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Abstract.  To prevent over-testing of the test-item during random vibration testing Scharton proposed and 
discussed the force limited random vibration testing (FLVT) in a number of publications. Besides the 
random vibration specification, the total mass and the turn-over frequency of the load (test item), C

2
 is a very 

important parameter for FLVT. A number of computational methods to estimate C
2
 are described in the 

literature, i.e., the simple and the complex two degrees of freedom system, STDFS and CTDFS, 
respectively. The motivation of this work is to evaluate the method for the computation of a realistic value of 
C

2
 to perform a representative random vibration test based on force limitation, when the adjacent structure 

(source) description is more or less unknown. Marchand discussed the formal description of getting C
2
, 

using the maximum PSD of the acceleration and maximum PSD of the force, both at the interface between 
load and source. Stevens presented the coupled systems modal approach (CSMA), where simplified 
asparagus patch models (parallel-oscillator representation) of load and source are connected, consisting of 
modal effective masses and the spring stiffness’s associated with the natural frequencies. When the random 
acceleration vibration specification is given the CSMA method is suitable to compute the value of the 
parameter C

2
. When no mathematical model of the source can be made available, estimations of the value C

2
 

can be find in literature. In this paper a probabilistic mathematical representation of the unknown source is 
proposed, such that the asparagus patch model of the source can be approximated. The chosen probabilistic 
design parameters have a uniform distribution. The computation of the value C

2
 can be done in conjunction 

with the CSMA method, knowing the apparent mass of the load and the random acceleration specification at 
the interface between load and source, respectively. Data of two cases available from literature have been 
analyzed and discussed to get more knowledge about the applicability of the probabilistic method. 
 

Keywords:   force limited vibration testing 

 
 
1. Introduction 

 

In spacecraft design the force limits are established to prevent over-testing of the test-article 

(load), because its dynamic behavior on the shaker table is different from its dynamic behavior 

when placed on the actual supporting structure (source). 

In (Scharton 2012) the history, the actual status and application guidelines of the FLVT are 
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discussed and 41 interesting references regarding the FLVT are provided. 

During the FLVT both the random acceleration as well as the random force limits are specified, 

however, the random acceleration specification may be overruled by the random force limits. 

The well-known semi-empirical method (SEM) of the force-limit approach is a method to 

establish force-limits at the interface between the load and the source, (Fitzpatrick and McNeill 

2007, Scharton 1997, Scharton 2012). 

 𝑊𝐹𝐹(𝑓) = 𝐶
2𝑀0

2𝑊𝐴𝐴(𝑓)   𝑓 ≤ 𝑓0, 

𝑊𝐹𝐹(𝑓) = 𝐶
2𝑀0

2𝑊𝐴𝐴(𝑓) (
𝑓0
𝑓
)
𝑛

  𝑓 > 𝑓0, 
(1) 

where WFF(f) is the force spectral density, WAA(f) is the acceleration spectral density, Mo is the total 

mass of the test item and C
2
 is a dimensionless constant, which depends on the configuration. f 

(Hz) is the frequency and f0 is the natural frequency of the primary mode with a significant modal 

effective mass. The factor n can be estimated from the apparent mass of the load, in general, n=2. 

C
2
 should not be selected without adequate justification (Scharton 2011). 

Scharton et al revisited the force limiting vibration testing in a presentation (Scharton 2011) 

and reviewed the methods of estimation of C
2
 using the simple two degrees of freedom system 

(STDFS).  

Dharanipathi main conclusions in (Dharanipathi 2003) are that the range of values of C
2
 is 

between 2 and 5, however, there are several cases where C
2
=10…17, and that C

2
 does not depend 

on the damping in the structure. 

In (Soucy 2011) Soucy et al recommend values for C
2
, however, based on limited number of 

measured (flight) data. It has been observed that in normal conditions C
2
=2 might be chosen for 

complete spacecraft or strut mounted heavier equipment. C
2
=5 might be considered for directly 

mounted lightweight test items. 

Based on the frequency shift of a two degrees of freedom system Scharton (1995) developed 

two methods to establish the value C
2
; the simple two degrees of freedom system (STDFS) 

(Scharton 1997) and the complex two degrees of freedom system (CTDFS) (Davis 1998). 

In (Gordon 2013) Gordon proposed a conservative analytical value of C
2
=9, which is based on 

the STDFS when the load/source ratio is 0.16. This conservative estimation of C
2
 will cover model 

uncertainties. The test configuration remains relatively simple because no force measurement 

devices are used during the random vibration test. 

