
 

 

 

 

 

 

 

Advances in Aircraft and Spacecraft Science, Vol. 2, No. 1 (2015) 57-76 

DOI: http://dx.doi.org/10.12989/aas.2015.2.1.057                                              57 

Copyright ©  2015 Techno-Press, Ltd. 
http://www.techno-press.org/?journal=aas&subpage=7        ISSN: 2287-528X (Print), 2287-5271 (Online) 
 
 
 

 

 
 
 

Complex modes in damped sandwich beams using beam and 
elasticity theories 

 

Naveed Ahmad
1 and Rakesh K. Kapania2a 

 
1
Department of Engineering Science and Mechanics, Virginia Tech, Blacksburg, VA, USA 
2
Department of Aerospace and Ocean Engineering, Virginia Tech, Blacksburg, VA, USA 

 
(Received August 27, 2014, Revised September 30, 2014, Accepted September 30, 2014) 

 
Abstract.  We investigated complex damped modes in beams in the presence of a viscoelastic layer 
sandwiched between two elastic layers. The problem was solved using two approaches, (1) Rayleigh beam 
theory and analyzed using the Ritz method, and (2) by using 2D plane stress elasticity based finite-element 
method. The damping in the layers was modeled using the complex modulus. Simply-supported, cantilever, 
and viscously supported boundary conditions were considered in this study. Simple trigonometric functions 
were used as admissible functions in the Ritz method. The key idea behind sandwich structure is to increase 
damping in a beam as affected by the presence of a highly-damped core layer vibrating mainly in shear. 
Different assumptions are utilized in the literature, to model shear deformation in the core layer. In this 
manuscript, we used FEM without any kinematic assumptions for the transverse shear in both the core and 
elastic layers. Moreover, numerical examples were studied, where the base and constraining layers were also 
damped. The loss factor was calculated by modal strain energy method, and by solving a complex 
eigenvalue problem. The efficiency of the modal strain energy method was tested for different loss factors in 
the core layer. Complex mode shapes of the beam were also examined in the study, and a comparison was 
made between viscoelastically and viscously damped structures. The numerical results were compared with 
those available in the literature, and the results were found to be satisfactory. 
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1. Introduction 

 

Extensive literature is available on damping of structural vibrations and noise by employing a 

viscoelastic layer sandwiched between two elastic layers. These types of sandwich structures are 

frequently used in the aerospace and automotive industry (Rao 2003, Lee 2008), and provide an 

effective mean of dissipating the noise and vibrational energy by using a soft and heavily damped 

viscoelastic material. The main idea behind this type of structures is that damping can be obtained 

due to highly damped shear vibrations in the viscoelastic core layer, sandwiched between two 

elastic layers. Transverse shear strain is usually not considered in the elastic layers. 
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Constrained layer damping has an advantage over unconstrained or free layer damping. In the 

unconstrained damping treatment, the viscoelastic material is subjected to extensional deformation 

during cyclic deformation, whereas in constrained layer damping, the material is subjected to shear 

deformation. Sun and Lu (1995) considered that this added advantage of constrained layer is due 

to the high difference in the moduli of the elastic and core layers. In the category of constrained 

layer damping, treatments in which the base and the constraining elastic layers have same 

thickness are considered to provide maximum damping due to high shear deformation (Abdoun et 

al. 2009). 

Rao and Nakra (1973) considered the longitudinal and rotary inertias in the core for both plates 

and beams having constrained layers. But they reported that while these inertias do not play a vital 

role when we consider homogeneous beams vibrating at low frequencies, these can be of 

significant importance if interest is in very high frequencies. For unsymmetric beams, these 

inertias have to be considered even for low frequencies due to inherent coupling between in-plane 

and transverse vibrations.  

Fasana and Marchesiello (2001) used the Rayleigh-Ritz method for constrained layer beams. 

They followed the work by Rao and Nakra (1973) by including the longitudinal and rotation 

inertias in the core layer. They used simple polynomials as admissible functions for different 

boundary conditions. Singhvi and Kapania (1994) reported the limitations of employing simple 

polynomials over trigonometric and other orthogonal functions. They showed that as the number 

of terms using simple polynomials is increased; the mass and stiffness matrices become 

computationally singular especially for higher modes but on the other hand, orthogonal functions 

do not suffer from such limitations. In view of this, we used trigonometric functions as admissible 

functions in the Ritz method to obtain the damped response.  

