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Abstract.  Linear array imaging sensors are widely used in remote sensing satellites. The final products of an 
imaging sensor can only be used when they are geometrically, radiometrically, and spectrally calibrated. Therefore, at 
the first stages of sensor design, a detailed calibration procedure must be carefully planned based on the accuracy 
requirements. In this paper, focusing on inherent optical distortion, a step-by-step procedure for laboratory geometric 
calibration of a typical push-broom satellite imaging sensor is simulated. The basis of this work is the simulation of a 
laboratory procedure in which a linear imager mounted on a rotary table captures images of a pin-hole pattern at 
different angles. By these images and their corresponding pinhole approximation, the correction function is extracted 
and applied to the raw images to give the corrected ones. The simulation results illustrate that using this approach, the 
nonlinear effects of distortion can be minimized and therefore the accuracy of the geometric position of this method 
on the image screen can be improved to better than the order of sub-pixel. On the other hand, the analyses can be 
used to proper laboratory facility selection based on the imaging sensor specifications and the accuracy. 
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remote sensing satellite 

 
 
1. Introduction 
 

Geometric calibration is one of the most important steps for optical remote sensing products. 

Since 1945, when the demand for precision cameras increased, the development of camera 
calibration methods has also progressed. Geometric calibration is usually in one of three forms: 
Plumb-Line Calibration, self-calibration, and on-the-job calibration (Lerma and Cabrelles 2007). 

Various techniques have been developed for optical camera calibration which can be divided 
into two general categories. The first, are methods for directly measuring the optical distortion 
such as goniometer, multi-collimator base and stellar methods (Brown 1968, Clarke and Fryer 
1998, Centre 2003). The second type is based on calculating parameters of the initially given 

mathematical calibration model such as projective invariant-based methods (plumb-line (Atkinson 
1996, Clarke et al. 1998), cross-ratio (Li et al. 2014, Sun et al. 2016, Liao et al. 2019), vanishing 
points (Grammatikopoulos et al. 2007)) and targets resection (on-the-job calibration and self-
calibration5 (Atkinson 1996)). 

 
Corresponding author, Ph.D., E-mail: j.haghshenas@isrc.ac.ir 



 

 

 

 

 

 

Reza Sh. Hafshejani and Javad Haghshenas 

 

Fig. 1 Schematic of goniometer technique 

 

 
Goniometer method: The goniometer technique includes placing a precise grid pattern (often 

referred to as a reseau plate) on the focal plane of the camera whereas backward illuminated (Fig. 
1). Eventually, the angle between the image of the grid pattern were projected out into object space 
is measured in details (Hallert 1960). 

Multi-collimator: In 1950, Washer et al. presented an arrangement of 25 collimators in 7.5-
degree angular steps that provided acceptable values for distortion coefficients, focal length, 

resolution, prism effect, and principal point position (Washer and Case 1950). During those years, 
Carman was able to determine the position of the principal point and the focal length with an 
accuracy of 10 μm (Carman and Brown 1961).  

Stellar calibration: This method uses the star specifications such as positions in Inertial 
coordinate system. The captured image (which contains hundreds of stars) will compare with 
standard star catalogues such as Hipparcos to extract the detailed geometric calibration matrix. The 
accuracy of this method is about several arcsecond but the processing time is too high and also the 

atmospheric effects must be considered in details (Schmid 1974). 
Plumb-line: This method, which involves imaging parallel lines with detailed specified 

distances, is a suitable method for extracting distortion parameters. Setting up simplicity is one of 
the important advantages of this method in such a way that it does not require any high technology 
field equipment (Duane 1971). On the other hand, complicity of measuring the principal points 
offset from the center of the fiducial axes system is one of the important disadvantages of this 
method which leadings to a significant error in the estimation of the decentering distortion 
coefficients (Clarke et al. 1998). 