Stevens (1996) presented a paper, to compute the force limits, based on the coupled system 

modal approach (CSMA). The coupled asparagus patch models of both source and load are 

needed. These models can be extracted from finite element analysis models or apparent mass 

measurements. This CSMA method forms the core of this paper. 

In general, the mathematical model (FEM, modal effective masses, …) of the load is available, 

because the random vibration test will be conducted under the responsibility of 

contractor/subcontractor which is responsible for the design of the load as well. To apply the 

methods to obtain the value C
2
 the dynamical properties of the source need to be known, however, 

if the mathematical description of the supporting structure (source) of the load is lacking a 

probabilistic source is necessary. 

In (Wijker 2014) the replacement of the source by a probabilistic-source is discussed. The 

mathematical modeling of the probabilistic source will be an asparagus patch model, consisting of 

a number of parallel placed lightly damped SDOF systems, with the modal effective masses 
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(Girard and Roy 1997, Plesseria et al. 2000) as the discrete mass and the spring stiffness’s 

representing the undamped natural frequencies. The CSMA method (Stevens 1996) is applied to 

compute maximum random accelerations and forces at the interface between load and source. 

The Rosenblueth point estimated moments (PEM) will be applied (Nowak and Collins 2000, 

Rosenblueth 1975) to minimize the number of samples (analysis cases) describing the probabilistic 

design parameters. The probability density functions of the probabilistic design parameters are 

assumed to be uniform. 

The method proposed in (Wijker 2014) has been further investigated, using available data from 

literature (Destefanis et al. 2009, Fitzpatrick and McNeill 2007), to study the applicability of the 

probabilistic approach. 

 

 

2. Force limits analysis method 
 

The semi-empirical force-limit vibration test (FLVT) approach has been established to prevent 

over–testing of a flexible test item when placed on the shaker table with a very high impedance 

compared to the impedance of the supporting structure of the test item. This (FLVT) test 

philosophy or method is described in (Scharton 1997). The simple equations to compute the PSD 

of the force limits WFF from the PSD of the random acceleration test specification WAA are already 

given in Eq. (1). 

Marchand provides in (Marchand 2007) an equation to compute the value of C
2
 in the interface 

between the source and the load, both consisting of MDOF systems. Considering that the 

maximum PSD of the interface force 𝑊𝐹𝐹   and the maximum PSD of the interface acceleration 

𝑊𝐴𝐴   , which need not to occur at the same frequency, the value of C
2
 can be defined as 

 
𝐶2 =

𝑊𝐹𝐹   
𝑀0
2𝑊𝐴𝐴   

 (2) 

where 𝑀0 is the total mass of the load. 

 

 

3. Coupled system modal approach method (CSMA) 
 

The CSMA method, proposed by Stevens (1996), is the selected method to compute the force 

limits for the random vibration testing of the load. The dynamic or apparent mass of the load 

(Ewins 1986), as well as the random acceleration test specification are required. The acceleration 

at the interface between load and source is illustrated in Fig. 1. The reduced asparagus patch 

models of both source and load are shown in Fig. 1. 

The spring stiffness and damper values are, respectively, given by    =    
2    and 

𝑐  =          , where    ,  =  ,    are the natural frequency of the load.    is the modal 

damping ratio of mode  . The notations for the source are similar. 

The random acceleration vibration specification 𝑊𝐴𝐴(𝑓) at the interface between the source 

and the load is provided (specified). In general, this specification is an envelope that is based on 

data ”smooths over” of peaks and valleys. The load is very responsive at the anti-resonance 

frequencies and acts as a dynamic absorber to reduce the input. 

To compute the parameter C
2
 in Eq. (1), Eq. (2) is applied. Therefore we need to compute the  
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Fig. 1 Coupled system in parallel-oscillator representation 

 

 

random acceleration spectrum at the interface between the load and the source. That random 

acceleration spectrum is multiplied by the apparent mass of the load to obtain the random force 

spectrum at the interface. The mathematical models (parallel oscillators, Fig. 1) of the source and 

the load are represented by their modal effective masses and associated spring stiffness and 

damping and are coupled. The modal effective masses can be either calculated by a modal analysis 

with a fixed-free finite element model (Wijker 2004), or extracted from a measured apparent mass 

of the load, i.e., on a shaker table performing sinusoidal base-excitation (Füllekrug 1996, 

Sedaghati et al. 2003). 

To calculate the maximum random force spectrum at the interface between source and load the 

following procedure is followed: 

• Generate the mathematical models (Asparagus patch models) of both the source and load 

(Fig. 1).  

• Compute the apparent mass (dynamic mass) of the load, fixed at the interface between source 

and load. 

• The random acceleration vibration specification to be applied to the load is specified.  

