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Abstract.  The description of transitional flows by means of RANS equations is sometimes based on non-
local approaches which require the computation of some boundary layer properties. In this work a non-local 
Laminar Kinetic Energy model is used to predict transitional and separated flows. Usually the non-local 
term of this model is evaluated along the grid lines of a structured mesh. An alternative approach, which 
does not rely on grid lines, is introduced in the present work. This new approach allows the use of fully 
unstructured meshes. Furthermore, it reduces the grid-dependence of the predicted results. The approach is 
employed to study the transitional flows in the T106c turbine cascade and around a NACA0021 airfoil by 
means of a discontinuous Galerkin method. The local nature of the discontinuous Galerkin reconstruction is 
exploited to implement an adaptive algorithm which automatically refines the mesh in the most significant 
regions. 
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1. Introduction 
 

The study of transitional flows is one of the current challenges in computational fluid 

dynamics. Several efforts have been made in this field because the effects of transition can deeply 

influence the performances of industrial components. For instance, the optimization of low 

pressure gas turbines (LPT) is a key objective in the current design process of turbofan engines. 

The number of blades has been progressively reduced in order to minimize the total weight and to 

reduce the number of components. As a consequence, the blade loading has been increased by the 

development of high-lift and ultra-high lift blades. This trend has raised several aerodynamic 

issues which can influence the LPT's efficiency. For instance, the low Reynolds number which 

characterizes LPT blades at cruise conditions is usually associated to the presence of a laminar 

boundary layer on a large portion of the blade. This condition, together with the high turning angle 

of high-lift blades, can induce severe flow separations (Hourmouziadis 1989, Babajee 2013). The 
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extension of the separation region and the reattachment of the flow are significantly influenced by 

transition phenomena which can take place in the separation zone. 

Similar problems can be encountered in the development of wind turbines. For example, some 

vertical axis wind turbines use symmetric airfoils which work with Reynolds numbers of the order 

of 10
5
. In these conditions, transition and separation phenomena can dramatically influence the 

performances. Furthermore, the increasing interest in Unmanned Aerial Vehicles (UAVs) has put in 

evidence several aerodynamics issues (Deters et al. 2014) related to low Reynolds number flows 

in which transition plays a fundamental role. 

These motivations have promoted the development of numerical tools which can be used to 

predict both bypass and separation induced transition at relatively low Reynolds numbers. A 

review of the most common approaches was done by Tucker (2013). 

Recently, Large Eddy Simulations (LES) and Direct Numerical Simulations (DNS) have been 

used to predict the behavior of low Reynolds number transitional flows in turbomachinery 

(Michelassi et al. 2002, De Wiart et al. 2012, De Wiart and Hillewaert 2015). These approaches 

reduce the need for problem-dependent turbulence closures by directly resolving turbulent 

structures. However, their computational cost becomes prohibitive when the Reynolds number is 

increased or when full annulus multistage configurations are considered. 

In contrast, Reynolds Averaged Navier-Stokes (RANS) models are significantly cheaper but 

have some drawbacks in the modeling of transition. A simple algebraic transition model was 

proposed by Sjolander and Langtry (2002) for attached and separate flows. The same model was 

tested by Yershov and Yakovlev (2016) for the 3D flow in a turbine cascade showing an accuracy 

similar to several more complex models but with a significantly lower computational cost. 

Some widely used transition models for RANS equations are based on the intermittency 

concept and require the introduction of additional transport equations. Typically, a transport 

equation is used to describe an intermittency variable which acts as a weighting factor to control 

the intensity of the production term in the RANS model. This approach requires the introduction of 

empirical correlations which have to be calibrated on the particular flow which is under study. An 

important contribution in this field was proposed by Langtry and Menter (2009) who introduced 

the γ−Reθt model. Thanks to an additional transport equation for the transition onset momentum 

thickness Reynolds number the γ−Reθt model works only on local quantities. Babajee (2013) 

performed a detailed analysis on the use of the SST+γ−Reθt model for the transitional flow in the 

T106c turbine cascade which is also studied in this work. A recent study on correlation based 

transition models in turbomachinery was proposed by Marciniak et al. (2014). 

Recently, several transition models based on an alternative idea have been developed. They rely 

on the laminar kinetic energy (LKE) concept which was initially proposed by Mayle and Schulz 

(1997). The aim of this approach is the modeling of the pretransitional rise of fluctuations in 

transitional boundary layers and their subsequent breakdown to turbulence. This idea has been 

exploited by Walters and Leylek (2005) and Lardeau et al. (2004) to develop a model for natural 

and bypass transition. Walters and Cokljat (2008) proposed a three-equation laminar kinetic 

energy model which requires the evaluation of only local quantities. The laminar kinetic energy 

concept has been used also by Pacciani et al. (2011) for the study of transitional flows in low 

pressure gas turbines by a non-local three-equation model. This model was tested also by 

Marciniak (2015) showing good agreements with the experimental results when low Reynolds 

number flows are considered. 