Cross-ratio: Zhang proposed a method for calibrating the camera in 2003. He used cross-ratios 
technique for geometrical calibration of a camera system. The method was based on capturing a 
picture of a chessboard-pattern and selecting any collinear four points to calculate the two cross-
ratios for object and image space, respectively. Their difference is attributed in distortion (Clarke 
et al. 1998). In later years, this method was improved by Ricolfe-Viala and Sánchez-Salmerón 
(2010). 

Vanishing Points Method: This method is very simple to implement using the four corner points 

of a rectangular shape target which is lying in a common plane (Fig. 2). The image of these targets 
produces its perspective projection in image-space. In projective geometry, the view of rectangle  
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Fig. 2 Schematic of vanishing points 

 
 

constitutes two vanishing points. Considering the origin in the projection center, these points 
define two perpendicular vectors in Euclidean coordinate system. So, their dot product has to be 
zero. It would be a conditional equation. Following this method guidelines, this setup could be 
established for more different views. This set of equations could be solved easily by least square 
method (Tan et al. 1995, Pajdla and Urban 1999). 

Targets Resection methods (Self-calibration & on-the-job calibration), These methods use well-
defined projective equations to calculate the deviation of the interior geometry of the camera from 
its ideal central projection (pinhole approximation). These equations, actually, define the straight 
transform relation between targets in object-space in a 3D cartesian coordinate system to the 2D 
image-space. Therefore, the calibration procedure in these methods, is based on tacking enough 
images of the target from different viewing angles (different setup geometry).   

If the target’s positions are accurately known in 3D cartesian coordinate system (using GPS or 
Theodolite), they are known as “Control Points”. These kinds of targets will be used for “on-the-

job” calibration. For “self-calibration” method, if the geometry configuration of the camera system 
is known accurately along with the additional calibration polynomial, there is even no need for a 
known 3D Cartesian coordinates of targets (Cramer 2004).  

Linear array imaging (push-broom) payloads is widely used in remote sensing. The remote 
sensing payloads must undergo spectral, radiometric and geometric pre-launch and in-flight 
calibrations (Zhang et al. 2014, Tansock et al. 2015). Push-broom imaging has many benefits 
rather than other types of satellite imaging techniques, mostly due to the fact that each line of the 

image has its independent geometry and can be solved separately. Platform’s low frequency 
vibration is also another source of error which geometrically affects an image (Haghshenas 2015, 
Haghshenas 2015, Haghshenas 2017). 

Laboratory calibration of an infinite-focusing linear remote sensing (RS) cameras required an 
implementation of real-operating conditions in the laboratory, along with a proper mathematical 
model to acquire the calibration parameters. 

In 2000 a calibration program was developed for the prototype model of the TLS (Three-Line 
Scanner) imaging system. This imaging system had three linear detectors for using push-broom 

imaging technique (based on laboratory calibration) (Chen et al. 2003); In the TLS project, the 
SMAC (Simultaneous Multi-frame Analytical Calibration) model developed by USGS was used 
(Woltring 1980, Merchanta et al. 2004). SMAC model procedure contains three main parts:1-
principal points 2-radial distortion equation 3- decentering distortion equation. Different and more 
complicated models also developed based on SMAC model for TLS cameras which mostly used 
the auxiliary data from flight equipment (UAV or Satellites) which is beyond of the scope of this  
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Fig. 3 Effect of radial distortion: (a) pin cushion distortion-frame camera (b) barrel distortion- 

frame camera (c) pin cushion distortion-linear array camera (d) barrel distortion-linear array camera 

 
 

paper. 
In this manuscript, we consider a linear detector which is installed at the focal plane array 

(FPA) of a high-resolution optic. Therefore, we must consider a laboratory calibration procedure 
which can be effective for extracting distortion coefficients, focal length, detector slope, and 

position of the principal point relative to the center of the detector with very high accuracy. As our 
detector array is linear type and the satellite imaging technique is push-broom, the laboratory setup 
includes: a high quality long focal length collimator (to simulate the image at infinity), a highly 
sensitive rotary table, a pinhole target and a calibrated light source. The payload under test, 
captures images of the pinhole at different angles of the field, which can be used to extract the 
parameters required for geometric calibration using a mathematical model. 
 

