Techno Press
You logged in as. Techno Press

Wind and Structures
  Volume 17, Number 1, July 2013 , pages 1-19
DOI: https://doi.org/10.12989/was.2013.17.1.001
 


Multiscale finite element method applied to detached-eddy simulation for computational wind engineering
Yue Zhang, Rooh A. Khurram and Wagdi G. Habashi

 
Abstract
    A multiscale finite element method is applied to the Spalart-Allmaras turbulence model based detached-eddy simulation (DES). The multiscale arises from a decomposition of the scalar field into coarse (resolved) and fine (unresolved) scales. It corrects the lack of stability of the standard Galerkin formulation by modeling the scales that cannot be resolved by a given spatial discretization. The stabilization terms appear naturally and the resulting formulation provides effective stabilization in turbulent computations, where reaction-dominated effects strongly influence near-wall predictions. The multiscale DES is applied in the context of high-Reynolds flow over the Commonwealth Advisory Aeronautical Council (CAARC) standard tall building model, for both uniform and turbulent inflows. Time-averaged pressure coefficients on the exterior walls are compared with experiments and it is demonstrated that DES is able to resolve the turbulent features of the flow and accurately predict the surface pressure distributions under atmospheric boundary layer flows.
 
Key Words
    multiscale method; detached-eddy simulation; computational wind engineering; inflow turbulence generation; CAARC model
 
Address
Yue Zhang, Rooh A. Khurram and Wagdi G. Habashi : NSERC-J.-Armand Bombardier Industrial Research Chair for Multi-disciplinary Analysis and Design of Aerospace Systems CFD Lab, Department of Mechanical Engineering, McGill University Montreal, QC, Canada H3A 2S6
 

Techno-Press: Publishers of international journals and conference proceedings.       Copyright © 2025 Techno Press
P.O. Box 33, Yuseong, Daejeon 305-600 Korea, Tel: +82-42-828-7996, Fax : +82-42-828-7997, Email: admin@techno-press.com