The model described in Pacciani et al. (2011) is considered in this work. It is a three-equation 

model which is based on the low Re Wilcox (1998) k−ω model with an additional equation for the 
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laminar kinetic energy. The source term in the LKE equation depends on the vorticity thickness of 

the shear layer and so it is non-local. A possible way of dealing with the computation of this term 

is to adopt a structured mesh and to evaluate the requested quantities along grid lines. This 

classical approach, which is very efficient, introduces some issues in the definition of a grid 

independent solution.  

In order to avoid these issues, an alternative approach to the computation of the vorticity 

thickness is proposed in this work. The new approach does not rely on grid lines but uses test lines 

which reduce the grid-dependence. Furthermore, it can be applied to fully unstructured meshes 

which can be useful for the description of complex geometries in the presence of control devices. 

Another important issue which arises in these kind of problems is the numerical description of 

the shear layer in the separated flow. Indeed, it is common practice to check the mesh resolution at 

the wall by monitoring the dimensionless mesh size (y
+
). This guarantees that the boundary layer is 

properly solved but it does not give any information on the resolution of the shear layer in the 

separation region, because the shear layer is usually far from the wall. However, a proper 

description of the shear layer is crucial because one of the typical transition modes is related to the 

Kelvin-Helmholtz instability which takes place in the shear layer. In order to solve this issue, the 

use of an automatic adaptive algorithm is suggested in the present work. This algorithm can 

automatically detect the regions in which the discretization error is larger and refine the mesh 

locally by splitting. The non-conforming mesh which is obtained after this process can be easily 

managed by the discontinuous Galerkin (DG) approach which was chosen to discretize the 

governing equations. 

The proposed approach is applied to the prediction of the transitional flow in the T106c turbine 

cascade and the results are compared with the experimental data. In particular, the computations 

are carried out on several meshes (both structured and unstructured) in order to understand the grid 

dependency effects and show the benefits offered by the automatic adaptive algorithm. 

Finally, the transitional separated flow over a NACA0021 airfoil is studied and compared with 

the experimental data and the results obtained by other models in both pre-stall and post-stall 

working conditions. 

 

 

2. Physical model 
 

In this work the 2D Reynolds Averaged Navier-Stokes equations are considered. Turbulence 

closure is performed by means of a three-equation model based on the laminar kinetic energy 

approach (Pacciani et al. 2011) which is reported in the following 
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The first two equations of this model are derived from the original low Reynolds version of the 
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Wilcox (1998) k−ω model and all the constants and variables are defined according to that work. 

The third equation describes the evolution of the laminar kinetic energy. In the Eq. (1) there is an 

additional term (ρR) with respect to the original Wilcox (1998) k−ω model. This term represents 

the coupling between the turbulent kinetic energy field and the laminar kinetic energy field. Eq. (3) 

describes the evolution of the laminar kinetic energy kL. 

On the right hand side there are a production term, a destruction term and a coupling term, 

respectively. The coupling term appears with opposite sign also in the turbulent kinetic energy 

equation and is responsible for the activation of the transition. 

The production term in the kL equation depends on the “laminar eddy viscosity” υL 

     √     (4) 

The constant C1 has to be deduced from calibration. In Pacciani et al. (2011) it is set to 

C1=0.01. In the present work the value C1=0.0075 is chosen. 

The variable δΩ is the vorticity thickness. It is responsible for the non-local behavior of the 

model as will be explained in Section 5.  

The transfer term R is computed as 

        
    (5) 

The damping function f2 is 

      
 
 
                       (       ) 

(6) 

The constant C2 regulates the intensity of the energy transfer from kL to k and is set to C2=0.3, 

according to Pacciani et al. (2011). 

The constant C4 represents a threshold for the activation of transition and it is set to      ,  

according to Pacciani et al. (2011). This threshold is compared with the variable    √  /  

which can be seen as a local Reynolds number based on the turbulent kinetic energy   and the 

wall distance d. Finally, the constant C3 is set as C3=8.  

In the code all the equations are solved in non-dimensional form. After nondimensionalization, 

the ω equation is transformed by considering the logarithm of ω instead of ω itself. 

This is done to improve the robustness of the discretization, following the guidelines of Bassi et 

al. (2005). Also the value of k and ω employed in the source terms of Eqs. (1) and (2) are 

evaluated following the realizability conditions suggested by Bassi et al. (2005). 

