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Abstract.  This paper presents the free vibration analysis of damaged beams by means of 1D (beam) 
advanced finite element models. The present 1D formulation stems from the Carrera Unified Formulation 
(CUF), and it leads to a Component-Wise (CW) modelling. By means of the CUF, any order 2D and 1D 
structural models can be developed in a unified and hierarchical manner, and they provide extremely 
accurate results with very low computational costs. The computational cost reduction in terms of total 
amount of DOFs ranges from 10 to 100 times less than shell and solid models, respectively. The CW 
provides a detailed physical description of the real structure since each component can be modelled with its 
material characteristics, that is, no homogenization techniques are required. Furthermore, although 1D 
models are exploited, the problem unknown variables can be placed on the physical surfaces of the real 3D 
model. No artificial surfaces or lines have to be defined to build the structural model. Global and local 
damages are introduced by decreasing the stiffness properties of the material in the damaged regions. The 
results show that the proposed 1D models can deal with damaged structures as accurately as a shell or a solid 
model, but with far lower computational costs. Furthermore, it is shown how the presence of damages can 
lead to shell-like modal shapes and torsional/bending coupling. 
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1. Introduction 

 

Computational models for the analysis of damaged structures should be able to provide very 

accurate displacement, strain and stress fields. Damages may lead, in fact, to local and non-

classical effects that require 3D-like analysis capabilities. Currently, most of the techniques that 

have been developed for these tasks are based on very cumbersome numerical models, such as the 

3D solid finite elements. The accurate structural analysis of complex structures is almost 

impossible due to the enormous number of degrees of freedom that is required.  

Beam models are widely adopted for many structural engineering applications because they are 

computationally cheaper and less cumbersome than a plate, shell or solid finite element model. 
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The classical beam theories are those by Euler-Bernoulli (Euler 1744 and Bernoulli 1751) and 

Timoshenko (1921). None of these theories can detect non-classical effects such as warping, out- 

and in-plane deformations, torsion-bending coupling or localized boundary conditions 

(geometrical or mechanical). These effects are important when, for instance, small slenderness 

ratios, thin walls, the anisotropy of the materials and damages are considered.  

Many methods have been proposed over the last decades to enhance classical theories and to 

extend the application of 1D models to any geometry or boundary condition. Recent developments 

in 1D models have been obtained by means of various approaches. Such as,  

• The introduction of shear correction factors (Timoshenko 1921).  

• The use of warping functions based on the Saint-Venant solution  

 (Ladéveze et al. 2004, El Fatmi and Ghazouani 2011).  

• Asymptotic approaches (Berdichevsky 1992).  

• Generalized beam theories (GBT) (Schardt 1994).  

• Higher-order beam models (Kapania and Raciti 1989a,b).   

This work exploits the Carrera Unified Formulation (CUF) for higher-order 1D models 

(Carrera 2002, Carrera et al. 2011, 2014). CUF was initially developed for plates and shells 

(Carrera 2002, 2003), more recently for beams (Carrera and Giunta 2010, Carrera et al. 2010a, 

2011). In CUF models, the displacement field above the cross-section is modelled through 

expansion functions whose order is a free parameter of the analysis. In other words, any order 

structural models can be implemented with no need for formal changes in the problem equations 

and matrices. CUF can, therefore, deal with arbitrary geometries, boundary conditions and 

material characteristics with no need of ad hoc formulations.  

CUF 1D models have recently been applied to static (Carrera and Giunta 2010, Carrera et al. 

2010a, 2012c) and free vibration (Carrera et al. 2010b) analyses. The most recent extension of 

CUF models is the so-called Component-Wise approach (CW). The CW is based on the use of 

Lagrange polynomials for the cross-section displacement field description (Carrera and Petrolo 

2012a,b). Multicomponent structures (e.g., aircraft wings or fibre reinforced composites) are 

modelled through a unique 1D formulation (Carrera et al. 2012a,b, 2013a,b). 1D CW leads to 

solid-like accuracies with far less computational costs than the shell and solid FEs.  

In this work, CUF 1D models are exploited to analyse damaged structures through the free 

vibration analysis. The numerical and experimental analysis of damaged structures is usually 

carried out for damaged identification purposes. In particular, the damage detection has various 

tasks. Such as the detection of presence of damage, the quantification of the damage, the detection 

of the position of the damage, and the estimation of the remaining service life of the structure 

(Fayyadh et al. 2011). As well-known, the presence of damages affects the natural frequencies of a 

structure, and this has been exploited to develop damage detection techniques in many works. 