Rikards (1993) and Barkanov (1993) used beam elements to calculate the frequency and loss 

factors. Rikards used four superelements with third-order approximation, each element having 8 

nodes and 20 degree of freedom, with same transverse displacement through the thickness of the 

beam. Barkanov used four elements with 61 degrees of freedom to model a sandwich beam having 

different materials for the base and constraining layer. Use of higher order finite element helps in 

better approximation of damping ratios. Imaino and Harrison (1991) showed that by using the 𝑝-

version finite element method we can get good estimates of damping, especially for sandwich 

structures with lower core moduli. Johnson and Kienholz (1982) used NASTRAN commercial 

software for the three dimensional finite element analysis. They used quadrilateral and triangular 

plate elements for modeling the face layers and a solid element to model the core layer. Kosmatka 

and Liguore (1993) reported the use of finite element analysis for constrained layer damping, and a 

comparison between different methods used to calculate the damped response.  

Sainsbury and Zhang (1999) used the Galerkin element method for analyzing the damped 

sandwich beams. Bhimaraddi (1995) used non-linear variation to employ non-uniform shear stress 

variation through the thickness of the core. He concluded that this theory is suitable for structures 

having thick core layers. Hu et al. (2008) reviewed the classical and higher-order theories to model 

sandwich structures as well as the Zig-Zag models and concluded that all these theories include 

shear deformation in the kinematic formulation by using some assumptions. They also reported 

that higher-order theories take great effort to implement, but does not give better results as 

compared to the first-order shear deformation theory, in view of 3D elasticity equations. Sanliturk 

and Koruk (2013) developed a composite finite element with damping capability, employing 

rotational degrees of freedom. 

The Modal strain energy (MSE) method has been extensively used in literature as well as 
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commercially, to include viscoelastic properties in the finite-element analysis. MSE method was 

first used by Johnson and Kienholz (1982) to calculate the loss factor from undamped real modes. 

It is based on the assumption that damped, and undamped mode shapes of the sandwich structure 

are identical, and the natural frequency predictions of the sandwich structure is independent of the 

damping level (Koruk and Sanliturk 2012, Sanliturk and Koruk 2013). MSE method has some 

limitations because of the inherent assumption of similar mode shapes. Method of Complex 

eigenvalues (MCE) has also been used frequently in the literature. Rikards and Barkanov (1992) 

used MCE and reported that this method need more computation time as compared to the problem 

without damping.  

Koruk and Sanliturk (2011) reviewed both MSE and MCE methods, and concluded that 

complex eigenvalue method gives accurate results at the expense of huge CPU time; on the other 

hand, MSE is computationally efficient but better accuracy is not obtained for highly damped 

structures, although, the qualitative predictions of MSE are quite acceptable. We will investigate 

the ability of MSE method to predict the overall loss factor corresponding to different core loss 

factors, and compare it with MCE and published analytical results. Koruk and Sanliturk (2012) 

reported that the accuracy of MSE method is strongly dependent on the mean angle of the complex 

eigenmodes. For mean angle less than 5%, the error in the loss factor prediction by MSE was only 

3%. Koruk and Sanliturk (2014) used MSE method, because of its computational efficiency, to 

optimize general viscoelastically damped structures.  

Role of non-proportional damping on the complex mode shapes in structures has been reported 

in the literature. Koruk and Sanliturk (2013) developed a new complexity factor for general 

structures based on conservation of energy principle, for quantification of complex modes. They 

reported that the mode shape complexity in non-proportionally damped structures is generally 

higher than proportionally damped structures. Therefore, the notion of normal modes cannot be 

used in the modal analysis for highly non-proportionally damped structures. Koruk and Sanliturk 

(2014) reported that the accuracy of the MSE method decreases as the mode shape complexity 

increases in general damped structures. Lampoh, Charpentier, and Mostafa (2014) used homotopy-

based asymptotic numerical method, to determine the sensitivity of complex eigenvalue solution in 

damped sandwich structures to various perturbations. Adhikari (2004) developed a normalization 

procedure for complex modes, using a least-square error minimization approach.  

In the present paper, simple trigonometric functions are used as admissible functions in the Ritz 

method to obtain the damped response, and the convergence rate of these functions is compared 

with simple polynomial functions. The principle of virtual work is used along with the Rayleigh 

beam theory, by including the longitudinal and rotational inertias in the formulation. In most of the 

work available in the literature, the authors used either different beam theories or finite element 

with multi degree-of-freedom beam elements. In defining these beam theories and beam elements, 

different assumptions are made, such as shear is neglected in face layers. In the present paper, an 

investigation is made on the use of plane stress elasticity based finite element formulation to get 

improved natural frequencies and loss factor estimates. In this procedure, no kinematic 

assumptions are considered in the face as well as core layers. All the layers are modeled using 2D 

elements in the normal direction, and transverse shear strains are introduced in both elastic and 

core layers. Moreover, an effect on the damped response of the sandwich structure from using 4-

noded as well as 9-noded rectangular elements is investigated. The frequency and loss factor is 

calculated for each mode using both the method of complex eigenvalues and the modal strain 

energy method. The efficiency of the modal strain energy method is tested for different loss factors in the core 

layer. Complex mode shapes of the beam are studied in this paper and a comparison is made  
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Fig. 1 Schematic of the damped sandwich structure 

 

 

between viscoelastically and viscously damped structures.  