 

2.1 Issues related to external flows 
 

In the present work, the Eqs. (1), (2) and (3) are used for turbulence closure when studying 

internal flows in turbomachinery. However, the study of external flows requires particular care in 

the choice of boundary conditions. Indeed, the Eqs. (1) and (2) introduce an exponential decay of 

the turbulence variables between the inlet boundary and the leading edge. In turbomachinery flows 

this phenomenon is taken into account by choosing the proper value of ωin which gives the best 

agreement between the computed turbulence decay and the experimental values (Bode et al. 2014). 

In external flows, a similar procedure can be used by setting an arbitrary large value of k∞ and 

performing a trial and error study which allows to identify the proper value of ω∞ required to get a 

turbulence level at the leading edge close to the chosen working condition. An example of this 

second approach is described by Choudhry et al. (2015) for the study of the flow around the 
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Unstructured discretisation of a non-local transition model for turbomachinery flows 

NACA0021 airfoil. 

However, this methodology can introduce some difficulties when the solution of the problem is 

obtained by adaptive algorithms. Indeed, an adaptive simulation is usually started on a very coarse 

mesh which is usually not able to properly describe the turbulence decay between the inlet (which 

can be very far from the body in external flows) and the leading edge. In this way, it is difficult to 

get the chosen turbulence level at the leading edge and at each refinement step the airfoil will be 

subjected to a different incoming turbulence level. Furthermore, a wrong turbulence level close to 

the airfoil is even more problematic due to a particular feature of the chosen laminar kinetic energy 

model (Pacciani et al. 2011). In particular, the coupling term between laminar and turbulent kinetic 

energy is controlled by the damping function f2 which depends on the turbulent kinetic energy and 

not on the laminar kinetic energy. For this reason, if the turbulence level of the flow which reaches 

the airfoil is too low then the transition could never start because the produced laminar kinetic 

energy is not transferred to the turbulent kinetic energy field. 

In order to solve this issue, some sustaining terms are introduced in the present work, following 

the same approach proposed for the SST model by Spalart and Rumsey (2007). In particular, the 

following corrections  ̃  and  ̃  are added to the right hand side of Eqs. (1) and (2), 

respectively. 

 ̃   
                      ̃        

  (7) 

These additional terms prevent the turbulence decay in the far field because they compensate 

the destruction terms here. However, their magnitude is negligible when compared to the original 

production and destruction terms close to the body. In the present work, the sustaining terms  ̃  

and  ̃  are proposed only for external flows. 

They do not alter the transition phenomenon in the considered flow because the laminar kinetic 

energy produced in the shear layer and the related coupling term (which injects energy in the 

turbulent kinetic energy equation) are significantly larger than the far field turbulent kinetic 

energy. This can be verified by the turbulent kinetic energy field obtained in the test case of 

Section 7 and reported in Figs. 7 and 9. For other flows characterized by a large turbulence 

intensity in the far field, the use of the sustaining term can be questionable since they can become 

comparable to the original source terms of the model and so they can affect in a non-physical way 

the transition phenomena. However, in the present work they are used only for an external flow 

characterized by a very low level of free stream turbulence. 

 

 

3. Numerical framework 
 

The simulations are performed by an unstructured research code based on the discontinuous 

Galerkin (DG) approach. The numerical solution inside each element is described by an 

orthonormal basis obtained by the modified Gram-Schmidt orthonormalization algorithm, 

following the guidelines of Bassi et al. (2012). The orthonormalization algorithm is initialized by a 

monomial basis defined in the physical space. Second (DG1) and third order (DG2) accurate 

discontinuous Galerkin methods are chosen for this work. Wall elements have parabolic edges for 

DG1 and cubic edges for DG2. Convective fluxes are computed by means of an approximate 

Riemann problem solver (Osher and Solomon 1982, Pandolfi 1984). Diffusive fluxes are 

computed by means of a recovery-based approach (Ferrero et al. 2015). 

As far as time integration is concerned, the backward Euler method is used. In order to 
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accelerate the convergence to the steady state solution a CFL evolution strategy is used following 

the approach of Bassi et al. (2010). The minimum CFL number is 1 and the maximum CFL 

number is 10
4
. The linear system resulting from the implicit discretization is solved by means of 

the restarted GMRES algorithm with ILU0 preconditioner. The PARALUTION library (Lukarski 

and Trost 2014) is used for this purpose. The stopping criteria for the GMRES iterative solver are 

based on a relative tolerance equal to 10
-5

 and a maximum number of iterations equal to 1000. The 

dimension of the Krylov subspace is 100. The meshes are generated by the free software package 

Gmsh (Geuzaine and Remacle 2009). 