Some of the most recent papers on this topic are presented hereinafter. Zhang et al. (2014) have 

proposed a graphical technique to detect the location and severity of delamination in composite 

beams by studying the frequency shifts induced by such damages. Capozucca (2014) has studied 

the vibration response of damaged Carbon Fibre Reinforced Polymer (CFRP) beams. Pérez et al. 

(2014) have conducted an extensive experimental activity to investigate the effects of damages on 

the vibrations of composite laminates. Wang et al. (2014) have proposed a method for the damage 

detection and diagnosis in wind turbine blades that is based on the FEM dynamic analysis and the 

variation of the modal shape curvatures.  

A number of damage detection techniques have been recently proposes that exploit the Modal 

Assurance Criterion or its variations. The MAC is defined as a scalar representing the degree of  

96



 

 

 

 

 

 

Free vibration analysis of damaged beams via refined models 

 

Fig. 1 Coordinate frame of the beam model 

 

 

consistency (linearity) between one modal and another reference modal vector (Allemang and 

Brown 1982). Salawu and Williams (1995) exploited the MAC and Coordinate Modal Assurance 

Criterion (COMAC) for the damage analysis of bridges. More recent papers on the same topic are 

those by Zhao and Zhang (2012), Mukhopadhyay et al. (2012), Balsamo et al. (2013).  A 

comprehensive and detailed description of the main computational tools for damage detection can 

be found in the book of Gopalakrishnan et al. (2011).  

This paper investigates frequency shifts, modal shape changes and MAC variations due to 

damages in isotropic beams. The aim of this paper is to highlight the advanced capabilities of 

refined 1D models for the analysis of globally and locally damaged structures, and its potential 

applications to damage detection techniques. 

This paper is organized as follows: Section 2 provides a brief theoretical overview on the 

structural model adopted, numerical results are given and discussed in Section 3, and conclusions 

are drawn in Section 4.    

 

 

2. Carrera unified formulation and damage modelling 
 

The cross-section of the beam lies on the 𝑥𝑧-plane, and it is denoted by Ω, whereas the 

boundaries over 𝑦 are 0 ≤ 𝑦 ≤ 𝐿. Fig. 1 shows the adopted rectangular Cartesian coordinate 

system. The transposed displacement vector is 

  (𝑥 𝑦 𝑧  )  {        }
 
 (1) 

Within the framework of the CUF, the 3D displacement field of Eq. (1) is expressed as 

  (𝑥 𝑦 𝑧  )    (𝑥 𝑧)  (𝑦  )                    (2) 

Where    are the functions of the coordinates 𝑥 and 𝑧 on the cross-section.    is the vector of 

the generalized displacements.   stands for the number of the terms used in the expansion, and 

the repeated subscript,   indicates summation. TE (Taylor Expansion) 1D CUF models consist of 

McLaurin series that uses the 2D polynomials 𝑥𝑖𝑧𝑗 as    functions, where 𝑖 and 𝑗 are positive 

integers. For instance, the displacement field of the second-order (𝑁   ) TE model can be 

expressed as 

        𝑥     𝑧     𝑥
      𝑥𝑧     𝑧

       

97



 

 

 

 

 

 

Marco Petrolo, Erasmo Carrera and Ali Saeghier Ali Saeed Alawami 

        𝑥     𝑧     𝑥
      𝑥𝑧     𝑧

       

        𝑥     𝑧     𝑥
      𝑥𝑧     𝑧

      (3) 

The 𝑁    model has 18 generalized displacement variables. The order 𝑁 of the expansion 

is set as an input to the analysis; the integer 𝑁 is arbitrary, and it defines the order of the beam 

theory. Classical Euler-Bernoulli (EBBT) and Timoshenko (TBT) beam theories can be realized as 

degenerated cases of the linear (𝑁   ) TE model. For further information about TE models see 

(Carrera et al. 2011). 