 

 

2. Rayleigh-Ritz method 
 

2.1 Strain and kinetic energies  
 

The assumptions made in this study, for the damped structure shown in Fig. 1, are as follows, 

1. The face and core layers are assumed to be homogenous and isotropic. 

2. Planes perpendicular to the middle plane before bending remains plane after deformation. 

3. Normal stresses and extension in the core layer are neglected. 

4. All displacements and rotations are considered small. 

5. All three layers undergo same deflection. 

6. The longitudinal displacements in the layers change linearly through the thickness as shown 

in Fig. 1. 

7. Along the interface, no slip condition and continuity of displacements is considered.  

The displacement field for the faces can be written as 

For Face 1:   '1 zwuu                            (1) 

For Face 3:   '3 zwuu                            (2) 

Where,   is the deflection of the beam and    and    are the longitudinal displacements (at 

middle surfaces) in layers   and   , respectively. The strain-displacement and constitutive 

relations for the three layers are as follows (Fasana and Marchesiello 2001) 

Face 1:    wzuxx
 1

1 ,     )( 11
1 wzuExx

                (3a,b) 

Face 3:    wzuxx
 3

3 ,    )( 33
3 wzuExx

                (4a,b) 
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Where      represent the derivative with respect to  -axis,   and   are the longitudinal stress 

and strain in the face layers,   and   are the shear stress and strain in the core layer, and   and 

  are the Young‟s and shear modulus, respectively. An asterisk denotes a complex quantity 

throughout this paper; for example            is the complex shear modulus with   as the 

loss factor of the core. One can also include the damping in the face layers, which are usually 

considered elastic, by using complex Young's moduli (Fasana and Marchesiello 2001), as we will 

see in one of the numerical examples, Example  . 

We can write the virtual work done by the internal stresses as 

  

V
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Where, 𝐶   ℎ  ℎ  /  ℎ2, 𝐴 is the cross sectional area and 𝐼 is the moment of inertia.  

Furthermore, by using d'Alembert's principle, the virtual work due to the inertial forces, 

including the longitudinal and rotary inertias, can be written as 
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Where,     𝐴   2𝐴2    𝐴  and     ,   2 ,     are the densities of layer 1, 2 and 3, 

respectively. In the absence of external forces, we can write by using Eqs. (7)-(8), the principle of 

virtual work as 
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In the above equation, we have assumed the harmonic vibrations of   and  . 

 

2.2 Admissible functions 
 

Now, we can apply Rayleigh-Ritz method to Eq. (9). We can express the displacements as a 

sum of admissible functions 
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Where „n’ is the number of modes. It should be noted that coefficients, the so-called generalized 

co-ordinates, a, b and c are arbitrary and independent. Putting these displacement functions in Eq. 

(9) and separating the coefficients of   ,    and    and equating them to zero, we can get the 

following set of equations 
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The above equations can be written in the matrix form as 

MxxK 
                              (14) 

Where,    2 and             . The stiffness matrix   is complex because of the inclusion of 

complex shear modulus and complex Young's modulus. 

We used trigonometric functions as the admissible functions. 

For the simply supported case 
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For the cantilever boundary conditions 
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3. Elasticity solution (the plane-stress case) 
 

The governing equations of motion are 
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Where,   and   are the displacements in the   and  -direction, respectively, as shown in Fig. 2. 

We assumed that every layer is isotropic, so the stress-strain relation can be written as 
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The square matrix in the above equation will be complex because of complex shear and 

Young's moduli for the core layer. This matrix will also be complex for the constraining layers 

when we will consider complex Young‟s modulus in the constraining layers. 

The strain-displacement relations are given as 
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By substituting Eqs. (19)-(20) into Eqs. (17)-(18), we obtain the following two equations 
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Deriving the weak form and using the test function (Reddy 2005), we obtain 
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Where,   
 are the elemental interpolation functions used in the finite element procedure. The 

stiffness matrix obtained will be complex in nature. We used bilinear quadrilateral and biquadratic 

elements along the length and thickness of each layer, respectively. 
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Fig. 2 Schematic of partial sandwich beam with 4-noded elements in face and core layers 

 

 

4. Frequency and loss factor calculation 
 

After following any of the procedures discussed above, we can come up with a system of 

equations, which we can write in the matrix form as 

0 
xKxM                               (28) 

 