 

 

4. Adaptive algorithm 
 

The adaptive algorithm used in this work is based on isotropic splitting of the elements which 

show the largest discretization errors. When an element needs to be refined it is switched off and 

substituted by four smaller elements. The resulting mesh can be non-conforming but this is easily 

managed because the reconstruction in the DG approach is local and involves only the degrees of 

freedom of the element. 

Particular care is required when refining wall elements. Indeed, the DG approach requires 

curvilinear elements at wall to describe accurately the wall shape (parabolic elements in this 

work). 

For this reason, when an element close to the wall is split it is necessary to use a parametric 

representation of the wall shape to generate the additional points required by the new curvilinear 

elements. In the present approach this is done by performing a spline interpolation of the original 

wall points. 

The adaptive algorithm is driven by a sensor based on the residuals of the discretization, 

following the approach of Leicht and Hartmann (2010). This sensor gives an estimate of the 

discretization error for all the conservative equations inside each element. The evaluation of the 

error indicator in all the domain makes it possible to perform the refinement of the elements which 

show the largest errors. In particular, a fixed fraction 𝜀 of the total number of elements 𝑁 is 

split. 

When this procedure is applied on a system of conservative equations, the list of elements 

which should be refined can be obtained by putting together the lists obtained independently by 

the application of the previous procedure on each conservative equation. Since the error 

distribution is not identical for all the equations, the final refinement fraction will be larger than ε.  

However, this approach guarantees that for each considered equation at least the worst 𝜀𝑁 

elements are refined. For example, if the refinement fraction is set to ε=10% then the total number 

of elements is increased by a factor larger or equal to (1−ε)+4ε=1.3 at each call of the adaptive 

algorithm. 

Since the chosen sensor refers to steady equations it is necessary to reach an approximately 

steady solution before performing a new adaptation. In this work, the adaptation is performed 

when the L2-norm of the non-dimensional x-momentum residual drops down 10
-5

. 

 

 

5. Vorticity thickness 
 

The vorticity thickness is related to the thickness of the shear layer and so it gives an estimation  
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Fig. 1 Evaluation of vorticity thickness along grid lines (left) and test lines (right) 

 

 

of the length scale of the structures which can appear in the transitional region. It can be evaluated 

by the following approximation (Pacciani et al. 2011) 

   
     
 

(
  

  
)
    

  

 (8) 

where V∞ is the “freestream” velocity magnitude, V0 is the wall velocity magnitude (zero for fixed 

bodies) and 
𝜕𝑉

𝜕 
 is the derivative of the velocity magnitude with respect to the wall normal 

coordinate y. The value of V∞ can be estimated by the velocity value at the edge of the boundary 

layer. 

In order to correctly evaluate the thickness of the shear layer both (
𝜕𝑉

𝜕 
)
    

  
 and V∞ should be 

evaluated along “test lines” normal to the streamlines. On a flat plate, this can be done by 

considering the wall normal direction since the streamlines are approximately aligned to the wall. 

This is no more true when a general body is considered. For example, this approach fails to predict 

the thickness of the shear layer in the zone close to the trailing edge of an airfoil because in this 

region the wall normal lines are approximately aligned with the wake and so they are no more 

normal to the streamlines. A possible remedy for this issue is presented in Section 5.3. 

When a proper “search line” has been defined, it is necessary to identify the edge of the 

boundary layer in order to evaluate V∞. This can be done by looking for the maximum total 

pressure along the search line: the edge of the boundary layer can be approximated by the element 

closest to wall in which the total pressure is greater than 98% of the maximum total pressure along 

that line, according to Kozulovic and Lapworth (2007). 

 

5.1 Evaluation of vorticity thickness along grid lines 
 

The simplest way of computing the vorticity thickness is to evaluate Eq. (8) along the wall 

normal grid lines of a structured mesh. In Fig. 1 on the left an example of this procedure is 

reported. For each element of the gray row the same vorticity thickness is assigned. This approach 

implies that the domain of dependency of each element is completely defined by the direction of 

the grid lines. It is possible to define a structured mesh close to the wall surrounded by an 

unstructured mesh, provided that the structured region is sufficiently large to contain the shear 

layer. In the external unstructured region, the vorticity thickness can be set equal to zero. 

The main problem of the grid lines approach is that it is not sufficient to perform a grid 

refinement study to obtain a grid independent solution. This is due to the fact that the source term 
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depends not only on the mesh size but also on the direction of the grid lines which influences the 

choice of the data used to evaluate the vorticity thickness. 