 

2. Mathematical model of geometric calibration 
 

2.1 Distorsion 
 

Distortion is the only aberration that does not affect the image in terms of sharpness or focus. 
This aberration has the effect of creating a geometric nonlinear effect on the image coordinate 
plane. Distortion can be divided into three categories: Radial, Decentering, and Prism distortions 

(Hunt 1997). 
• Radial Distortion: Radial distortion causes any image to be compressed or stretched by 
moving toward the edges of the field of view; In other words, each point of the image deviates 
from its ideal position (Bentley 2012). The effect of this type of distortion on a typical frame 
array imager and linear array imager is in the form of a cushion or barrel shown, (Fig. 3). In the 
(1), the coefficients k1, k2, and k3 are related to this distortion. 

{
∆𝑥𝑅𝐷 =  𝑥𝑖𝑝(𝑘1𝑟𝑖

2 + 𝑘2𝑟𝑖
4 + 𝑘3𝑟𝑖

6)

∆𝑦𝑅𝐷 =  𝑦𝑖𝑝(𝑘1𝑟𝑖
2 + 𝑘2𝑟𝑖

4 + 𝑘3𝑟𝑖
6)
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𝑥𝑖𝑝 = 𝑥𝑝 − 𝑥𝑖 , 

𝑟𝑖 = √(𝑥𝑝 − 𝑥𝑖)2 + (𝑦𝑝 − 𝑦𝑖)2 (1) 

Where ΔxRD and ΔyRD are radial part of distortion and (xp, yp) is the position of principal point, 
and (xip, yip) is the position of point i with respect to principal point.  

For cameras and projection systems, 2% distortion is an acceptable value  (Walker 1994). But 
in photogrammetry, which requires high accuracy, 2% distortion will affect the results validity, 
and therefore distortion is an important issue which needs to be addressed correctly (Hunt 1997). 

• Decentering distortion: This distortion is present in multi-lens systems and is due to the lack 

of alignment of the optical center of different system elements from manufacturing to the 
assembly phase (Fig. 4). Both radial and tangential terms are involved in distortion (Clarke et 
al. 1998). In the (2), the coefficients p1 and p2 are related to this distortion. 

{
∆𝑥𝐷𝐷 =  (2𝑥𝑖𝑝

2 + 𝑟𝑖
2)𝑝1 + 2𝑥𝑖𝑝𝑦𝑖𝑝𝑝2

∆𝑦𝐷𝐷 =  (2𝑦𝑖𝑝
2 + 𝑟𝑖

2)𝑝2 + 2𝑥𝑖𝑝𝑦𝑖𝑝𝑝1

 (2) 

Where ΔxDD and ΔyDD are decentering part of distortion. 
• Thin prism distortion: The term comes from the fact that this aberration can be modelled by 
adding the mathematical model of a thin prism to the optical system (Clarke et al. 1998). This 
distortion originates from a small angle in the lens or sensor mounted on the focal plane (Duane 
1971, Faig 1975, Wang et al. 2008). This distortion results from defective lens assembly or 
design, and like decentering distortion, occur in multiple lens systems (Weng et al. 1992). Both 
radial and tangential terms are involved in distortion too. 

 
 

 

Fig. 4 (a) Lens decenter and lens tilt, (b) Tangential distortion- frame camera, and (c) Tangential 
distortion-linear array camera 
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Fig. 5 Impact of a change in the camera constant on the xi pixel position. Δf: changes in focal length. pp: 

principal point 

 
 
Although radial, decentering, and thin prisms distortions can be formulated mathematically in 

an independent form, they are no longer independent in terms of physical properties (Wang et al. 
2008). Radial and decentering distortions are the most effective systematic distortions in optical 
systems (Duane 1971), so in the following sections, the mathematical model of distortion resulting 
from radial and decentering terms will be described. 

