material properties, respectively.
First, let two isotropic layers be used to represent a periodically layered composite and also let the two
layers have the same volume. The elastic modulus and Poisson’s ratio of layer 1 are assumed to be 86
GPa and 0.22, respectively. The elastic modulus and Poisson’s ratio of layer 2 are also assumed to be
4.3 GPa and 0.34, respectively. Let the tangential and normal interfacial stiffness be related as DI I =
8 DI and DI I = DI I I . For 3D FEA, the SG is meshed to have 6400 elements (ANSYS Solid95).

The prediction for the longitudinal elastic moduli, E1 and E2, are observed to be not affected by
the interfacial stiffness as described in Eq. (18). Similarly, all Poisson’s ratios (ν12, ν13, ν23) are found
to be not affected by interfacial stiffness (see Eqs. (22) and (23)). Moreover, Eq. (19) show G12
is independent of interfacial stiffness. The predictions of 3D FEA, for E1, E2,G12 and all Poisson’s
ratios, are also consistent with the predictions of exact solution. However, Fig. 3 shows that the
predictions of transverse elastic modulus E3 is significantly affected by the interfacial stiffness DI .
As the interfacial stiffness increases, the prediction of imperfect interface converges to the predictions
obtained using perfect interface assumption. It is also found that interfacial stiffness DI I and DI I I

do not affect the transverse elastic modulus E3. The predictions of exact solution and 3D FEA show
excellent agreement.

Fig. 4 shows the prediction of elastic shear modulus G23 is significantly affected by the interfacial
stiffness DI I I . It is also observed that as interfacial stiffness increases, the prediction of shear modulus
G23 converges to the prediction of perfect interface. In this case, it is also noted that the interfacial
stiffness DI and DI I do not affect the prediction of the transverse shear modulus G23. Similarly, the
prediction of shear modulus G13 is found to be affected by interfacial stiffness DI I I , see Eq. (20).
This prediction is similar to the one obtained for the shear modulus G23. The main difference is that
G13 is affected by DI I I while G23 is by DI I . For both cases, the predictions of exact solutions and
3D FEA show excellent agreement.

For more general case, let the layers exhibit orthotropic or monoclinic properties, obtained by
assigning different orientations for material properties listed in Table 1. First, let the properties of the

Table 1 List of material properties

E1 (GPa) E2 = E3 (GPa) G23 (GPa)
G12 = G13
(GPa)

ν12 = ν13 ν23

255 15 7 15 0.20 0.07
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layers be obtained using 0 and 90 rotations, [0/90] and also let DI be equal to 0.1 GPa and, DI I and
DI I I be equal to 0.8 GPa. Table 2 shows the predictions of exact solution obtained using Eq. (25)
and 3D FEA. It shows that exact solution and 3D FEA are in a perfect agreement.

Although all the components of effective tensor except C∗66 are affected by interfacial stiffness as
shown in Eq. (25), the effective compliance of [0/90] are not observed to be affected in a similar way
as shown in Eq. (26)

Fig. 3 Prediction of transverse elastic modulus E3

Fig. 4 Prediction of elastic shear modulus G23
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Table 2 Effective properties for [0/90] and [+/-45] layers

Approach E1 = E2 (GPa) E3 (GPa) G13 = G23 (GPa)
G12
(GPa)

ν12
ν13 =

ν23
[0/90] Laminate

Exact 120.46 0.09 0.73 15.00 0.025 0.140
3D FEA 120.22 0.08 0.72 15.00 0.025 0.140

3D FEA/Exact∗ 120.46 15.00 9.54 15.00 0.025 0.140
[+/ − 45] Laminate

Exact 48.26 0.09 0.73 5.87 0.609 0.056
3D FEA 48.14 0.08 0.72 5.85 0.605 0.052

3D FEA/"Exact∗” 48.26 15.00 9.45 5.87 0.609 0.052
*Exact*: Exact solution for perfect interface

S∗ =



187
22485 − 187

899437
757

645750 0 0 0

187
22485 − 757

645750 0 0 0

1201679
18081000 +

1
DI

0 0 0

SY M M 11
105 +

1e9
DI I

0 0

11
105 +

1e9
DI I I

0

1
15



10−9. (26)

The corresponding stiffness matrix can also be obtained by inverting the compliance matrix,
where one can see C∗11, C∗22, C∗12, C∗16 and C∗26 as function of interfacial stiffness, which is consistent
with Eq. (25). Eq. (26) shows E3, G23, and G13 varies with the interface stiffness DI , DI I and GI I I ,
respectively. Similarly, we can also obtain the prediction of [+/-45] laminate. Table 2 also shows the
predictions of exact solution for [+/-45] are in a perfect agreement with the 3D FEA. The predictions
of E3 and G23 for various interfacial stiffness are similar to the one obtained for isotropic layers.

The current approach was also extended to four layers, for [0/90/0/90] and [45/-45/45/-45] lam-
inates. The effect of imperfect interface on these laminates was also found to be similar to the the
previous cases. Here it should be noted that interfacial stiffness between the layers was assumed to
be the same. The predictions obtained for these cases are also the same as the one obtained for [0/90]
and [+/-45], see Table 2.

5. Conclusions

The exact solutions of layered composites with imperfect interfaces are obtained using MSG
based microemchanics approach. The interface between the layers is modeled using a linear traction-
displacement model that assumes infinitesimal displacement jumps across the interface. The results
of the prediction show that the interfacial stiffness does not affect longitudinal elastic moduli, all
Poisson’s ratios and shear modulusG12. However, it significantly affects transverse Young’s and shear
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moduli. The predictions obtained using exact solutions show excellent agreement with the results of
3D FEA obtained by employing periodic boundary conditions. This study shows that it is worthwhile
to consider the effect of imperfect interface for possible applications of layered composites particularly
for structural design optimization, wave propagation and multiphysics properties of multifunctional
materials. This study also indicates that it is more efficient to use the analytical approach than using
the numerical approach which can be computationally demanding.
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