 

5.2 Evaluation of vorticity thickness along test lines 
 

In order to reduce the dependency of the solution on the direction of the grid lines an 

alternative approach based on “test lines” is introduced. Furthermore, this approach makes it 

possible to use fully unstructured discretizations which can be useful in the presence of complex 

geometries. For each element, a test line is defined as the line which passes through its center and 

is normal to the wall. In order to identify the direction of the test line it is possible to consider the 

vector between the center of the element and the closest wall point. Alternatively, the direction can 

be obtained by the gradient of the wall distance field which is known in all the internal quadrature 

points of the element because it is required by the source terms of the model. 

In Fig. 1 on the right the concept is applied to a generic element in an unstructured mesh. The 

vorticity thickness in the considered element (the dark element in the picture) will be computed by 

taking the information from a list of elements which is found by considering the intersection 

between the test line and all the elements in the mesh. This test list must include only the elements 

which come from the side of the airfoil in which there is the considered element (see gray elements 

in Fig. 1 on the right). This selection can be done by computing the dot product between the wall 

distance gradients in the considered element and in the candidate element: only the elements for 

which the dot product is positive are inserted into the test list. 

The described procedure can be applied as a preprocessing step at the beginning of the 

simulation and the list can be stored in the memory and used during the computations. 

In order to reduce the computational cost and the memory requirements it is possible to define a 

threshold such that the procedure is avoided for the elements whose wall distance is greater than 

the threshold. In these far field elements, which are not involved in the transition process when the 

threshold is sufficiently large, the vorticity thickness can be set equal to zero. Furthermore, they 

can be neglected in the test lists of all the other elements. 

A similar approach has been already introduced by Kozulovic and Lapworth (2007). However, 

their approach is based on test lines which are built by connecting the grid points and so it is 

equivalent to the grid lines approach. Such a procedure would be very complicated in the presence 

of unstructured triangular meshes because the obtained test lines would not be straight lines. In 

contrast, the approach proposed in this paper does not use the grid points and so the resulting test 

lines are always straight lines, independently from the mesh. For this reason, the presented 

approach can be considered a generalization of the procedure proposed by Kozulovic and 

Lapworth (2007). 

 

5.3 Vorticity thickness correction 
 

The definition of vorticity thickness given at the beginning of this Section can give unphysical 

results along the test lines which start from the leading edge and the trailing edge. This is due to 

the fact that these test lines are far from being perpendicular to the streamlines and so the 

corresponding vorticity thickness estimate can be very inaccurate. At a first glance, this problem 

could appear negligible because the transition process usually appears before the trailing edge and 

so the flow in the trailing edge region should be already turbulent. However, the unphysical 

vorticity thickness obtained in this region can introduce numerical problems related to the  
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Fig. 2 Mesh A (left) and B (right): Thin and large structured region surrounded by an unstructured region 

 

 

Fig. 3 Mesh C (left) and D (right): Original and adapted fully unstructured meshes 

 

 
Fig. 4 T106c cascade: Dimensionless turbulent kinetic energy ( /    

 ) with streamlines (left) and 

dimensionless laminar kinetic energy (  /    
 ) (right) 

 

 

integration of the governing equations. For this reason, a simple remedy is adopted in the present 

work. In particular, the vorticity thickness for all the elements whose center is behind 

xLE+0.99(xTE−xLE) is set equal to the average of the vorticity thickness values which characterize 

the wall elements whose center is between xLE+0.95(xTE−xLE) and xLE+0.99(xTE−xLE). Here xLE and 

xTE represent the x coordinate of the leading and trailing edge, respectively. 
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Furthermore, the vorticity thickness for all the elements whose center is before the leading edge 

is set equal to zero. In this way, the correct vorticity thickness estimate is kept on the suction and 

pressure sides. At the same time, the unphysical values far from the blade are removed. Even if the 

imposed values in these regions are just a rough estimate they do not influence significantly the 

solution because usually the flow is already turbulent after the trailing edge and so the transition 

source terms are here negligible with respect to the turbulence source terms. 
 

 

6. T106c turbine cascade at M2s=0.65 and Re2s=80000 
 

The flow in the T106c turbine cascade has been experimentally investigated (Michalek et al. 

2012) for several working conditions. Here a working condition characterized by an open 

separation is considered. In particular, the boundary layer separates where it is still laminar and 

then it fails to reattach. The transition to turbulence is localized in the separation region. 

The isentropic exit Reynolds number is Re2s=8·10
−4

 and the isentropic exit Mach number is 

M2s=0.65. The inlet angle is αin=32.7° and the inlet turbulence level is Tuin=0.8%. In the 

simulations the inlet laminar kinetic energy is set equal to the inlet turbulent kinetic energy 

according to Pacciani et al. (2011). The specific dissipation at the inlet is computed as     

√   /   where the turbulence length scale (lt) is set to lt=2.5·10
−3

cx (where cx is the axial chord) 

according to the turbulence decay study performed by Pacciani et al. (2011). 