4.1 Method of complex eigenvalues 
 

By looking at Eq. (28), we see that the stiffness matrix is complex, because of the inclusion of 

complex shear and Young's moduli. We can solve this equation by using the standard way of 

solving a real eigenvalue problem, but in this case we will get complex eigenvalues and 

eigenvectors. Johnson and Kienholz (1981) reported that the complex modes we get are orthogonal 

in nature and we can get uncoupled equations of motion. They also found that this method costs 

three times more than the corresponding undamped eigenvalue problem. Kosmatka and Liguore 

(1993) too found this method to be more accurate but at the same time more computationally 

expensive because of the complex form of the problem. Method of complex eigenvalues assumes 

displacements to be harmonic in nature (Rikards 1993) and to be of the form 

tiexx
  

0                               (29) 

Where,    is the complex frequency and  0
  is complex eigenvector. For free vibration, we can 

write Eq. (28) as 

  00  
xKM                           (30) 

Where,        2 is the complex eigenvalue. By solving the above system of equations, we get 

complex eigenvalues and complex frequencies for the damped structure 

  i*
                              (31) 

  i*
                              (32) 

The loss factor  𝑛 corresponding to each frequency can be obtained by the following ratio 

(Rikards 1993) 

n

n
n







                                 (33) 
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Where,  𝑛 and  𝑛
  are real and imaginary parts of the complex eigenvalue  𝑛

 , respectively. It is 

also possible to calculate the loss factor from the complex frequencies    (Rikards 1993), as 

follows 








 





 arctan2                             (34) 

Where,   and    are real and imaginary parts of the complex eigenvalue   , respectively. 

 

4.2 The modal strain energy method 
  

Johnson and Kienholz (1981) used this method with NASTRAN commercial engineering 

software to determine the modal loss factor. The main idea behind this method is that one does not 

have to solve the complex eigenvalue problem, the lost factor can be found from the undamped 

real modes. We can use these undamped modes to obtain energy dissipated in the damped 

structure. Rikards (1993) reported that this method is an approximate method and for small 

damping the difference between undamped frequencies and modes, and damped frequencies and 

modes is relatively small. This will save us time and computational cost provided that the modal 

coupling is negligible (Kosmatka 1993). Moreover, this method assumes that the damping in 

elastic layers is very small as compared to damping in viscoelastic layer (Johnson and Kienholz 

1981). We will use this method only with the plane stress case. Rikards (1993) reported that by 

using the real undamped modes, we can calculate the energy dissipated (Δ𝑈  in one cycle of 

steady state vibrations and elastic strain energy (𝑈) using 

nn
xxU T

00 K  ,     
nn

xxU T
00

2

1
K                     (35) 

Where,   is the real and    is the imaginary part of the complex stiffness matrix   and n 

denotes the  𝑛𝑡ℎ mode. Now the loss factor can be calculated from the relation (Rikards 1993): 

nn

nn

xx

xx

U

U
T

T

n

00

00

2 K

K






                           (36) 

 
 
Table 1 Modal frequencies and loss factors for a simply-supported sandwich beam 

 Mode No. 1 2 3 4 

Present study  𝑛             𝑛     /   1206 4638 10345 18318 

  𝑛     3.57 1.07 0.50 0.28 

Present study  𝑛             𝑛     /   1206 4639 10345 18318 

  𝑛     3.56 1.07 0.50 0.28 

Present study  𝑛              𝑛     /   1206 4639 10345 18318 

  𝑛     3.57 1.07 0.50 0.28 

Present study  𝑛              𝑛     /   1206 4639 10345 18318 

  𝑛     3.56 1.07 0.50 0.28 

Fasana and Marchesiello (2001)         𝑛     /   1204 4631 10328 18278 

 𝑛       𝑛     3.43 1.07 0.50 0.28 
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Table 2 Natural frequencies of simply-supported sandwich beam 

 Method of complex eigenvalues Modal strain energy method  

Mode Ritz method 4 Node 9 Node Rikards* 4 Node 9 Node Rikards* Analytical* 

1 904.42 910.75 897.49 1001 850.91 836.00 924 878 

2 2488.96 2544.06 2466.83 2723 2491.33 2410.91 2574 2458 

3 4948.08 5066.12 4870.07 5256 5015.35 4818.51 4839 4927 

*Rikards (1993) 

 
Table 3 Loss factor of simply-supported sandwich beam 

 Method of complex eigenvalues Modal strain energy method  

Mode Ritz method 4 Node 9 Node Rikards* 4 Node 9 Node Rikards* Analytical* 

1 0.57 0.48 0.50 0.38 0.54 0.55 0.45 0.55 

2 0.34 0.32 0.34 0.30 0.33 0.35 0.34 0.34 

3 0.20 0.20 0.20 0.20 0.20 0.21 0.29 0.20 

*Rikards (1993) 

 
 
5. Results 

 