 
2.2 Principal point displacement and camera constant 

 
In the perspective model, the camera is considered ideal. Hence the image center in this model 

is known as the principal point (pp). Usually due to an assembly error, the detector center is not 
located on the optical center and therefore the PP is drifted (Δxpp, Δypp) (Atkinson 1996), (Fig. 5). 

Camera constant is equal to the focal length of the camera in focus mode at infinity. If there is a 
change in the focal length camera constant along the detector line, it will affect the scale of the 

image coordinate axis, (Fig. 5). Using (4), the drift resulting from this scale change can be 
calculated (Atkinson 1996). 

𝑥𝑝 − 𝑥𝑖

𝑓
=

∆𝑥𝑓

∆𝑓
 (3) 

∆𝑥𝑓 = −(𝑥𝑖 − 𝑥𝑝)
∆𝑓

𝑓

𝑥𝑝 − 𝑥𝑖

𝑓
=

∆𝑥𝑓

∆𝑓
 (4) 

 

2.3 Detector line angle 
 

Detector lines is usually installed perpendicular to along-track direction in satellite imaging 
payloads, but may not be exactly perpendicular due to assembly errors. Hence, in the process of  
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Fig. 6 Errors in the installation of the detector lines 

 

 

Fig. 7 Geometrical calibration simulation procedure 

 
 

geometric calibration, the installation angle of each of them needs to be calculated with acceptable 

accuracy, (Fig. 6). The installation angle of detectors can be obtained by (6) for each pixel of line. 

𝑦𝑖𝑝 = 𝑃1𝑥𝑖𝑝 + 𝑃2 (5) 
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Detector angle = 𝑃1(
180

𝜋
) (6) 

 

 

3. Geometric calibration simulation procedure 
 

This method is designed to be used in the layout of a linear array camera geometric calibration 
test. The procedure for performing this simulation can be seen in the (Fig. 7). 
 

3.1 Characteristics of imaging system 
 

Detector line must be assembled in such a way that they are perpendicular to the along track 
direction, see (dash-line, Fig. 6). In practice, however, assembly problems cause errors in the 
system that change the distance between the detector lines, their installation angle, and ultimately 
their center position with respect to the optical point (solid-line, Fig. 6). 

 
3.2 Image generator 

 
In this step, three categories of data are produced as follow. Ideal images: perspective images of 

a pinhole pattern to be viewed by camera at 2N+1 angle with steps of FOV/2N+1. Positions of the 
ideal images (xn) are calculated by (7). In the (Fig. 8), x2N+1 shows the ideal position of the image 
obtained from the xn equation. N represents number of images at each side of camera FOV. 

𝑥𝑛 = 𝑓 ⨯ tan 𝜃𝑛 , 𝑛 = 1, … , 2𝑁 + 1 (7) 

Distorted images: Images that are simulated by applying the distortion function on ideal images 
(In the laboratory, these images can be captured by camera at 2N+1 viewing angles.). In the (Fig. 
9), x′2N+1 shows the distorted position of x2N+1 point. 

Central images: The third category includes images that are used to extract the detector center. 
The images are taken at a zero angle in order to extract the distance between the detector center 

and the optics center on the detector plane. Since the rotating table has a positioning error, it is 
better to minimize this effect by averaging over several images (e.g., 8 images) taken at zero angle. 
Here, to simulate this error, the random function is applied to the ideal zero-angle image. 

 
 

 

Fig. 8 Schematic of position of ideal images and distorted images on the detector. The detector image 

is exaggerated 
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3.3 Focal length 
 

Due to optical system distortion, the focal length changes along a linear detector. Hence the 
focal length for each distorted point of image can be derived from the (8). Therefore, the calibrated 
focal length can be extracted by (9) (Washer and Case 1950). The standard deviation of the focal 
length (σf) is also calculated from the (10), where f ̄refers to average of focal length of 91 images 

𝑓𝑛 =  
𝑥𝑛

′

tan𝜃𝑛
  (8) 

𝑓𝑐 = 𝑓 + ∆𝑓 =  𝑓 +
∑ |𝑥𝑛 − 𝑥𝑛

′ |2𝑁+1
𝑛=1

∑ |tan𝜃𝑛|2𝑁+1
𝑛=1

 (9) 

𝜎𝑓 = √
∑ (𝑓𝑛−𝑓̅)22𝑁+1

𝑛=1

𝑁
  (10) 

 

3.4 Distortion correction 
 

As mentioned, the various parameters of distortion (radial and decentering) are not physically 
separate. Therefore, the image distortion should be identified by solving the (11). This equation 
can be solved using linear regression. 