The simulations are carried out on four different meshes in order to test the behavior of the 

proposed approach. All simulations are performed by means of a second order accurate scheme. 

Mesh A is characterized by a thin structured region close to the wall surrounded by an unstructured 

grid of quadrilaterals (Fig. 2 on the left). It contains 46238 quadrilaterals. 

Mesh B is similar to mesh A but the extension of the structured region is significantly larger 

(Fig. 2 on the right) and it contains 54375 quadrilaterals.  

In contrast, mesh C is based on a fully unstructured discretization (Fig. 3 on the left) and 

contains 23796 triangles. 

Starting from the solution on mesh C the adaptive algorithm is called twice and mesh D is 

obtained (Fig. 3 on the right). It can be seen that the algorithm is able to detect the recirculation 

bubble and the shear layers. 

The meshes A, B, D are characterized by a dimensionless wall distance y
+
<1 over all the wall, 

with the exception of some points close to the leading edge. 

The turbulent kinetic energy (k) field and some streamlines are shown in Fig. 4, putting in 

evidence the structure of the recirculation bubble. The turbulence kinetic energy is normalized 

with respect to     
  where   is the specific gas constant and    

  is the total temperature at 

inlet. The Fig. 4 shows also the laminar kinetic energy field (  ) obtained on mesh D. This puts in 

evidence the position of the shear layers. 

The wall isentropic Mach number distribution for the four meshes is reported in Fig. 5. The plot 

shows that the proposed approach can give results which are in reasonable agreement with the 

experimental data even when very different meshes are chosen. The plot shows also the results 

obtained by Babajee (2013) with the γ−Reθt transition model. In particular, Babajee (2013) 

performed a study on the influence of the inlet turbulence length scale. He showed that the 

turbulence length scale obtained by fitting the experimental turbulence decay of the wind tunnel 

does not give a good agreement on the T106c test case (see Fig. 5) when the γ−Reθt transition 

model is used. For this reason, he tried several different values of the turbulence length scale and  

564



 

 

 

 

 

 

Unstructured discretisation of a non-local transition model for turbomachinery flows 

 
Fig. 5 T106c cascade: Wall isentropic Mach number distribution for different meshes 

 

 

the best obtained results (related to a turbulence length scale which is several orders of magnitude 

different from the value obtained by fitting the tunnel’s turbulence decay) are reported in Fig. 5. 

 

 

7. NACA0021 airfoil at Re=120000 
 

In this Section the transitional flow around a NACA0021 airfoil is considered with reference to 

the experimental setup described by Hansen et al. (2011). The Reynolds number is relatively low 

(Re∞=1.2·10
5
) and this makes this test case representative for the blades of some vertical axis wind 

turbines or for the flows which characterize some Unmanned Aerial Vehicles. The freestream 

Mach number is set to M∞=0.2.  

The far field is set at 20 chords from the airfoil according to the conditions chosen by 

Choudhry et al. (2015) for their numerical study on this test case. The far field turbulent kinetic 

energy level is set equal to the experimental value Tu∞=0.6%. Thanks to the introduced sustaining 

terms this value is preserved up to the airfoil.  

The specific dissipation rate in the far field is set to ω∞=5u∞/cx, following the recommendation 

of Spalart and Rumsey (2007) for the modified SST model with sustaining terms. Usually, the 

value of ω∞ for the k−ω model in external flows is chosen by a trial and error procedure which is 

used to reproduce the decay of the turbulence level from an arbitrary large inlet value to the 

required leading edge value (Choudhry et al. 2015). Since here the turbulence decay in the 

freestream is removed this alternative approach cannot be used and so the previously described 

boundary condition is adopted. 

In the following, two working conditions are considered in order to evaluate the behavior of the 

proposed approach in the presence of a small recirculation bubble and a large stall. 

 

7.1 Pre-stall working condition: α∞=10° 
 

The experimental data for an angle of attack α∞=10° and a Reynolds number Re∞=1.2·10
5
 show  
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Fig. 6 Wall pressure coefficient distribution for NACA0012 at α∞=10° 

 

 
Fig. 7 NACA0021 at α∞=10°: dimensionless turbulent kinetic energy ( /    

 ) with streamlines (left) and 

dimensionless laminar kinetic energy (  /    
 ) (right) 

 
Table 1 Lift and drag coefficients for NACA0021 at α∞=10° and Re∞=1.2·10

5
 

       

Exp. from Hansen et al. (2011) 1.0 0.058 

Present work LKE DG2 1.1 0.039 

 

 

that the boundary layer on the suction side is characterised by separation and reattachment. The 

shear layer which defines the edge of the separation bubble is quite close to the airfoil and 

approximately aligned to the wall as can be verified by the computed results reported in Fig. 7. 

