Techno Press
You logged in as Techno Press

Structural Engineering and Mechanics
  Volume 74, Number 6, June25 2020, pages 747-756
DOI: http://dx.doi.org/10.12989/sem.2020.74.6.747
 


Temperature development and cracking characteristics of high strength concrete slab at early age
Chung-Hao Wu, Yu-Feng Lin, Shu-Ken Lin and Chung-Ho Huang

 
Abstract
    High-strength concrete (HSC) generally is made with high amount of cement which may release large amount of hydration heat at early age. The hydration heat will increase the internal temperature of slab and may cause potential cracking. In this study, slab specimens with a dimension of 600 ✕ 600 ✕ 100 mm were cast with concrete incorporating silica fume for test. The thermistors were embedded in the slabs therein to investigate the interior temperature development. The test variables include water-to-binder ratio (0.25, 0.35, 0.40), the cement replacement ratio of silica fume (RSF; 5 %, 10 %, 15 %) and fly ash (RFA; 10 %, 20 %, 30 %). Test results show that reducing the W/B ratio of HSC will enhance the temperature of first heat peak by hydration. The increase of W/B decrease the appearance time of second heat peak, but increase the corresponding maximum temperature. Increase the RSF or decrease the RFA may decrease the appearance time of second heat peak and increase the maximum central temperature of slab. HSC slab with the range of W/B ratio of 0.25 to 0.40 may occur cracking within 4 hours after casting. Reducing W/B may lead to intensive cracking damage, such as more crack number, and larger crack width and length.
 
Key Words
    high-strength concrete; silica fume; fly ash; temperature development; cracking
 
Address
Chung-Hao Wu: Department of Civil Engineering, Chung Yuan Christian University, No. 200 Chung Pei Road, Chung Li Dist., Taoyuan City 320, Taiwan
Yu-Feng Lin: Department of Civil Engineering, Chienkuo Technology University, No.1, Chiehshou North Road, Changhua City 500, Taiwan
Shu-Ken Lin: Department of Civil Engineering, National Chung Hsing University, No. 145 Xingda Rd., South Dist., Taichung City 402, Taiwan
Chung-Ho Huang: Department of Civil Engineering, National Taipei University of Technology, No.1, Sec. 3, Zhongxiao E. Rd., Da\'an Dist.,Taipei City 106, Taiwan
 

Techno-Press: Publishers of international journals and conference proceedings.       Copyright © 2021 Techno Press
P.O. Box 33, Yuseong, Daejeon 305-600 Korea, Tel: +82-42-828-7996, Fax : +82-42-828-7997, Email: info@techno-press.com