First, we used the Rayleigh-Ritz method to compare our results with Fasana and Marchesiello 

(2001) to validate our code. Fasana and Marchesiello also used Rayleigh-Ritz method to solve 

their problem but they used simple polynomials as admissible functions. We used trigonometric 

functions and found that we can get a good estimate of lower frequencies and the loss factors with 

lesser number of modes. Fasana and Marchesiello used 20 modes and we only used 4 modes to get 

the results with required accuracy as can be seen in Table1. Of course, we will have to use higher 

modes for better approximating the higher frequencies. The material and geometric properties used 

for this beam were; h1=0.5 mm; h3=5 mm; E1=E3=207 GPa; η1=η3=0; h2=2.5 mm; G2=4 MPa; 

η2=0.38; L=242.5 mm. 

 
5.1 Example 1: Sandwich beam with pure elastic face  
 
5.1.1 Simply-supported sandwich beam 
We modeled simply-supported beam with the same material properties as used by Rikards 

(1993), namely C2A. The C2A properties are given as h1=h3=3 mm; E1=E3=45.54 GPa; 

ρ1=ρ3=2040 Kg/m3; ν1=ν3=0.33; η1=η3=0; h2=3 mm; E2=0.0159 GPa; ρ2=1200 Kg/m3; ν2=0.45; 

η2=1; b (width) =15 mm; L=270 mm. The face layers are considered completely elastic, i.e., 

without complex Young‟s modulus. The core layer is considered viscoelastic with complex shear 

modulus in which the loss factor (η) does not change with frequency. 

We investigated the first three natural frequencies for the simply supported beam using the 

Rayleigh-Ritz method and using plane stress elasticity with 1200 bilinear quadrilateral (4 node) 

elements and 300 biquadratic (9 node) elements. Frequency results are shown in Table 2 and the 

resulting loss factor results are shown in Table 3. We compared our results with Rikards (1993), 

who used four superelements with third-order approximation, each element having 8 nodes and 20 

degree of freedom. Rikards used both method of complex eigenvalues (MCE) as well as the modal 

strain energy method (MSE) to calculate the frequencies and loss factors. He also reported  
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(a) Convergence using 4 nodes (b) Convergence using 9 nodes 

Fig. 3 Convergence plots for sandwich beam with pure elastic faces 

 
Table 4 Natural frequencies for first three modes of cantilever beam with different core loss factors 

 𝑐 Ritz method MSE MSEa MCE MCEa ANMb Analyticalc 

0.1 64.6 64.1 64.1 64.1 64.1 64.2 64.1 

 
296.7 296.5 296.6 296.6 296.6 296.9 296.4 

 
744.6 743.8 744.3 743.8 744.4 745.5 743.7 

0.6 66.2 64.1 64.1 65.7 65.5 65.6 65.5 

 
299.9 296.5 296.6 299.8 299.1 299.5 298.9 

 
747.1 743.8 744.3 746.4 746.2 747.3 745.5 

1 68.4 64.1 64.1 67.8 67.4 67.5 67.4 

 
304.8 296.5 296.6 304.7 303.0 303.3 302.8 

 
751.6 743.8 744.3 750.8 749.4 750.4 748.6 

1.5 71.1 64.1 64.1 70.4 69.9 70.0 69.9 

 
312.3 296.5 296.6 312.3 309.1 309.4 308.9 

 
759.8 743.8 744.3 759.0 755.2 756.2 754.0 

aBilasse et al. (2010); bDaya and Potier-Ferry (2001); cSoni (1981) 

 

 

analytical results based on the sixth order theory derived by Mead and Marcus (1969). Our results 

are closer to the analytical values reported by Rikards, than those obtained by Rikards himself.  

The frequencies predicted by MCE are a bit higher than undamped frequencies but on the other 

hand the loss factors predicted by MSE are lower than those predicted by MCE. Loss factors 

obtained using 300 biquadratic elements are higher than using 1200 bilinear quadrilateral elements 

but for the natural frequencies opposite is the case. Convergence of the first frequency for four and 

nine node elements is shown in Fig. 3. It is noted that by using a high degree of approximation for 

the elasticity based FEM, we can get better estimates of the frequencies that are close to the 

analytical results given by Rikards.  