{
∆𝑥 =  ∆𝑥𝑅𝐷 + ∆𝑥𝐷𝐷

∆𝑦 =   ∆𝑦𝑅𝐷 + ∆𝑦𝐷𝐷
 (11) 

 

3.5 Detector slope 
 

To extract the installation angle of detector, it is enough to fit a line on the position of each 
pinhole image by linear regression, (6). If N=20, then 41 images are taken at different angles of the 
field of view. Therefore, there are 41 locations that can be used to calculate the installation slope of 
the detector, (Fig. 9). 

 

3.6 Detector center position 
 

Position of central images that are taken in step.2 should be averaged using (12), and (13), to  
 
 

 

Fig. 9 Schematic of simulated images 
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                       Table 1 Parameter used in simulation 

Parameters Value 

Satellite altitude 550 km 

EFL 1000 mm 

Detector size 78 mm 

Swath 50.5 km 

FOV 5.26 deg 

(Pixel size, GSD, IFOV) 

(5.5 µm, 3.5 m, 1.3 arcsec) 

(7 µm, 4.5 m, 1.7 arcsec) 

(8.75 µm, 5.5 m, 2.1 arcsec) 

(10.7 µm, 7 m, 2.6 arcsec) 

(12 µm, 7.5 m, 2.9 arcsec) 

Distortion Coefficients 

k1=6.51E-06 

k2=-9.23E-10 

k3=5.88E-14 

p1=-3.62E-08 

p2=-7.79E-09 

 
 
calculate the detector center drift of principal point (0, 0). 

𝑥𝑐 =
∑ (𝑥𝑖,max)𝑀

𝑖=1

𝑀
 (12) 

𝑦𝑐 =
∑ (𝑦𝑖,max)𝑀

𝑖=1

𝑀
 (13) 

Where the point (xc, yc) is the position of the detector center with respect to principal point 
position, (0, 0). Also point (xi,max, yi,max) refer to position of maximum value of each image ,and M 

refer to number of captured images. 
 
 

4. Analysis and discussions 
 
In this section, the accuracy of this methodology is discussed carefully. Therefore, affecting 

factors are investigated here. Simulations are done for a remote sensing payload with the 
specifications presented in (Table 1). Different typical pixel sizes are considered in simulations for 

trend analysis. IFOV refers to instantaneous field of view, GSD refers to ground sampling 
distance, and EFL refers to effective focal length. 
 

4.1 Focal length 
 
Using the data of (Table 1) and N=45, 91 images were simulated and by the process mentioned 

in Fig. 7, the calibration process was followed. The calibrated focal length (fc) was changed from 

1004.21 mm (before calibration) to 1000.02 mm (after calibration), which is much closer to the 
paraxial focal length (1000 mm). 

With this method, the standard deviation of the focal length (σf) has decreased from 3.733  
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                                                                         (a)                               (b) 

Fig. 10 Box and whisker chart of focal length: (a) Before geometric calibration. (b) After 

geometric calibration 

 

 

Fig. 11 Accuracy of detector angle 

 
 

(before calibration) to 0.02 (after calibration). (Fig. 10) illustrates the box and whisker chart of 
focal length. 
 

4.2 Detector installation angle 
 
We have considered both relative error (RE) and absolute error (AE) as a measure of accuracy 

for more effecting analysis and providing a better understanding of the subject. Here, absolute 
error stands for AE=|true value-calculated value| and relative error stands for REaccuracy= 
(AE/True value)×100. 