LE (Lagrange Expansion) 1D CUF models exploit 2D Lagrange polynomials to model the 

displacement field of the structure above the cross-section. For instance, the displacement field of 

an L9 LE model can be expressed as 

    𝐿     𝐿     𝐿     𝐿     𝐿     𝐿     𝐿     𝐿      𝐿      

    𝐿     𝐿     𝐿     𝐿     𝐿     𝐿     𝐿     𝐿      𝐿      

    𝐿     𝐿     𝐿     𝐿     𝐿     𝐿     𝐿     𝐿      𝐿     (4) 

The L9 model has 27 displacement variables that coincide with the three displacement 

components of the 9 Lagrange nodes. Fig. 2 shows an example of L9 element. Two or more 

Lagrange elements can be conveniently assembled to discretized cross-sections, and improve the 

accuracy of the model. More details about LE models can be found in (Carrera et al. 2014). 

The governing equations were derived by means of the Principle of Virtual Displacements 

(PVD). A compact form of the virtual variation of the strain energy can be obtained as shown in 

(Carrera et al. 2014),  

  𝐿𝑖      𝑗
  𝑖𝑗    𝑖 (5) 

Where  𝑖𝑗   is the stiffness matrix written in the form of the fundamental nuclei whose 

components can be found in (Carrera et al. 2014).   indicates the virtual variation. Superscripts 

indicate the four indexes exploited to assemble the matrix: 𝑖 and 𝑗 are related to the shape 

functions,   and 𝑠 are related to the expansion functions. The fundamental nucleus is a 3 × 3 

array that is formally independent of the order of the beam model. It should be underlined that the 

formal expression of  𝑖𝑗     

1. Does not depend on the expansion order.  

2. Does not depend on the choice of the    expansion polynomials.  

These are the key-points of CUF, which permits, with only nine FORTRAN statements, to 

implement any order of multiple class theories. 

 

 

 

Fig. 2 L9 cross-section element 
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Fig. 3 A locally damaged structure 

 

 

 

  The virtual variation of the work of the inertial loadings is  

 
 𝐿𝑖   ∫ 

 

  ̈       (6) 

Where   stands for the density of the material, and  ̈ is the acceleration vector. Eq. (6) can be 

rewritten in a compact manner as follows 

  𝐿𝑖      𝑗
  𝑖𝑗   ̈ 𝑖 (6) 

Where  𝑖𝑗   is the mass matrix in the form of the fundamental nucleus whose components can 

be found in (Carrera et al. 2014). 

A basic damage modelling approach was adopted in this work. Fig. 3 shows an example of 

locally damaged structure. In the damaged zone, the material characteristics were modified 

according to the following formulas 

        ×     𝑖   0 ≤    ≤    (7) 

Damages were introduced in different portions of the structure as will be shown in the result 

section of this paper. 
 

 

3. Results and discussion 
 

Numerical assessments were carried out on a square beam and a thin-walled I-beam. Different 

damage spatial distributions were considered. Fig. 4 shows a typical longitudinal distribution of 

the damage in which the first 10% of the beam was affected. Hereinafter, such a configuration is 

referred to as “damaged root”. Other two distributions were considered; the “damaged free end” 

has the last 10% of the beam damaged, whereas the “damaged center” has the central 10% of the  

 

Fig. 4 Damage at the root of a cantilever 
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Table 1 Effect of the CUF 1D expansion order (N) on the first three vibration frequencies (Hz) of the 