The CPU time for using MCE was 350 seconds as compared to 10 seconds for MSE for the 

simply supported case. The CPU time was calculated using 1200 quadrilateral elements. The 

reason for difference in time between the two methods is that we have to solve the entire complex 

eigenvalue problem in MCE for getting the first three loss factors and frequencies, on the other 

hand MSE solved for only first three loss factors and we need to solve only the undamped real 

eigenvalue problem. 
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Table 5 Loss factor ratio (ηb /ηc) for first three modes of cantilever beam with different core loss factors 

 𝑐 Ritz method MSE MSEa MCE MCEa ANMb Analyticalc 

0.1 0.292 0.283 0.283 0.281 0.281 0.281 0.282 

 
0.242 0.242 0.243 0.242 0.242 0.242 0.242 

 
0.154 0.154 0.154 0.154 0.154 0.153 0.154 

0.6 0.256 0.283 0.283 0.246 0.246 0.246 0.246 

 
0.232 0.242 0.243 0.232 0.232 0.232 0.232 

 
0.153 0.154 0.154 0.152 0.152 0.152 0.153 

1 0.212 0.283 0.283 0.202 0.202 0.202 0.202 

 
0.217 0.242 0.243 0.217 0.217 0.217 0.218 

 
0.150 0.154 0.154 0.150 0.150 0.150 0.150 

1.5 0.162 0.283 0.283 0.153 0.153 0.153 0.153 

 
0.197 0.242 0.243 0.197 0.197 0.197 0.197 

 
0.146 0.154 0.154 0.146 0.145 0.145 0.146 

aBilasse et al. (2010); bDaya and Potier-Ferry (2001); cSoni (1981) 

 

 

5.1.2 Cantilever sandwich beam with different core loss factors 
We modeled a cantilever beam with pure elastic face layers with material properties given as 

h1=h3=1.524 mm; E1=E3=69 GPa; ρ1=ρ3=2766 Kg/m3; ν1=ν3=0.3; η1=η3=0; h2=0.127 mm; 

E2=0.001794 GPa; ρ2=968.1 Kg/m3; ν2=0.3; b (width)=12.7 mm; L=177.8 mm, for various core 

layer loss factors. We assumed that the complex stiffness is constant and does not change with 

frequency and thus it leads to a linear complex eigenvalue problem (Bilasse et al. 2010). This 

problem has been extensively studied in the literature (Soni 1981, Daya and Potier-Ferry 2001, 

Lee 2008, Abdoun et al. 2009, Bilasse et al. 2010). 

We investigated the first three frequencies and the corresponding loss factors (ηb) for the 

cantilever beam using the Rayleigh-Ritz method with 12 modes and the FEM elasticity method 

with 300 elements. Natural frequencies (Hz) are reported in Table 4 and the loss factor ratios 

(ηb/ηc) for the beam are shown in the Table 5 for different core loss factors (ηc).  

It is evident from the results that modal strain energy method cannot be used with structures 

which have a high loss factor as predicted by Johnson and Keinholz (1981) and reported by 

Bilasse et al. (2010). The MSE approach underestimates the frequencies and overestimates the loss 

factors for the beams with a high core loss factor. Our results for the MSE were closed to those 

reported by Bilasse et al. (2010). We also compared our results from the plane stress finite element 

formulation with Daya and Potier-Ferry (2001), who assumed plane strain conditions with 1226 

degree of freedom over the beam. The frequency and loss factors estimates were in good 

agreement. Daya and Potier-Ferry (2001) devised a new numerical method, for solving the 

nonlinear complex eigenvalue problem, called asymptotic numerical method (ANM) by using a 

perturbation technique. Our results calculated by using MCE were closed to ANM, because there 

was no nonlinearity in this example and complex stiffness was considered constant. The results 

obtained by using method of complex eigenvalues were in good agreement with Soni (1981), who 

reported the analytical results obtained by using sixth order differential equation. 

 

5.2 Example 2: sandwich beam with damped face layers  
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We modeled simply supported and cantilever beam, with the following material and geometric 

properties, as used by Barkanov (1993), h1=1.5 mm; E1=69 GPa; ρ1=2760 Kg/m3; ν1=0.32; 

η1=0.033; h2=0.5 mm; E2=0.00176 GPa; ρ2=980 Kg/m3; ν2=0.49; η2=0.87; h3=4 mm; E3=36 GPa; 

ρ3=1900 Kg/m3; ν3=0.28; η3=0.004; b (width)=6 mm; L=600 mm. In this example, we considered 

the elastic layers to have complex Young's modulus. The core layer is considered viscoelastic with 

complex shear modulus in which the loss factor (η) does not change with frequency. 

We investigated the first five frequencies and the corresponding loss factor for both simply 

supported and cantilever beams using the Rayleigh-Ritz method and the FEM elasticity case. 