• Define the random load spectrum 𝑊𝐹(𝑓) to be applied subsequently at every oscillator of the 

source. This may be a unitary band-limited white noise spectrum or a unitary scaled random 

vibration spectrum.  

•Perform for every subsequent loaded oscillator of the source a random acceleration response 

analysis and scale to the spectra such that the maximum acceleration at a certain excitation 

frequency is equal to the specified acceleration spectrum at that frequency. Multiply these 

scaled random acceleration spectra by the squared absolute value of the apparent mass spectra 

of the load. The composite random load spectrum 𝑊𝐹𝐹(𝑓) then represent the upper bound. 

This upper bound is divided by the square absolute value of the apparent mass spectra of the 

load to compute the associated upper bound interface random acceleration 𝑊𝐴𝐴(𝑓). The 

following simple spectra are taken: 𝑊𝐴𝐴(𝑓) =       
2    and 𝑊𝐹(𝑓)  =     

2   , both 

between 20-2000 Hz.  
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• Apply Eq. (2) to compute C
2
. 𝑀0 Is the rigid body mass of the load. 

 
 

4. Definition (availability) of source and load 
 

To perform a random vibration test of the load the test conductor needs the availability of a 

hardware (H/W) model of the load, i.e., the item to be tested on a shaker table. When the FLVT 

(Scharton 2012) is planned the value of C
2
 in Eq. (1) shall be obtained either by experience (data 

base) (Scharton 2012) or applying the simple two degrees of freedom (STDFS) system and or the 

complex two degrees of freedom (CTDFS) system as described in (Soucy 2011). When modal 

characteristics of both source and load can be made available from FEA/FEM or measurements 

Eq. (2) can be used (Marchand 2007). Simplified computations may be done when the CSMA 

method will be applied as illustrated in Fig. 1. 
 

4.1 Load 
 

4.1.1 Mathematical model 
We assume the availability of a mathematical description (finite element model) of the load. An 

estimation of the modal damping ratio shall be done, in general, based on past experiences or 

measurements. The finite element model degrees of freedom at the interface between the load and 

source shall be fixed. The following modal data of the load is needed to build the asparagus patch 

model for the CSMA method: 

• The total mass of the load 𝑀  (kg),  

• The undamped natural frequencies 𝑓 ,  =  ,    (Hz) assuming clamped conditions at the 

interface load/source.  

• The associated modal effective masses    ,  =  ,    (kg) and the residual mass    , in 

the three translational directions, respectively. The unknown cross coupling is neglected. 

• The estimated or measured modal damping ratios   ,  =  ,   . 

• The apparent mass   (𝑓) (kg) of the load in the three translational directions with respect to 

the interface. 

 

4.2 Source 
 

Coté (2004) stated in his paper that the asparagus patch model of the source (common to the 

load); modal effective masses, natural frequencies, can be extracted from a finite element model, 

experiment or from experience. However, in this subsection we assume that the finite element 

model or experimental results cannot be made available, so the simplified model can be 

constructed using engineering design rules (i.e., ECSS
1
 standards and handbooks).  

The dynamic characteristics (design parameters) of the source with respect to the interface 

between the load and the source are considered to be probabilistic related to the modal properties 

of the load.  

The probabilistic design parameters are discussed in detail in (Wijker 2014) and are common to 

the modal data of the load. The probabilistic design parameters of the source are described in the 

following section. 

                                           
1
European Cooperation of Space Standardization 

221



 

 

 

 

 

 

J.J. Wijker, A. de Boer and M.H.M. Ellenbroek 

5. Virtual building of asparagus patch model of the source 
 

The design parameters of the source are related to the mass and modal properties of the load 

and are discussed in (Wijker 2014). 

 

5.1 Total mass 
 

The total rigid body mass of the source 𝑀  shall be provided (i.e., by the prime contractor). If 

the 𝑀  can’t be made available the following total mass, with an assumed uniform distribution, of 

the source is assumed 

   =         (3) 

When the mass of the source 𝑀  is known, the mean of the source mass is  = 𝑀  and the 

standard deviation  =  . 

 

5.2 Natural frequencies 
 

When the lowest undamped natural frequency of the load is 𝑓 , the interface source/load fixed, 

the assumed undamped natural frequency of the source will vary between 

   𝑓  =
  

2
 
  

√2
. (4) 

This range is based on the design practice that the dynamic interference between load and 

source is minimized. 

This undamped natural frequency of the source is associated with a high modal effective mass 

   . The probability density function of the first natural frequency 𝑓   is assumed to be uniform. 