undamaged and damaged square beam, d=0.1 

 
Model EBBT TBT N=1 N=2 N=3 N=4 Solid 

DOFs 183 305 549 1098 1647 2196 139587 

Undamaged 

1
st
 42.5

b
 42.3

b
 42.3

b
 42.6

b
 42.6

b
 42.5

b
 42.4

b
 

2
nd

 263.2
b
 254.5

b
 254.5

b
 256.2

b
 256.2

b
 254.7

b
 254.0

b
 

3
rd

 658.8
a
 658.8

a
 403.9

t
 403.9

t
 403.9

t
 372.1

t
 369.7

t
 

Damaged 

Free End 

1
st
 42.5

b
 42.3

b
 42.3

b
 42.6

b
 42.5

b
 42.5

b
 42.4

b
 

2
nd

 262.2
b
 252.6

b
 252.6

b
 254.3

b
 252.8

b
 252.7

b
 252.0

b
 

3
rd

 653.6
a
 642.1

a
 400.8

t
 400.8

t
 400.8

t
 369.2

t
 366.9

t
 

Damaged 

Center 

1
st
 35.4

b
 35.2

b
 35.2

b
 35.7

b
 35.6

b
 35.6

b
 35.4

b
 

2
nd

 174.5
b
 170.6

b
 170.6

b
 173.8

b
 173.0

b
 172.8

b
 172.1

b
 

3
rd

 467.0
a
 467.0

a
 286.3

t
 286.3

t
 286.3

t
 265.8

t
 263.4

t
 

Damaged 

Root 

1
st
 20.8

b
 20.7

b
 20.7

b
 21.3

b
 21.3

b
 21.2

b
 21.1

b
 

2
nd

 210.8
b
 198.1

b
 198.1

b
 199.2

b
 197.5

b
 197.4

b
 196.8

b
 

3
rd

 381.5
a
 381.5

a
 233.9

t
 233.9

t
 233.9

t
 218.3

t
 216.0

t
 

b: Bending mode; a: Axial mode; t: Torsional mode 

 
Table 2 Effect of the damage level and location on the on the first three vibration frequencies (Hz) of the 

square beam 

 

 1
st
 Mode 2

nd
 Mode 3

rd
 Mode 

Model N = 4 Solid N = 4 Solid N = 4 Solid 

DOFs 2196 139587 2196 139587 2196 139587 

Undamaged  42.5
b
 42.4

b
 254.7

b
 254.0

b
 372.1

t
 369.7

t
 

Damaged 

Free End 

d = 0.7 42.5
b
 42.4

b
 254.6

b
 253.9

b
 372.0

t
 369.6

t
 

d = 0.4 42.5
b
 42.4

b
 254.4

b
 253.6

b
 371.6

t
 369.3

t
 

d = 0.1 42.5
b
 42.4

b
 252.7

b
 252.0

b
 369.2

t
 366.9

t
 

Damaged 

Center 

d = 0.7 42.1
b
 41.9

b
 245.3

b
 244.6

b
 364.3

t
 362.0

t
 

d = 0.4 41.1
b
 40.9

b
 227.0

b
 226.2

b
 346.6

t
 344.3

t
 

d = 0.1 35.6
b
 35.4

b
 172.8

b
 172.1

b
 265.8

t
 263.4

t
 

Damaged 

Root 

d = 0.7 39.7
b
 39.6

b
 244.2

b
 243.5

b
 357.4

t
 355.0

t
 

d = 0.4 34.7
b
 34.5

b
 228.5

b
 227.8

b
 326.3

t
 323.8

t
 

d = 0.1 21.2
b
 21.1

b
 197.4

b
 196.8

b
 218.3

t
 216.0

t
 

b: Bending mode; t: Torsional mode 
 

 

beam damaged. Furthermore, in a few cases, the damage was introduced along the entire span of 

the beam. Various damage distributions above the cross-section were considered; they are 

described in the next sections.  

 

3.1 Square cross-section beam 
 

A cantilever beam was considered as first study case. The beam length (L), width (a), and 
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height (h) are equal to 2 m, 0.2 m, and 0.2 m, respectively. The material is isotropic;   75 GPa, 

𝜐  0.33, and    700 Kg/𝑚 . 
Table 1 shows the first three natural frequencies of the beam via different beam models against 

a Solid element model in Abaqus. The number of degrees of freedom (DOFs) of each model is 

given in the second row of the table. The entire cross-section was damaged. A severe damage level 

was considered (  0. ); such a choice was made to carry out a convergence study on the beam 

models and find the most appropriate expansion order to meet the Solid model accuracy. As it can 

be seen from Table 1, the N = 4 beam model offers satisfactory accuracies both for bending and 

torsional modes. The N = 4 model was then used for all the subsequent analyses. 

Table 2 shows the first three natural frequencies of the beam for various damage levels and 

locations. Figs. 5-7 show the influence of the damage level on the frequency; in particular the ratio 

between the frequency of the damaged model (fd) and the undamaged one (f) is depicted. Fig. 8 

shows the effect of damage in a given location on the first three modal shapes. 

 

 

 

Fig. 5 Effect of the damage level and location on the first bending mode of the square beam, N=4 

 

 

Fig. 6 Effect of the damage level and location on the first torsional mode of the square beam, N=4 
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Fig. 7 Effect of the damage level and location on the second bending mode of the square beam, N=4 

 

  

(a) Center (b) Root 

Fig. 8 Effect of the damage level and modal shape on the frequencies, N=4 

 

 

The analysis of the deep square beam highlighted the following main points: 

• A fourth-order beam model (N = 4) is needed to deal with damaged beams as accurately as via 

a solid model. In particular, such a model is required to detect the torsional frequency of the 

beam. From past works of the authors, it is known that torsional frequencies require at least an 

N = 2 model. The presence of the damage worsens this requirement. Whereas bending modes 

can be detected properly by lower-order models. However, since a moderately thick beam was 

considered, at least the TBT is needed for the bending modes. 