These conditions make it possible to properly describe the flow field by using a structured mesh 

with a strong clustering close to the wall. The mesh used in this work is a hybrid mesh defined by 

a structured region close to the wall surrounded by an unstructured region. It contains 17502 

elements. 

The computations were performed with both second (DG1) and third order (DG2) accurate DG 

schemes by using parabolic and cubic curvilinear wall elements, respectively. This allowed to  
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Fig. 8 Original (left) and adapted (right) unstructured meshes for the NACA0021 airfoil at α∞=16° 

 

 
Fig. 9 NACA0021 at α∞=16°: dimensionless turbulent kinetic energy ( /    

 ) with streamlines (left) and 

dimensionless laminar kinetic energy (  /    
 ) (right) 

 
Table 2 Lift and drag coefficients for NACA0021 at α∞=16° and Re∞=1.2·10

5
 

 Cl Cd 

Exp. from Hansen et al. (2011) 0.45 0.25 

γ−Reθt from Choudhry (2015) 0.76 0.15 

k−ω−kL from Choudhry (2015) 0.75 0.21 

Present work LKE mesh-0 0.28 0.17 

Present work LKE mesh-1 0.26 0.17 

Present work LKE mesh-2 0.25 0.17 

 

 

perform a convergence study by showing how the numerical solution is affected by the increase in 

the number of degrees of freedom (52506 degrees of freedom per equation for DG1 and 105012 

degrees of freedom per equation for DG2). 

In Fig. 6 the computed wall pressure coefficient is reported for second and third order 

computations and compared to the experimental results from Hansen (2012). In Table 1 the 

computed lift and drag coefficients obtained by the third order scheme are compared to the 

experimental values. The results show reasonable agreement with the experimental data. 

In Fig. 7 the turbulent kinetic energy and some streamlines obtained by the DG2 scheme are 

reported showing how the flow reattaches on the suction side after the separation bubble. The 
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Figure shows also the laminar kinetic energy field which allows to identify the small recirculation 

bubble on the suction side. 

 

7.2 Post-stall working condition: α∞=16° 
 

The flow field was studied also for a working condition defined by an angle of attack α∞=16° 

and a Reynolds number Re∞=1.2·10
5
. This working condition is characterized by a stall with a 

large recirculation region. 

Since the shear layer is far from the body and its position is not known a priori, it is not trivial 

to generate a mesh with enough resolution in both the attached boundary layer and the separated 

shear layer. In order to solve this problem, the proposed adaptive algorithm is used. An initial 

coarse unstructured grid (Fig. 8 on the left) with 13624 triangles is used to start the simulation with 

the DG1 scheme. A stretching law is employed in the region close to the wall but, despite of this, 

the boundary layer is strongly under-resolved.  

The approximate solution obtained on this original mesh is then automatically improved by the 

adaptive algorithm, which is called recursively two times. As can be seen in the final mesh (Fig. 8 

on the right), the algorithm refines the grid in the boundary layer, in the recirculation region, in the 

shear layers and in the wake. The final results are reported in Fig. 9. In particular, the Figure 

shows the turbulent kinetic energy field and some streamlines in order to identify the recirculation 

region. The same Figure shows also the computed laminar kinetic energy field. 

In Table 2, the lift and drag coefficients (Cl and Cd) obtained in the present work are reported 

for the initial and refined meshes.  

They are compared with the experimental data obtained by Hansen et al. (2011) and reported 

by Choudhry et al. (2015). Furthermore, the numerical results obtained by Choudhry et al. (2015) 

with the SST+γ−Reθt model and the k−ω−kL model of Walters and Cokljat (2008) are reported. The 

lift and drag coefficients obtained by the proposed approach converge as the algorithm 

automatically refines the mesh, as can be seen in Table 2. While the results for the other two 

transition models reported by Choudhry et al. (2015) overpredict the lift coefficient, the present 

results underpredict it. The drag coefficient obtained in the present study is in the range of the 

values predicted by the other two transition models. This comparison enlightens the difficulties 

related to the prediction of transitional flows by means of RANS equations. Indeed, all the 

considered models give very different lift coefficients which are far from the experimental value in 

this post-stall condition. As far as the LKE model is concerned, the definition of the vorticity 

thickness becomes inaccurate in some region of the considered flow, where the shear layer is far 

from being aligned to the wall. Furthermore, the use of a point vortex correction could have been 

useful to improve the prediction of the lift coefficient but it was not used in order to work with the 

same conditions adopted by Choudhry et al. (2015). 