The following (first guess) distribution of natural frequencies, with substantial modal effective 

mass, is de-fined by 

 𝑓2 =  𝑓  , 

𝑓  =  𝑓  , 

𝑓  =  𝑓    

(5) 

Force limits typically cover only the first three modes (Kolaini and Kern 2012). Therefore, it is 

usually adequate to specify the force limits only in the frequency regime encompassing a few 

modes in each axis, which might be out to approximately 100 Hz for a large spacecraft, 500 Hz for 

an instrument, or 2000 Hz for a small component (Scharton 2012). 

 

5.3 Modal effective masses 
 

The first undamped natural frequency 𝑓   will be associated with the first significant modal 

effective mass    . The fundamental modal effective masses of simple systems are assumed to be 

a first approximation of modal effective mass of the source. This modal effective mass will be 

assumed in the following mass range with a uniform probability distribution 

    =        𝑀  (6) 

This range may be confirmed by the calculation of the modal effective mass of simple 
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structures (Wijker 2014). The residual mass is the sum of the modal effective masses excited 

outside the frequency range of interest and the residual mass mrs will be assumed to be 5% of the 

total mass of the source, such that 

 𝑀  =     𝑀  (7) 

The summed modal effective masses of the computed modes shall be about 95% of the total 

mass of the source 𝑀 . 
Further Δm is the sum of the missing distribution of the modal effective mass and is defined by 

   = 𝑀  (       ) (8) 

The deterministic distribution (best guess) of the modal effective mass    (𝑓  ),  =     

will be descending and the effective masses of the remaining modes are distributed according to 

the following scheme 

  2 =      , 

   =      , 

   =        

(9) 

 
5.4 Modal damping ratio 

 
We will assume a uniform distribution of the modal damping ratio  =         . 

 

5.5 Summary of mean and standard derivation of stochastic variables 
 

The probability density function of the stochastic variables 𝑀 , 𝑓  ,     and   are assumed 

to be uniform. 

The summary of mean and standard deviation of the selected probabilistic variables, with a 

uniform distribution
2
 is presented in Table 1. 

 

5.6 Probabilistic analysis by the Rosenblueth 2k+1 PEM & CSMA 
 

The Rosenblueth point estimates method (PEM) for probability moments (Nowak and Collins 

2000, Rosenblueth 1975), computes the mean and the variance of the value C
2
 in combination with 

the CSMA. If the number of design variables is  ,        samples (analysis cases) are to be 

computed. 

 

 
Table 1 Mean and standard deviation stochastic variables, (Rosenblueth 1975) 

Description Symbol Mean Standard deviation 

Mass (kg) 𝑀  5.0500𝑀  2.8579𝑀  

Natural frequency (Hz) 𝑓   0.6036𝑓  0.0598𝑓  

Modal effective mass (kg)     0.5000𝑀  0.0577𝑀  

Modal damping ratio (-)   0.055 0.0260 

                                           

2𝑓(𝑥) =
 

𝑏− 
, 𝑎 ≤ 𝑥 ≤ 𝑏, 𝑓(𝑥) =  , otherwise,  =

 +𝑏

2
,  =

|𝑏− |

2√ 
, (Ayyub and McCuen 1997) 
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The  0 value is computed by substituting the mean values for all k design variables,  𝑛  is 

computed by substituting for the nth design variable the value  𝑛   𝑛 and for the other design 

variables the mean values and  𝑛  is computed by substituting for the nth design variable the 

value  𝑛   𝑛 and for the other design variables the mean values, respectively. 

The mean of two-point estimates  𝑛 ,  𝑛  is given by 

 
 𝑛 =

| 𝑛   𝑛 |

 
,  =  , ,  , (10) 

and the variance is  𝑛 can be obtained by       

 
 𝑛 = |

 𝑛   𝑛 
 𝑛   𝑛 

| ,  =  , ,    (11) 

When the stochastic variables are statistically independent the following approximation of the 

mean  ̅ =    and the variance   =       can be made (Rosenblueth 1975) 

  ̅

 0
= ∏

 𝑛
 0
,

2 + 

𝑛  

 (12) 

and 

 

    
2 = ∏(   𝑛

2),

2 + 

𝑛  

 (13) 

 

  
6. Test cases 
 

6.1 Introduction 
 

The probabilistic description of the asparagus patch model of the source has been investigated 

using two cases taken from literature: 

• ESA study: “IFLV-Improvement of Force Limited Vibration Testing Methods for Equipment 

Instrument Unit Mechanical Verification”, (Destefanis et al. 2009).  

• The Linear Drive Unit (LDU), which is an Orbital Replacement Unit (ORU) of the 

International Space Station (ISS) program, (Fitzpatrick and McNeill 2007). 