• As expected, the computational cost of the advanced beam models is very low with respect to 

the solid model. 

• The effect of the damage on the natural frequencies, bending and torsional, is very low as 

soon as the damage is located at the free end. 

• Damages of the central portion of the beam influence the natural frequencies more 

significantly than the free tip damage. In particular, as d < 0.7, the effects on the frequencies are 
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higher than 5%. 

• Root damages affect the frequencies to a great extent even for low damage levels. 

• The first bending mode should be used to detect root damages. The second bending mode is 

more affected by the central damages, whereas the effect of damage on the torsional frequency 

is generally in between those on the bending modes independently of the damage location, 

unless low damage levels are considered. 

• For 1 < d < 0.7, that is, up to 30% of stiffness reductions, the effect on the natural frequencies 

is lower than 10 %. For 0.7 < d < 0.4, the effect on the natural frequencies is lower than 20 %. 

For d < 0.5, the effect on natural frequencies ranges from 20% to 50%.   

 

6.2 Thin-walled, I-section beam 
 

A cantilever thin-walled beam was considered as the second study case, as shown in Fig. 9; 

𝐿    m,   0.  m, 𝑏  0.  m, and   0.00  m. The material is isotropic;   75 GPa, 

𝜐  0.33, and    700 Kg/𝑚 . Various damage distributions along the cross-section were 

employed, as shown in Fig. 10. 

 

 

 

Fig. 9 I-Section 

 

  
(a) Damaged web (b) Damaged top flange 

Fig. 10 Damage distribution along the I-section 
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(c) Multi-damage cross-section 

Fig. 10 Continued 

 

Table 3 Effect of the CUF 1D expansion order (N) on the first three vibration frequencies (Hz) of the 

undamaged and damaged I beam, damaged web 

 
Model EBBT TBT N = 2 N = 4 N = 6 8L9 12L9 Shell 

DOFs 183 305 1098 2745 5124 4743 5625 27972 

d = 1 

1
st
 69.9

b
 69.7

 b
 70.3

 b
 69.9

b
 69.7

b
 69.7

b
 69.8

b
 69.2

b
 

2
nd

 127.0
 b
 125.6

 b
 126.3

b
 123.9

b
 116.4

t
 73.8

t
 73.8

t
 72.8

t
 

3
rd

 434.7
 b
 424.7

 b
 428.6

b
 152.0

t
 123.3

b
 122.7

b
 122.6

b
 119.8

b
 

4
th

 776.3
 b
 723.9

 b
 692.3

 t
 424.8

b
 328.9

s
 239.1

s
 236.9

s
 232.3

s
 

5
th

 1202.2
 b
 1142.0

 a
 727.4

b
 550.0

t
 411.0

b
 252.8

s
 251.1

s
 246.3

s
 

d = 0.1 

1
st
 69.9

 b
 69.6

 b
 70.2

 b
 69.7

b
 69.1

b
 67.3

b
 67.3

b
 66.4

b
 

2
nd

 119.2
 b
 117.5

 b
 118.2

b
 95.3

t
 94.6

t
 71.4

t
 71.5

t
 70.1

t
 

3
rd

 434.6
 b
 420.8

 b
 424.6

b
 97.5

b
 96.6

b
 87.0

s
 87.0

s
 85.2

s
 

4
th

 728.3
 b
 668.6

 b
 671.2

b
 361.7

b
 142.7

s
 93.9

b
 93.8

b
 91.7

b
 

5
th

 1108.8
 a
 1108.8

 a
 679.8

t
 418.9

b
 302.7

s
 121.2

s
 121.1

s
 118.6

s
 

b: Bending mode; a: Axial mode; t: Torsional mode; s: Shell-like mode 

 

 

   Table 3 shows the first five frequencies of the I-beam in which the web was damaged along the 

entire span of the beam. Classical, TE, and LE beam models were considered and compared to a 

shell model built in Abaqus. The number of DOFs of each model is given in the second row. As in 

the previous case, the aim of this first assessment was a convergence analysis of the beam model 

to detect the shell solution. In this case, an LE model with 8 L9 elements was needed to obtain the 

shell solution for bending, torsional and shell-like modes. The latter indicates a mode that is 

usually detectable by shell elements. Fig. 11 shows a typical shell-like model in which the 

horizontal flanges of the beam undergo severe cross-sectional deformations. The 8 L9 model was 

then used for all the other I-beam analyses. 