 

 

8. Conclusions 
 

In this work the transitional flow on different airfoils is studied by means of a non-local laminar 

kinetic energy model. An algorithm for the evaluation of the non-local vorticity thickness is 

proposed and assessed on both hybrid and fully unstructured meshes. The algorithm is based on 

the definition of test lines which are independent from the grid lines. This helps in reducing the 

grid dependency effects related to the non-local term. The possibility to integrate the chosen 
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transition model on fully unstructured meshes can be exploited to perform detailed simulations in 

the presence of complex geometries, thanks to the flexibility of the unstructured approach. 

Furthermore, a correction for removing possible unphysical values in the vorticity thickness 

field is introduced. This simple remedy makes the time integration of the governing equations 

significantly easier by avoiding some problems related to the stiff source terms of the model. 

Since transition can take place in the separated shear layer far from the wall the classical y
+
 

check is not enough to guarantee a sufficient mesh resolution. For this reason, the use of an 

automatic adaptive algorithm is suggested for the considered flows. The proposed algorithm could 

be improved by the use of anisotropic splitting (see for example Leicht and Hartmann 2010) to 

distribute more efficiently the degrees of freedom in the boundary layer region. 

As far as external flows are concerned, some sustaining terms are introduced in the original 

turbulence model in order to avoid the turbulence decay in the far field. These additional terms 

make the use of adaptive algorithms easier because they allow to get the chosen turbulence level at 

the leading edge even when coarse meshes are employed, as it is usually done at the beginning of 

an adaptive procedure. The use of the sustaining terms does not alter the transition process for the 

considered flows since the laminar kinetic energy generated in the shear layer and the related 

coupling term in the turbulent kinetic energy equation are significantly larger than the far field 

turbulent kinetic energy. 

All the results presented in this work refer to 2D steady simulations. The employed implicit 

time integration scheme allows to get a steady solution by using a very large time step which can 

remove any unsteady structure in the separation region and in the wake. It would be possible to use 

a smaller time step to get an Unsteady-RANS simulation. This approach would show the evolution 

of the largest vortex structures but it would require the use of a 3D description because the 

physical evolution of the vortex structures at the considered Reynolds number is three-

dimensional. 

The proposed test line algorithm can be directly extended to 3D problems. Further 

investigations are required to define the best approach to follow when several solid walls are 

involved in 3D problems, for example close to the hub of a rotor blade. In this case the proposed 

algorithm would compute the vorticity thickness for each element by considering the solid wall 

closer to that element. This could introduce a discontinuity in the vorticity thickness field across 

the surface of the points which have the same distance from both the solid walls. A possible 

remedy could be adopted by introducing some corrections similar to those proposed in Section 5.3. 

Further work should also be devoted to the definition of the boundary layer edge. In the present 

work the boundary layer edge is identified by performing a check on the total pressure in the 

direction normal to the wall. However, this approach cannot be used in the presence of a non-

uniform total pressure distribution at the inlet and so alternative techniques should be introduced. 

The obtained results show that the test line method gives reasonable results for flows with 

relatively moderate separation as in the T106c test case or the pre-stall case for the NACA0021. In 

particular, the obtained results for the T106c test case show good agreement with the experimental 

data if compared to other RANS studies (Babajee 2013) and to much more expensive 3D Large 

Eddy Simulations (De Wiart et al. 2012, De Wiart and Hillewaert 2015). Furthermore, the 

transition model used in this work introduces only one additional transport equation to the original 

RANS model while several common transition models (for example the 𝛾    𝜃  model) require 

two additional transport equations. 

However, when the separation becomes too strong then the shear layer is far from being parallel 

to the solid wall and so the definition of vorticity thickness which is used in the LKE model 
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becomes inaccurate. Under these conditions, also the test lines approach and the corrections 

proposed in this work cannot recover an accurate approximation of the shear layer thickness and 

this could be the cause of the large differences between the computed results and the experimental 

data in the post-stall NACA0021 test case. However, the error with respect to the experimental 

value appears to be in the range spanned by other widely used transition models, as shown in Table 

2. 

In conclusion, the proposed approach could be useful to study the main features of the flow 

when moderate separations are considered and when the shear layer is not so far from being 

parallel to the solid wall in the transition region. Further investigations are required to extend the 

vorticity thickness definition to flows with large separations in which the evaluation of the 

thickness of the shear layer cannot be based on the wall normal direction. For this kind of flows, 

3D Large Eddy Simulations represent a more reliable alternative if the associated huge 

computational cost can be afforded. 
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