 
6.2 ESA IFLV study 

 
This real life example is taken from the ESA study: “IFLV-Improvement of Force Limited 

Vibration Testing Methods for Equipment Instrument Unit Mechanical Verification” presented by 

Destefanis et al. (2009). The IFLV study facilitated a full test campaign (both sine and random) on 

a test system composed of a honeycomb panel (source), which supported an optical unit (MIRI) 

(load) and an electronic box (EBOX) (not considered) (see Fig. 2). Force measurement devices 

(FMDs) were installed at the mechanical interfaces between units and honeycomb plate. The test 

runs were performed both on the system and on the units (MIRI, EBOX) stand alone, therefore  
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Fig. 2 IFLV total and MIRI test setup on shaker slip table, courtesy (Destefanis et al. 2009) 

 
Table 2 Mass properties of individual items 

Mass item (kg) (kg) (kg) 

Optical Unit MIRI 27.945 27.945 27.945 

Electronic box EBOX 1.257 1.257  

Sandwich honeycomb panel 3.166 3.166  

Force Measurements Devices & plates  4.266 1.693 

Total mass 32.268 36.634 29.639 

 

 

collecting experimental evidence of the difference (in terms of mechanical interface forces) 

between soft mounted and hard mounted configurations. 

 

6.2.1 Mass properties of IFLV system 
The individual mass properties of the test setup are taken from (Destefanis et al. 2009). These 

mass properties were extracted from the very detailed finite element models of the EBOX, MIRI, 

panel and Force Measurement Devices (FMD) and are presented in Table 2; however, the EBOX 

is further not considered in this paper. The fourth column represents the mass properties of the 

hard-mounted MIRI and FMD’s (FMD’s between the MIRI and shaker (slip) table. 

 

6.2.2 Dynamic properties of IFLV system & individual parts 
Modal analysis were done on the total test setup (with and without FMD’s), the EBOX, the 

MIRI and the Honeycomb panel hard-mounted, respectively. The classical results are: the 

undamped natural frequencies and associated modal effective masses. The modal effective masses 

are associated to the Z-axis that is perpendicular to the sandwich panel. The results of the modal 

analyses are given in Table 3. 

 

6.2.3 𝐶2Interface MIRI/Panel 
The values of 𝐶2 are applicable in the Z-direction, thus perpendicular to the panel, and in 

particular between the sandwich panel and MIRI instrument. The 𝐶2 values, computed by the 

STDFS and Ceresetti (Ceresetti 2000) methods are taken from (Destefanis et al. 2009). 
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Table 3 Mass & modal properties (Destefanis et al. 2009) 

Mass item M (kg) 𝑓 (Hz)    (kg) 

Optical Unit MIRI 27.945 104.71 27.47 

Sandwich honeycomb panel 3.166 287.74 1.50 

 
Table 4 Values of C

2
 (Z-dir) , Q=10 (Destefanis et al. 2009) 

load/Source m2 (kg) m1(kg) C
2
 Remark 

MIRI/Panel 27.47 1.50 1.10 STDFS (Scharton 2012) 

 27.47 1.50 2.56 CTDFS (Scharton 2012) 

 27.47 1.50 1.10 Ceresetti (Ceresetti 2000) 

 27.47 (105Hz) 1.50-3.0 (50Hz) 1.70-1.74 CSMA (Stevens 1996) 

 Experience gained 2-5 Chang (Chang 2002) 

 
Table 5 Asparagus patch model MIRI, Z-dir. 

Modal effective mass (kg)     = 27.47     = 0.475 

Natural frequency (Hz) 𝑓   = 104.71 𝑓   = 2500 

Modal damping ratio (-) 0.01-0.1  

 

 

Applying the CSMA method the dynamic properties of the panel are computed with respect to 

the interface between panel and MIRI instrument. The dimensions of the panel are not completely 

known, but a natural frequency of a panel supported at the midpoint, (Blevins 1995), is 

approximately 50 Hz. The corresponding modal effective mass varies between 1.50-3.0 kg. The 

CSMA method gives C
2
 values in line with the other methods. The computational results of C

2
 are 

presented in Table 4. 

 

6.2.4 Probabilistic computation of 𝐶2 
The deterministic asparagus patch model of the load (MIRI) is derived from the dynamic 

properties with respect to the interface between the load and the source (sandwich panel) taken 

from Table 3 and presented in Table 5. The residual mass is augmented with an artificial high 

natural frequency outside the frequency range of 20-2000 Hz. The sum of the modal effective and 

residual masses is equal to the total mass of the MIRI, Ml=27.945 kg. The damping is probabilistic 

and applicable to both the load and the source. 