The top flange damaged configuration was then considered along the entire span. Fig. 12 shows 

the first five frequencies via the TBT, an 8 L9 beam, and a shell model. Fig. 13 shows the first five 

modal shapes that were obtained by means of the 8 L9 model.  

The correspondence between the undamaged and damaged structure modal shapes is  
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Fig. 11 I-Section shell-like mode, 8L9, f = 252.8 Hz 

 

 
(a) TBT 

 
(b) 8L9 

 
(c) Shell 

Fig. 12 Effect of the top flange damage level on the first five natural frequencies (Hz) of the I-beam via 

different models 
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(a) f1 = 26.4 Hz (b) f2 = 70.9 Hz 

  
(c) f3 = 82.4 Hz (d) f4 = 136.9 Hz 

  

 
(e) f5 = 183.4 Hz 

 

Fig. 13 First five natural modes of the I-Beam with the top flange damaged, 8 L9, d = 0.1 

 

 

investigated through the Modal Assurance Criterion (MAC). 

   Fig. 14 shows the MAC matrices in which the damaged and undamaged beams are compared; 

the entire span damaged top flange and web were considered.  

The analyses of the top and web damaged beams has highlighted suggest that 

• Thin-walled beams require LE models to deal with torsion and shell-like modes in which 

severe cross-sectional deformations may occur. Such models are as accurate as shell FEs, but 

fewer DOFs are required.  

• The presence of damage makes the use of LE necessary even for bending modes. LE are, in 

fact, component-wise models in which the local material and geometrical characteristics are 

retained, and LE can be locally refined where needed. All these features make the detection of 

local effects, due, for instance, to local stiffness losses, easier to deal with. 

• As known from previous works of the authors, classical beam models provide acceptable 

accuracies for bending modes only. However, since damage can cause bending-torsion 

coupling, the use of classical beam models for damaged structures should be avoided. 

• The effect of a damage on a natural frequency depends on the modal shape to a great extent. 

In other words, as soon as a damage is in place, there may be a shift in the modal shapes with 

respect to the undamaged configuration. For instance, shell-like modes could appear with lower  
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Table 4 Damage distribution sets of the multi-damage cross-section 

 A B C D E 

Set 1, d = 0.5 0.7 0.8 0.6 0.9 

Set 2, d = 0.1 0.7 0.1 0.6 0.9 

 

  

(a) Set 1 (b)   Set 2 

Fig. 15 First five natural frequencies of the multi-damage cross-section beam 

   
(a) Top, d=0.9 (b) Top, d=0.5 (c) Top, d=0.1 

   
(d) Web, d=0.9 (e) Web, d=0.5 (f) Web, d=0.1 

Fig. 14 MAC matrices for the I-Beam, damaged vs. undamaged configurations, 8L9 
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frequencies than bending modes. Higher the damage, more important this effect. 
• LE models can deal with the latter effect as accurately as shell models.  
• The effect of the damage on the MAC matrix is hardly detectable for d < 0.9 even if the 

damage is present in large portions of the beam.  
Inhomogeneous damage distributions above the cross-section were then considered (see Fig. 

10(c)). Table 4 shows the damage distribution above the cross-section; damages were introduced 

along the first 10% of the beam (root damage). 

Fig. 15 shows the first five frequencies that were computed by TBT, TE, LE, and shell models. 

Figs. 16 and 17 show the first five modes that were obtained via the LE model. Fig. 18 shows the 

MAC matrix in which the damaged beam modes are compared with the undamaged ones; in both 

cases, the LE model was employed. 

The analysis of the multi-damage beam suggests that 

• A perfect match was found between the LE and shell solutions. The first five modes of both  

 

 

 

 
 

 

(a) f1 = 63.0 Hz (b) f2 = 69.0 Hz (c) f3 = 114.5 Hz 

 
 

(d) f4 = 238.8 Hz (e) f5 = 244.7 Hz 

Fig. 16 First five modal shapes of the multi-damage cross-section beam, Set 1, 8L9 

   
(a) f1 = 48.7 Hz (b) f2 = 56.3 Hz (c) f3 = 102.7 Hz 

Fig. 17 First five modal shapes of the multi-damage cross-section beam, Set 2, 8L9 
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(a) Set 1 (b) Set 2 

Fig. 18 MAC matrices for the I-Beam, multi-damage cross-section, 8L9 

 

structures have either bending-torsion couplings of severe shell-like phenomena. Classical 

models are inadequate, and would require higher-order TE expansions (N > 7). 