Using (Table 1), (Fig. 11) illustrates the RE in different angles. Smaller the pixel size, smaller 
the RE. The RE is less than 10% for all pixel sizes and angles greater than 65 arcsec. On the other 

hand, it is less than 5% for installation angles greater than 100 arcsec. (Fig. 11) could be used as a 
look-up figure guideline for designer in the first few steps to estimate the proper parameters of the 
system. 

Fig. 12 illustrates AE for a typical CCD installation angle, 90 arcsec. Dotted-line in this figure, 
illustrate the IFOV corresponding to each pixel size for 1000 mm EFL. We can conclude, 
increasing pixel size will increase the absolute error but it will remain in IFOV limitation range. 

Along and cross track root mean square (RMS) error of the calibrated images are illustrated in  
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Fig. 12 Absolute error of detector angle vs. pixel size 

 

 

Fig. 13 Deviation of distortion corrected image of ideal image in cross-track direction (∆x) 

 

 

Fig. 14 Deviation of distortion corrected image and ideal image in along-track direction (∆y) 

 
 

(Fig. 13) and (Fig. 14), respectively. We can confirm that the RMS error is less than 1μm in both 
directions. 

 
4.3 Positioning accuracy of rotating table 

 
The accuracy of the rotating table positioning is an important factor which can restricts this 

method performance. On the other hand, a very high-performance rotary may be over-qualified 
and will add the extra cost to the system. To avoid overdesigning of the instrument specifications, 
effects of rotary table accuracy on the final performance of this geometrical calibration  
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Fig. 15 Rotation table positioning accuracy 

 

 

Fig. 16 RMS of distortion corrected image deviation of ideal position (Δx) 

 

 

Fig. 17 RMS of distortion corrected image deviation of ideal position (Δy) 

 
 

methodology is investigated in this section. 
Fig. 15 illustrates AE for a range of rotary table positioning accuracy. (Fig. 16) and (Fig. 17) 

illustrate the deviation of the calibrated image from original ideal image in along track (Δx) and 
cross-track (Δy), respectively. Using these graph results we can conclude that RMS error of 

distortion corrected image deviation of ideal position (Δx, Δy) is smaller than the pixel size. 
Results of (Fig. 15), (Fig. 16), and (Fig. 17) shows that final performance is very sensitive to 

the rotating table positioning accuracy. Doubling the positioning accuracy will roughly double the 
method accuracy. Another conclusion comes from (Fig. 15) is that the sensitivity behaviour is  
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                          Table 2 Parameter used in simulation 

Name x0.Ideal x0.cal Y0.Ideal Y0.ph.cal 

Detector center 0 μm 8 μm 0 μm 5 μm 

 
 

linear somewhere, in our case in 27.5 arcsec, and will exponentially increase for lower 

performance rotary table. Therefore, for a system with specific pixel size and its corresponding 
IFOV, along with the accuracy requirement budget, this result can be used as a useful guideline for 
optimized rotating table selections. 

 

4.4 Center position of detectors 
 
Eight images were taken at a zero angle (nadir viewing). The maximum of each of these images 

was calculated and then the average position of these points was calculated according to (8), and 

(9). As can be seen from the data in (Table 2), the calculated values of the center of each detector 
line differ by less than a pixel from the expected value. 
 
 

5. Conclusions 
 

This manuscript presents an applicable easy-to-implement methodology for geometric 

calibration of linear cameras. The presented method, which is based on capturing images of a 
pinhole pattern using a defined instruments setup was designed to be simply implemented in the 
laboratory for remote sensing earth observation satellite cameras. 

We have discussed the accuracy limitations of this approach and the more affecting parameters 
are analysed separately. Our results show that using this approach can guarantee the sub-pixel 
accuracy for a typical push-broom payload geometry calibration. 

On the other hands, the instrument setup and its requirements are discussed properly to help the 

researchers do it easily by themselves and avoid extra costs. Furthermore, another advantage of 
this method is speeding up the testing duration and also it would be simplifying and speed up the 
calculation and analysis process. 
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