To start the probabilistic computation of 𝐶2, with the Rosenblueth        point estimation 

method, the uniform distributions of the design variables of the source; the total mass 𝑀 , the first 

fundamental natural frequency 𝑓  , the first primary modal effective mass     and modal 

damping  , presented in Table 1, are used. 

The results of the probabilistic computations, the mean, the standard deviation   and      

values of 𝐶2 and additional variations of the distributions of the total 𝑀 , the modal effective 

mass     and the fundamental natural frequency 𝑓   are presented in Table 6. 

Compared to the estimated values of 𝐶2, given in Table 4, it can be concluded from the 

probabilistic computed values      of 𝐶2, a good estimation of the total mass of the source is 

important to obtain more reliable figures of C
2
. The distributions of the other design parameters 

were well chosen, however, the following observations can be made: 
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Table 6 Probabilistic computations of 𝐶2, Z-dir., 𝑀  = 27.945kg (ref. means reference values) 

Design Variable Distribution Mean Standard deviation 𝐶𝜇
2 𝐶𝜎

2 𝐶𝜇+ 
2  

𝑀  (ref.) 0.1 10𝑀  5.05 𝑀  2.858𝑀  6.26 1.24 9.98 

𝑀   0.1 1𝑀  0.505 𝑀  0.260𝑀  3.63 0.69 5.70 

𝑀   0.05 0.15𝑀  0.1𝑀  0.029𝑀  2.64 0.59 4.41 

𝑀   0.113𝑀  0.113𝑀  0.0𝑀  2.68 0.62 4.64 

𝑀  (ref.) 0.05 0.15𝑀  0.1𝑀  0:029𝑀     

    (ref.) 0.4 0.6𝑀  0.5𝑀  0.0577𝑀  2.64 0.59  

    0.6 0.8𝑀  0.7𝑀  0.0577𝑀  2.59 0.60 4.39 

𝑀  (ref.) 0.05 0.15𝑀  0:1𝑀  0:029𝑀     

    (ref.) 0.4 0.6𝑀  0.5𝑀  0.0577𝑀     

𝑓   (ref.) 0.5 0.707𝑓   0.6036𝑓   0.0598𝑓   2.64 0.59 4.41 

𝑓    0.2 0.5𝑓   0.35𝑓   0.0866𝑓   2.26 0.39 3.43 

𝑓    0.707 0.8𝑓   0.75 𝑓   0.0268𝑓   5.19 0.94 8.01 

𝑀  (ref.) 0.05 0.15𝑀  0:1𝑀  0:029𝑀     

    (ref.) 0.4 0.6𝑀  0.5𝑀  0.0577𝑀     

𝑓   (ref.) 0.5 0.707𝑓   0.6036𝑓   0.0598𝑓      

𝑓2 , 𝑓  , 𝑓   
(ref.) 

 𝑓  , 4𝑓  , 6𝑓     2.64 0.59 4.41 

𝑓2 ,
 𝑓  ,

 𝑓   1.25𝑓  , 1.5𝑓  , 2𝑓    3.30 0.13 5.70 

𝑓2 ,  𝑓  ,
 𝑓   1.5𝑓  , 2𝑓  , 3𝑓     3.13 0.10 3.43 

 

  
(a) LDU model (b) Integrated model 

Fig. 3 LDU-FSE-FRAM FEM in launch configuration (Fitzpatrick and McNeill 2007) 

 

 

• If the stiffness of the source is too low (𝑓  ≪ 𝑓  ), the load will act like a rigid body and no 

load anti-resonance effects may be expected.  

• If the source is too stiff (𝑓  ≫ 𝑓  ), the dynamic coupling between the load and the source 

will increase.  

• Clustering the natural frequencies of the source will amplify the internal response between 

load and source. 
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Table 7 Dynamic properties LDU, courtesy (Fitzpatrick and McNeill 2007) 

  Modal effective mass 

Mode 6= Frequency (Hz) X-dir (kg) Y-dir (kg) Z-dir (kg) 

1 59.0 0.4 0.0 36.0 

4 75.0 0.1 49.9 0.1 

7 92.7 27.9 0.1 18.2 

 
Table 8 Values of C

2
 and n, from STDFS and analytical data (FEA), courtesy (Fitzpatrick and McNeill 2007) 

 STFDS (Q=10) X-dir Y-dir   Z-dir 

𝐶2 3.48 2.5 4.8 2.7 

n 2 2 2 1.5 

 

 

6.3 LDU/FSE/FRAM 
 
The Linear Drive Unit (LDU) is an Orbital Replacement Unit (ORU) of the International Space 

