Buy article PDF
The purchased file will be sent to you
via email after the payment is completed.
US$ 35
Smart Structures and Systems Volume 16, Number 4, October 2015 , pages 579-591 DOI: https://doi.org/10.12989/sss.2015.16.4.579 |
|
|
Wideband and 2D vibration energy harvester using multiple magnetoelectric transducers |
||
Jin Yang, Qiangmo Yu, Jiangxin Zhao, Nian Zhao, Yumei Wen and Ping Li
|
||
Abstract | ||
This paper investigates a magnetoelectric (ME) vibration energy harvester that can scavenge energy in arbitrary directions in a plane as well as wide working bandwidth. In this harvester, a circular cross-section cantilever rod is adopted to extract the external vibration energy due to the capability of it\'s free end oscillating in arbitrary in-plane directions. And permanent magnets are fixed to the free end of the cantilever rod, causing it to experience a non-linear force as it moves with respect to stationary ME transducers and magnets. The magnetically coupled cantilever rod exhibits a nonlinear and two-mode motion, and responds to vibration over a much broader frequency range than a standard cantilever. The effects of the magnetic field distribution and the magnetic force on the harvester\'s voltage response are investigated with the aim to obtain the optimal vibration energy harvesting performances. A prototype harvester was fabricated and experimentally tested, and the experimental results verified that the harvester can extract energy from arbitrary in-plane directions, and had maximum bandwidth of 5.5 Hz, and output power of 0.13 mW at an acceleration of 0.6 g (with g=9.8 ms-2). | ||
Key Words | ||
two-dimensional vibration energy harvesting; nonlinear and two-mode motion; ME transducer; cantilever rod | ||
Address | ||
Jin Yang, Qiangmo Yu, Jiangxin Zhao, Nian Zhao, Yumei Wen and Ping Li: Department of Optoelectronic Engineering, Research Center of Sensors and Instruments, Chongqing, China | ||