Frequency results are shown in Table 6 and loss factor results are shown in Table 7. We compared 

our results with Barkanov (1993). Barkanov used four finite elements with 61 degree of freedom 

for the simply supported beam and ten finite elements with 150 degree of freedom. Barkanov used 

Lanczos method for solving the complex eigenvalue problem. Frequencies obtained by using the 

two methods are lower than Barkanov (1993). The loss factor estimates were higher than that of 

Barkanov for the simply supported boundary conditions and were close to the results obtained for  

 

 
Table 6 Natural frequencies for sandwich beam with damped face layers 

 
Method of complex eigenvalues Energy method 

Barkanov* 
Ritz method 4 Node 9 Node 4 Node 9 Node 

Simply- 190.50 191.45 179.51 183.71 171.10 183.40 

Supported 562.01 621.00 561.03 611.33 549.75 577.90 

 1141.86 1288.30 1140.00 1281.45 1131.77 1170.30 

 1942.91 2211.53 1937.36 2206.45 1931.38 1999.90 

 2969.66 3391.79 2955.79 3387.02 2950.57 3101.30 

Cantilever 73.98 77.26 72.87 74.92 70.38 71.60 

 344.49 377.90 344.47 369.05 334.79 335.20 

 839.95 942.05 838.92 931.18 826.17 820.80 

 1529.71 1740.59 1525.82 1733.20 1516.84 1504.60 

 2447.26 2803.87 2438.15 2798.05 2431.04 2415.10 

*Barkanov (1993) 

 

Table 7 Loss factor for sandwich beam with damped face layers 

 Method of complex eigenvalues Energy method  

 Ritz method 4 Node 9 Node 4 Node 9 Node Barkanov* 

Simply- 0.394 0.210 0.238 0.254 0.290 0.182 

Supported 0.239 0.187 0.226 0.194 0.237 0.188 

 0.151 0.120 0.150 0.122 0.152 0.132 

 0.100 0.081 0.101 0.082 0.101 0.092 

 0.071 0.059 0.072 0.060 0.073 0.067 

Cantilever 0.150 0.120 0.140 0.160 0.180 0.147 

 0.220 0.190 0.220 0.210 0.240 0.209 

 0.180 0.150 0.180 0.160 0.190 0.167 

 0.130 0.100 0.130 0.100 0.130 0.111 

 0.090 0.070 0.090 0.070 0.090 0.077 

*Barkanov (1993) 
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(a) 1st Mode (b) 2nd Mode 

  
(c) 3rd Mode (d) 4th Mode 

  
(e) 5th Mode (f) 6th Mode 

Fig. 4 The real and imaginary parts of mode shapes for S-S sandwich beam with damped face layers 

 

 

cantilever boundary conditions. It turns out that if we use higher approximation for the elasticity 

case we can get higher loss factors. The CPU time for using MCE was 763 seconds as compared to 

24 seconds for MSE using 1600 quadrilateral elements. First six mode shapes for the simply-

supported (S-S) beam using Rayleigh-Ritz method are shown in Fig. 4 with real and imaginary 
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parts. We note that the real and imaginary parts of the each mode have the same shape but different 

amplitude as reported by Krenk (2004), Bilasse et al. (2010). Moreover, mode shapes for u1 and u3 

were different because of the different material and thickness used. 

 

5.3 Example 3: investigation of complex mode shapes of a viscoelastically damped 
sandwich beam with end viscous damper 

 

We investigated the complex mode shapes in detail for the above two examples and the 

numerical problem considered by Barkanov (1994). We found out that although the eigenvalues 

and eigenvectors are complex in the case of constrained viscoelastic layer damping, we still get 

stationary nodes unlike non-proportional viscously damped structures. Prater and Singh (1990) 

reported that the presence of lumped viscous dampers in the structure move nodes during the 

cyclic oscillations, and we do not get a single point on the structure where all the displacements go 

to zero. This lead us to study a cantilever viscoelastic beam with a viscous damper at the free end 

as shown in Fig. 5, to see how a lumped damper at the boundary can alter the nodal displacements 

during cyclic oscillations in a damped sandwich beam. 

Barkanov (1994) used a damping coefficient value C=5.00E-04N.s/mm for the end viscous 

damper, but we noticed that as we increase the value above 5.00E-05N.s/mm, the first damped 

frequency start decreasing and eventually go to zero at C=5.00E-04N.s/mm. This lead us to study a 

homogeneous beam with an end viscous damper and its equivalent single degree of freedom 

(SDOF) model included in Appendix. It can be concluded that as we increase damping coefficient 

(C) above critical damping value, the imaginary part of the complex eigenvalue goes to zero. This 

implies that the damped natural frequency vanishes at the critical value of C. 