Station (ISS) program. During the flight of the LDU to the ISS, it is connected to a Space Shuttle 

Orbiter by an adaptor plate and locking system. The LDU is connected to the adaptor plate by four 

points, which will be known as interface points. The configuration of the LDU, flight support 

equipment (FSE) adapter plate and active flight release attachment mechanism (FRAM) together 

forms the integrated model. The integrated model is attached to the Orbiter at seven points, which 

have various constraint directions. The FE models are shown in Fig. 3. The mass of the LDU 

(load) is Ml=113.85 kg and the remaining FSE and FRAM parts (source) make up Ms=187.33 kg. 

The modal effective masses of the significant modes and the C
2
 of the semi-empirical force limits 

Eq. (1) are given in the next sections. The dynamic properties of the FSE/FRAM are not presented 

in (Fitzpatrick and McNeill 2007), hence unknown. 

 

6.3.1 Dynamic properties LDU and value 𝐶2 
The natural frequencies and associated modal effective masses of the first three dominant 

modes of the LDU, fixed at the interface between LDU and FSE (see Fig. 3), are taken from the 

paper of Fitzpatrick and McNeill (2007) and presented in Table 7. The Z-dir is perpendicular to the 

mounting plane. 

 

6.3.2 𝐶2 from literature 
The value C

2
 was derived from the STDFS equations and the scaled force power spectral 

density response at the interface between LDU/FSE and taken from (Fitzpatrick and McNeill 

2007) and given in Table 8. The scaled random interface force is computed from the enveloped 

random acceleration specification multiplied by the squared magnitude of the apparent mass of the 

LDU (load). The PSD acceleration at the four interface points between the LDU and FSE/FRAM 

are represented by the four dotted curves. The final random acceleration specification is the 

envelope of these four curves. This is illustrated in Fig. 4(a). The drawn curve in Fig. 4(b) 

represents the PSD of the interface force and corresponds to the enveloped random acceleration. 

Applying Eq. (2) the value C
2
 can be established. 

 

6.3.3 Probabilistic computation 𝐶2 
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Force limited vibration testing: an evaluation of the computation of C
2
 for real load... 

The asparagus patch model of the load (LDU) is derived from the dynamic properties with 

respect to the interface between the load and the source (FSE/FRAM) taken from Table 7 and 

presented in Table 9. The residual mass is augmented with an artificial high natural frequency  

 

 

  
(a) Envelope of acceleration (Z-dir) (b) Force limits created from SEM (Z-dir) 

Fig. 4 Scaled random interface force procedure, courtesy (Fitzpatrick and McNeill 2007) 

 
Table 9 Asparagus patch model LDU, Z-dir., 𝑀  = 113.85 kg 

Modal effective mass (kg)     = 36.0  2  = 18.2     = 59.65 

Natural frequency (Hz) 𝑓   = 59.0 𝑓2  = 92.7 𝑓   = 2500 

Modal damping ratio (-) 0.01-0.1   

 
Table 10 Computation of 𝐶2 for the LDU, Z-dir., 𝑀  = 113.85kg (ref. means reference values) 

Design Variable Distribution Mean Standard deviation 𝐶𝜇
2 𝐶𝜎

2 𝐶𝜇+ 𝜎
2  

(ref.) 0.1 10𝑀  5.05 𝑀  2.858𝑀  2.18 0.54 3.80 

(ref.) 1.0 2.0𝑀  1.5 𝑀  0.289𝑀  1.83 0.33 2.82 

 1.0 2.0𝑀  1.5 𝑀  0.289𝑀     

    0.4 0.6𝑀  0.5𝑀  0.0577𝑀  1.83 0.33 2.82 

    0.6 0.8𝑀  0.7𝑀  0.0577𝑀  2.12 0.47 3,53 

(ref.) 1.0 2.0𝑀  1.5 𝑀  0.289𝑀     

(ref.) 0.5 0.707𝑓   0.6036𝑓   0.0598𝑓   1.83 0.33 2.82 

 0.2 0.5𝑓   0.35𝑓   0.0866𝑓   3.35 1.97 9,26 

 0.707 0.8𝑓   0.754𝑓   0.0268𝑓   3.32 0.60 5.12 

(ref.) 1.0 2.0𝑀  1.5 𝑀  0.289𝑀     

    (ref.) 0.4 0.6𝑀  0.5𝑀  0.0577𝑀     

(ref.) 0.5 0.707𝑓   0.6036𝑓   0.0598𝑓      

𝑓2 , 𝑓  , 𝑓   (ref.) 2𝑓  , 4𝑓  , 6𝑓     1.83 0.33 2.82 

𝑓2 , 𝑓  , 𝑓   1.25𝑓  , 1.5𝑓  , 2𝑓    4.26 1.47 8,67  

𝑓2 , 𝑓  , 𝑓   1.5𝑓  , 2𝑓  , 3𝑓     3.90 1.44 8.22 
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outside the frequency range of 20-2000Hz. The sum of the modal effective and residual masses is 

equal to the total mass of the LDU, 𝑀  = 133.85kg. The damping is probabilistic and applicable 

to both the load and the source. 