• The component-wise features of LE make this model able to deal with local and 

inhomogeneous damage distributions. 

• The MAC matrix is slightly influenced by the local root damage.  

 

 

7. Conclusions 
 

This paper has presented free vibration analyses of damaged beams. Deep and thin-walled 

beams were considered. Analyses were carried out by means of classical beam models, namely the 

Euler-Bernoulli and Timoshenko models; refined 1D models based on Taylor-like expansions of 

the unknown variables; refined 1D models based on Lagrange expansions. Solid and shell models 

were employed for comparison purposes. The 1D models were built through the Carrera Unified 

Formulation (CUF). The CUF has hierarchical capabilities that allow us to deal with any order 

models with no need of ad hoc formulations. The 1D models based on the Lagrange expansions 

  
(d) f4 = 238.2 Hz (e) f5 = 248.6 Hz 

Fig. 17 Continued 
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(LE), in particular, have component-wise (CW) capabilities. The use of CW features leads to 

models that provide high-fidelity geometrical and material descriptions of the structure. No 

reference axes or surfaces are, in fact, needed to define an LE model. Furthermore, the use of 

homogenised material characteristics can be avoided. 

In this paper, the damage was introduced by means of reduced stiffness areas. Globally and 

locally damaged beams were considered. The former were damaged along the entire span. The 

latter had damages in given portions of the span. Various cross-section damage distributions were 

considered ranging from homogenously damaged sections to locally damaged cross-sections. 

The results suggest that 

• As known from previous CUF works, advanced 1D models are necessary to deal with a 

number of non-classical effects, such as torsion, bending/torsion couplings, local effects, and 

cross-section distortions. The presence of damage worsens the majority of these phenomena. 

For instance, local effects may arise in bending modes. Therefore, the use of advanced 1D 

models is compulsory in the case of damaged structures. 

• The effect of damage on the natural frequencies and modal shapes depends on a number of 

parameters. Such as the damage location, intensity and the extension. As known in the 

literature, it may be very difficult to detect these effects in the case of poorly damaged 

structures. 

• It is important to notice that, for a given damage, the effects on the free vibrations depend on 

the modal shaped considered. Bending, torsional, or shell-like modes can be affected 

differently. It is important to be able to evaluate all these modes in order to improve the damage 

detection capabilities  

• As expected, the computational cost of the advanced beam models is very low with respect to 

the solid model. 

• Thin-walled beams require LE models to deal with torsion and shell-like modes in which 

severe cross-sectional deformations may occur. Such models are as accurate as shell FEs, but 

fewer DOFs are required.  

• The presence of damage makes the use of LE necessary even for bending modes. LE are, in 

fact, component-wise models in which the local material and geometrical characteristics are 

retained, and LE can be locally refined where needed. All these features make the detection of 

local effects, due, for instance, to local stiffness losses, easier to deal with. 

• As known from previous works of the authors, classical beam models provide acceptable 

accuracies for bending modes only. However, since damage can cause bending-torsion 

coupling, the use of classical beam models for damaged structures should be avoided. 

• The effect of a damage on a natural frequency depends on the modal shape to a great extent. 

As soon as a damage is in place, there may be a shift in the modal shapes with respect to the 

undamaged configuration. For instance, shell-like modes could appear with lower frequencies 

than bending modes. Higher the damage, more important this effect. 

• LE component-wise models are particularly powerful for the analysis of locally damaged 

structures and thin-walled beams. Such models provide results as accurate as those from a shell 

or a solid model. However, LE usually requires much fewer DOFs. 

The use of CUF models for the analysis of damaged structures may have interesting outcomes 

as soon as damage detection is considered. Thanks to its computational efficiency and high 

accuracy, CUF may improve classical damage detection techniques. CUF provides, in fact, fast 

and reliable results for damaged structures. Furthermore, CUF could be exploited to create a 

database of possible damage scenarios to be used to compare to experimental data. 
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