 

 

 

Fig. 5 Schematic of a viscoelastic sandwich beam with end viscous damper 

 

 

Fig. 6 Displacement of viscoelastic sandwich cantilever beam at different times of cyclic oscillations 

71



 

 

 

 

 

 

Naveed Ahmad and Rakesh K. Kapania 

 

 

Fig. 7 Displacement of sandwich cantilever beam with end viscous damper at different times of 

cyclic oscillations, with no material damping  =0 

 

 

Fig. 8 Displacement of viscoelastic sandwich cantilever beam with end viscous damper at 

different times of cyclic oscillations 

 

 

The viscoelastic beam considered by Barkanov (1994) has the following geometric and 

material properties: h1=1.45 mm; E1=127 GPa; ρ1=1900 Kg/m3; η1=0.0029; h2=0.127 mm; E2= 

0.00176 GPa; ρ2=980 Kg/m3; ν2=0.49; η2=0.87; h3=0.254 mm; E3=69 GPa; ρ3=2760 Kg/m3; 

ν3=0.32; η3=0.033; W (width)=19.05 mm; L=203.2 mm. 

We first considered a viscoelastic sandwich beam without a lumped viscous damper. We 

noticed that we get nodes for each mode, along the length of the beam, for which displacement 

goes to zero during cyclic oscillations. Figure 6 shows displacements for 2nd mode during one half 

cycle. Next, we neglected the loss factors in each layer of the cantilever beam and applied a 

viscous damper at the right end as shown in Fig. 5. We noticed that in this case, we do not get a 

single point along the beam where all the displacements go to zero during one half cycle as shown 

in Fig. 7. Moreover, it was noticed that the dispersion of zero displacement points, for higher 

modes, is wider near the right end of the beam, where viscous damper is mounted. Viscous 

damping value was considered to be 3.00E-5N.s/mm. 

As a last case, we considered viscoelastic damped sandwich beam using both loss factor in each 

layer and right end viscous damper. As can be seen from Fig. 8, we again do not get stationary 
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points along the beam and the dispersion of zero displacement points was wider than when only a 

viscous damper was considered. It was also found that for higher modes this dispersion becomes 

smaller and we again start seeing stationary nodes along the length of the beam. This can be a 

good topic for future research in this area. 

 

 

6. Conclusions 
 

We investigated beams in the presence of a viscoelastic layer sandwiched between two elastic 

layers. First, the problem was formulated using Rayleigh beam theory and analyzed using Ritz 

method. We obtained good estimates of natural frequencies and loss factors by using trigonometric 

functions as compared to using simple polynomials, by using less number of terms in Ritz method. 

The damping in the layers was modeled using complex modulus. Secondly, the sandwich structure 

was formulated and analyzed using 2D-plane stress elasticity based finite-element method, without 

any assumptions for the transverse shear strains. We found that higher degree elements used in the 

FE elasticity analysis, gives us better estimates of loss factor and natural frequency unlike using 

beam elements, especially in the problem in which we consider complex stiffness in the elastic 

layers. The natural frequencies and loss factor were calculated using modal strain energy method 

and method of complex eigenvalues. MCE gives accurate results but with higher computational 

cost, especially when a fine mesh in considered. MSE is a cost-effective method but for damping 

treatments with high loss factors, it overestimates the overall damping of the system.  

We observed that although the eigenvalues and eigenvectors are complex in the case of 

constrained viscoelastic layer damping, we still get stationary nodes unlike non-proportional 

viscously damped structures. Despite the fact that constrained layer treatment can be quite 

damped, mode shapes are close to normal modes, and it can be concluded that viscoelastic 

damping is very close to being proportional. On the other hand, in the case of a viscoelastic 

damped sandwich beam with end viscous damper, we found that we do not get a single point along 

the length of the beam where the displacement goes to zero at different times during cyclic 

oscillations, i.e. the concept of having a node at a point at all times does not exist. Moreover, the 

mode shapes of the lower modes of a beam with a viscous damper at the free end are more 

sensitive to the viscous damping coefficient. The complexity of a mode shape is smaller for higher 

modes of the beam with a viscous damper at the end.    
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Appendix: First eigenvalue of a cantilever beam with end viscous damper 
 

 

Fig. 9 Schematic of a homogeneous cantilever beam with end viscous damper and its 

equivalent SDOF model 

 

  
(a) Real part (b) Imaginary part 

Fig. 10 The real and imaginary parts of the first eigenvalue 

 

 
A homogeneous aluminum beam as shown in Fig. 9 was considered with 1m length and 0.01m 

width. The value of damping coefficient C was increased from 1.00E-05 to 7N.s/m. The real and 

the imaginary part of the first eigenvalue are shown in Fig. 10. As the value of C is increased, the 

imaginary part which is the damped natural frequency gradually goes to zero, and the real part 

grows. In order to investigate this more, we considered an equivalent SDOF model of the 

cantilever beam with end viscous damper as shown in Fig. 9. The equivalent stiffness and mass 

considered are shown below. It was noticed that the imaginary part goes to zero as soon as the 

value of C approaches the critical value of 6.735.  

Equivalent Stiffness:
3/3 LEIKeq   

Equivalent mass: 2357.0eqm     Critical damping: eqeqc KmC 2   
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