To start the probabilistic computation of 𝐶2, with the Rosenblueth        point estimation 

method, the uniform distributions of the design variables of the source; the total mass Ms, the first 

fundamental natural frequency 𝑓  , the first primary modal effective mass     and modal 

damping ratio   as presented in Table 1, are used. 

The results of the probabilistic computations, the mean  , the standard deviation   and 

     values of 𝐶2 and additional variations of the distributions of the total 𝑀 , the modal 

effective mass     and the fundamental natural frequency 𝑓   are presented in Table 10. 

If the total mass of the load and the source is of the same order the analytical computed      

values of 𝐶2 given in Table 10 envelope the values of 𝐶2 given in Table 8. We may conclude 

that the distributions of all design parameters are well chosen, however, a good guess of the total 

mass of the source is beneficial. In addition the same observations as for the MIRI can be made. 
 

 
7. Conclusions 
 

In (Wijker 2014) a probabilistic method was proposed to compute the value of 𝐶2 of the semi-

empirical Eq. (1), when only the dynamic properties of the deterministic load are known and the 

dynamic properties of a probabilistic source are represented by probabilistic design variables with 

a uniform distribution. 

To verify the probabilistic model of the source two test cases were analysed, which were taken 

from (Destefanis et al. 2009) (MIRI instrument) and (Fitzpatrick and McNeill 2007) (LDU orbital 

replacement unit). The CSMA method was applied combining a deterministic asparagus patch 

model of the load and the probabilistic asparagus patch model of the source. The following 

observations and conclusions can be made: 

• The MIRI instrument is the load and the sandwich panel is the source. The total mass of the 

load is 𝑀  = 27.945 kg, and the total mass of the source is 𝑀  = 3.164 kg. The ratio is 

𝑀 / 𝑀  = 8.8 and applying the STDFS estimation method 𝐶2 = 1.1, Q = 10. 

- The computation of 𝐶2 starting with initial distributions of the design variables of the 

probabilistic source, shown in Table 1, give a too high mean 𝐶𝜇+ 𝜎
2 = 9.98. The distribution 

of 𝑀  is too far from the actual value. Tuning the band-limited uniform distribution of 𝑀  
= 0.1 0.15𝑀  gave much better result of 𝐶𝜇+ 𝜎

2 = 4.41. The other initial distributions of 

𝑓  ,     and 𝜉 are well chosen. 

- If it is expected that the mass of the source 𝑀  ≪ 𝑀 , thus the ratio 𝑀 /𝑀  ≫ 1 one 

shall tune the distribution of 𝑀  more in accordance to the estimated or provided mass of 

the source.  

• The LDU is the load and the supporting structure FSE/FRAM is the source. The total mass of 

the load is 𝑀  = 113.85 kg, and the total mass of the source is 𝑀  = 187.33 kg. The ratio is 

𝑀 /𝑀  = 0.6 gives with the STDFS estimation method 𝐶2 = 3.48, Q = 10. 

- The computation of 𝐶2 starting with initial distributions of the design variables of the 

probabilistic source, shown in Table 1, gave a good correlated mean value 𝐶𝜇+ 𝜎
2 = 3.18. 

The initial distributions of 𝑀 , 𝑓  ,     and   are well chosen.  

- If the expected mass of the source 𝑀 ≈ 𝑀  and the ratio 𝑀  𝑀𝑠 ≈  , the initial uniform 
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distributions from Table 1 are very convenient.  

• In general, the intervals of the design variables provided in Table 1 will result in values of 

𝐶𝜇+ 𝜎
2  with high probability covering the real values of 𝐶2, however, it is recommended to 

achieve a good knowledge of the mass of the source 𝑀   

• If the stiffness of the source is too low, the load will act like a rigid body and no load anti-

resonance effects may be expected.  

• If the source is too stiff the dynamic coupling between the load and the source will increase.  

• Clustering the natural frequencies of the source will amplify the internal response between 

load and the source.  

• The residual modal effective mass shall be incorporated into the asparagus patch model of the 

load. 
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