Techno Press
You logged in as

Smart Structures and Systems   Volume 15, Number 3, March 2015, pages 627-643
DOI: https://doi.org/10.12989/sss.2015.15.3.627
 
Cable with discrete negative stiffness device and viscous damper: passive realization and general characteristics
Lin Chen, Limin Sun and Satish Nagarajaiah

 
Abstract     [Buy Article]
    Negative stiffness, previously emulated by active or semi-active control for cable vibration mitigation, is realized passively using a self-contained highly compressed spring, the negative stiffness device (NSD).The NSD installed in parallel with a viscous damper (VD) in the vicinity of cable anchorage, enables increment of damper deformation during cable vibrations and hence increases the attainable cable damping. Considering the small cable displacement at the damper location, even with the weakening device, the force provided by the NSD-VD assembly is approximately linear. Complex frequency analysis has thus been conducted to evaluate the damping effect of the assembly on the cable; the displacement-dependent negative stiffness is further accounted by numerical analysis, validating the accuracy of the linear approximation for practical ranges of cable and NSD configurations. The NSD is confirmed to be a practical and cost-effective solution to improve the modal damping of a cable provided by an external damper, especially for super-long cables where the damper location is particularly limited. Moreover, mathematically, a linear negative stiffness and viscous damping assembly has proven capability to represent active or semi-active control for simplified cable vibration analysis as reported in the literature, while in these studies only the assembly located near cable anchorage has been addressed. It is of considerable interest to understand the general characteristics of a cable with the assembly relieving the location restriction, since it is quite practical to have an active controller installed at arbitrary location along the cable span such as by hanging an active tuned mass damper. In this paper the cable frequency variations and damping evolutions with respect to the arbitrary assembly location are then evaluated and compared to those of a taut cable with a viscous damper at arbitrary location, and novel frequency shifts are observed. The characterized complex frequencies presented in this paper can be used for preliminary damping effect evaluation of an adaptive passive or semi-active or active device for cable vibration control.
 
Key Words
    stay cable; vibration control; negative stiffness device; viscous damping; frequency loci
 
Address
Lin Chen and Limin Sun: State Key Laboratory for Disaster Reduction of Civil Engineering, Tongji University,
Shanghai 200092, P.R. China
Satish Nagarajaiah: Department of Civil and Environmental Engineering, and Dept. of Mechanical Engineering, Rice University, Houston, TX 77005, USA
 

Techno-Press: Publishers of international journals and conference proceedings.       Copyright © 2020 Techno Press
P.O. Box 33, Yuseong, Daejeon 305-600 Korea, Tel: +82-42-828-7996, Fax : +82-42-828-7997, Email: technop@chol.com